
PAStE: A Platform for Adaptive Storytelling with Events

Alexander Shoulson, Mubbasir Kapadia, and Norman I. Badler
Department of Computer and Information Science

University of Pennsylvania
Philadelphia, PA 19104-6389, USA

{shoulson, mubbasir, badler}@seas.upenn.edu

Abstract

We present ongoing work on PAStE, a system that sup-
ports a narrative director by describing a virtual world
and managing the behavior of its characters. Rather than
operating in the action domain of each individual ac-
tor, PAStE works at the scope of events – pre-authored
multi-actor sequences describing interactions between
groups of actors and props. A director can select which
event to perform, and populate that event with char-
acters in the virtual world. Once an event is chosen,
PAStE handles the event’s execution with support for
high-fidelity character animation on fully-featured 3D
virtual humans. Events are an accessible tool for as-
sembling narrative arcs, invoking contextual activities,
and conceptualizing user intervention. We explore the
possibilities presented by an event-centric behavior en-
vironment for conducting stories, and address some of
the potential limitations.

Introduction
Complex virtual worlds with sophisticated artificial actors
present a unique opportunity for telling immersive interac-
tive stories. With a rich behavioral repertoire, virtual charac-
ters can perform narrative roles, represent personalities, and
convey information or emotion to a user. For high-fidelity
expression, need characters with responsive controllers to
react to intervention from human users, and adapt the struc-
ture of the narrative to incorporate external input. As virtual
characters and the worlds they inhabit grow in complexity,
so too do the decision structures needed to dictate which ac-
tions a character should take, at what time, and in what man-
ner.

Traditionally, an increase in the number of actions a char-
acter can perform has an exponential effect on the com-
putational cost of a decision-making engine. This imposes
a challenge on our efforts to increase characters’ expres-
siveness and add features like gesturing, locomotion, reach-
ing, gaze tracking, facial animation, and other tasks suit-
able for a virtual human in a fully-realized 3D space. To
achieve a large repertoire of character actions while miti-
gating the computational impact on those characters’ con-
trollers, we are developing a system that encapsulates behav-

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

ior into structures with less granularity and more semantic
meaning. Rather than exposing to a controller an intractably
large list of actions that may hold little narrative significance
on their own, PAStE uses the following two techniques:

Smart Objects. Using Smart Objects (Kallmann and
Thalmann 1999), the way an actor can use an object, be it
a static prop or another character, is encoded in the target
object itself as a list of affordances. This makes it possi-
ble to add objects to the world without affecting any other
behavior logic already in place, and to personalize each
object’s use to its unique geometry. With Smart Objects, a
controller can prune actions with little contextual signifi-
cance.

Event-Centric Behavior. Events are authored interac-
tions between groups of agents and objects, often ex-
hibiting cooperative or competitive behaviors. They are
not merely action decompositions, but rather autonomous
coroutines that temporarily control multiple actors as if
they were limbs of some central agent. The behavior
logic of an event comprises numerous atomic actions
with control structures to enable synchronization, non-
deterministic behavior, and permanent state changes in
the objects involved, with an emphasis on enabling rich
3D character animation.

This system is not a narrative director. Instead, our en-
vironment is intended to support a director by exposing a
library of events, giving that director the tools it needs for
selecting which events are most relevant, and managing the
execution of each event invoked. For this reason, events are
designed to describe interactions with narrative value – the
contribution of one gesture animation to the story is difficult
to quantify, but a series of gestures representing an argu-
ment between actors can make a distinct impact on the plot.
Rather than describing the world’s action domain as all pos-
sible combinations of the characters’ atomic actions, we ex-
pose externally the list of possible events and the actors and
objects available for participation. This dramatically reduces
the granularity of a narrative action sequence into more con-
ceptually relevant atoms, and each event can be analyzed
for narrative cost and effect before being made available.
Because events represent temporary interactions, and many
events can operate simultaneously in a world, they occupy
a theoretical ground between atomic character actions, and

Intelligent Narrative Technologies: Papers from the 2013 AIIDE Workshop (WS-13-21)

64

full scenes or encounters (Thue et al. 2007).
Our events, which are loosely based off of Smart

Events (Stocker et al. 2010), represent compound behav-
iors spanning multiple participating actors and objects, and
serve as more complex transitions in the control domain than
atomic actions. Because of this, the event centric authoring
paradigm presents two major challenges:

Authoring Burden. While events can be described with
preconditions and effects like atomic actions, that state
transition data may be more complicated than it would
be for an atomic action. This information can be explic-
itly annotated in the event creation process, but doing so
requires a significant manual effort. We can address this
burden by performing an offline exploration of the Smart
Object affordance domain in what we call the “Smart Ob-
ject Laboratory”, followed by an abridged simulation of
the system’s events. Doing so allows us to automatically
infer the preconditions and effects of an event without any
explicit author annotation at the event level and store them
in a model for fast retrieval.
Computational Cost. Since events take a number of par-
ticipating actors and objects to function, a controller de-
ciding which event to execute needs to consider not only
which event to select, but also which actors and objects to
nominate as participants. The search for the correct event
to execute can grow combinatorially unless mitigated. To
address this complexity, we introduce a salience metric,
which prioritizes candidates based on their previous par-
ticipation in events, and has the side effect of creating
“main characters” for a particular story.

The contributions in this paper lay the foundation for realiz-
ing an automated story director where a skilled author cre-
ates and populates the world with reusable smart objects,
and end users can design events and higher-level story goals
to create narratives in fully-realized 3D virtual worlds. The
entire system is fully generalizable and reusable to create
multiple dynamic narratives.

Related Work
Since our work is concerned with both interactive narrative
and controlling fully-articulated 3D characters in a virtual
world, the PAStE system draws from Crowd Simulation re-
search and applies it to the domain of Interactive Narrative
to bridge the gap between narrative and simulation.

Crowd Simulation. In addition to telling a story,
we are also interested in creating a realistic, immer-
sive environment with interesting ambient activity. Tradi-
tional approaches (Pelechano, Allbeck, and Badler 2008)
for large-scale crowd simulation incorporate social force
models (Helbing and Molnar 1995), reactive behav-
iors (Reynolds 1999), or hybrid solutions (Singh et al. 2011)
to handle the characters’ navigation and decision processes.
Typically, characters in a crowd are simulated with low
behavioral fidelity, driven by simple goals (Shao and Ter-
zopoulos 2007) or heavy scripting (Massive Software Inc.
2010) that do not incorporate narrative objectives. Our work
builds on traditional crowd simulation approaches by de-
veloping a narrative on the backdrop of a virtual populace.

Characters in PAStE can move fluidly in and out of focus,
participating in the story when needed for an event, and re-
turning to simple autonomy when not involved in the nar-
rative (Shoulson and Badler 2011). Using this hybrid ap-
proach, we can tell stories in “living” worlds populated by
functional, purposeful agents.

Interactive Narrative. The field of interactive narrative
has produced the concept of a virtual director or drama
manager (Magerko et al. 2004). Virtual director systems
are driven by a virtual agent responsible for steering the
agents in the world towards predetermined narrative goals
(Weyhrauch 1997). This area has been well studied, and a
number of techniques exist for designing effective directors.
Facade (Mateas and Stern 2003) executes authored beats to
manage the intensity of the story, Mimesis (Riedl, Saretto,
and Young 2003) employs narrative planning (Li and Riedl
2011) with atomic agent actions, Thespian (Si, Marsella,
and Pynadath 2005) uses decision-theoretic agents to create
actors with social awareness, while PaSSAGE (Thue et al.
2007) and the Automated Story Director (Riedl et al. 2008)
monitor a user’s experience through the story to choose be-
tween scenes and character behavior. Riedl and Bulitko pro-
vide a more detailed survey (Riedl and Bulitko 2013) of the
current work in interactive narrative.

The bulk of research in interactive narrative focuses on
the virtual director, which represents only part of the interac-
tive narrative problem. Most of this work is concerned with
the ordered selection of abstract, story-relevant action se-
quences to produce a narrative that responds to the actions of
a user. PAStE is designed to support this focus. Our virtual
world manages the ambient activity of a pool of “primor-
dial” characters with little initial personality, and exposes
to the director an interface for involving those characters in
events with narrative significance. All of this activity is per-
formed in a fully-realized 3D virtual environment that con-
verts high-fidelity animations and procedural character con-
trollers on fully articulated models into a series of abstract
narrative events that a virtual director can comprehend.

Like PAStE’s events, A Behavior Language
(ABL) (Mateas and Stern 2004) provides a general-
ized scripting language for single- or multi-character
actions based on manually authored preconditions for
successful action execution. Multi-actor behaviors in ABL
use a role-based negotiation process to determine factors
like leader/follower relationships. PAStE events are based
on Parameterized Behavior Trees (PBTs) (Shoulson et
al. 2011), which share some similarities with ABL. Both
ABL and PBTs allow for sequential and parallel control
structures for synchronous actions. However, PAStE’s PBT
events differ from ABL in two key ways:

Character Interactions. ABL has support for charac-
ter interactions, but its joint behaviors are still agent-
centric and rely on an agent’s autonomy. An ABL “fol-
low the leader” event has two different versions, one for
the leader, and one for the follower, that both agents ex-
ecute individually. PAStE’s PBT event version of “follow
the leader” contains only one event behavior structure that
suspends the autonomy of both the leader and follower,

65

and controls both exclusively for the duration of the event
as limbs of a single entity. This centralizes the authoring
process for complex synchronous interactions.

Behavior Metadata. ABL and PAStE events both require
precondition and effect information in order to to be used
effectively. In ABL, these are hand-authored in the be-
havior script, while PAStE learns this descriptive infor-
mation without manual annotation. After experimenting
with the world’s objects in the Smart Object Laboratory,
PAStE can simulate its events using combinations of ar-
bitrary participant descriptions to determine whether an
event will succeed or fail under certain conditions.

Problem Definition
We define our problem domain as Σ = 〈S,A〉, where S
is the state domain, and A is the action domain. We define
a single problem instance as P = 〈Σ, Sstart, Sgoal〉 where
Sstart, Sgoal ∈ S are the start and goal states. Note that hav-
ing start and goal states makes the assumption that the vir-
tual director using PAStE will employ some form of search
for event selection.

State Domain
Each object (actors are objects with autonomy) in the world
W is described as o = 〈c, s, n,A〉 ∈ W where c is a con-
troller, s is the object’s individual state represented as a bi-
nary vector, A is a set of smart object affordances, and n
is a set of pairs of type (r, o′) where r ∈ R is a relation-
ship and o 6= o′ ∈ W. Individual state represents flags af-
fecting only the owning object (Sleeping, HasKey, etc.)
while relation entries represent relationships with other ob-
jects (Friend(x, y), Owns(x, y), etc.). Object type
information is also encoded in its state, so that the individual
state flags could contain entries like IsActor, IsChair,
IsTable, and so on. We distinguish between s and n be-
cause n changes for a given object in the contexts of its in-
teractions with other objects, while s does not.

Globally, the world state can be described as S =
{(s1, n1), . . . , (sn, nn)}, but a global controller will only
rarely examine that world state. Instead, the story controller
will generally examine subdomains of the world containing
the states of the objects in a particular event, so that for an
event e, Se = {(s1, n1), . . . , (sm, nm)} where each (si, ni)
belongs to an object oi participating in e.

Action Domain
Affordance Domain A smart object affordance for an ob-
ject o is a function a(o, ou) : ((so, no), (sou , nou)) →
((s′o, n

′
o), (s′ou , n

′
ou)) that takes in the object itself and an-

other object ou, the “user” of the affordance (not to be con-
fused with a human user) and uses their controllers to mod-
ify their states and relations. The affordance can only add
or remove relations under one of the following conditions:
either the relation is of the form (r, o) ∈ nou , or it is of the
form (r, ou) ∈ no for some r. That is, during the affordance,
an object can only add or remove a relation in the other ob-
ject, and only referring to itself. Note that the activation of
an affordance can persist over a period of time, and both the

affordance user and the object being used have their auton-
omy suspended for the duration. An affordance can also fail
during its execution, such as if the user or used object do not
match certain state criteria.

Affordances represent the use or activation of an object.
For instance, a chair might have a “sit” affordance that, when
used by a character, directs the character to approach that
chair and sit on it, writing to that character an SittingOn
relationship. By preventing the affordance from modifying
or writing references to any objects aside from itself and its
current user, we limit the portion of the global state domain
affected by the affordance and simplify the transition func-
tion created by using it.

Affordance State Encoding When evaluated during an
affordance activation, the state of an object o is encoded as
a binary vector with two regions. The individual state of an
object, so, is already stored in binary and fills the first re-
gion of the bit vector, while the second region of the vector
is generated dynamically based on the object’s relations no.
We represent the total binary encoding for an object o, rela-
tive to another object o′ as do(o′) = [so|δ(no, o′)].

The region δ(no, o
′) = [e0 . . . e|R|] is generated for o

relative to another object o′ in a given affordance. Specif-
ically, let o be the owner of the affordance, and let ou be
the user of the affordance. Let δ(no, ou) = [a0 . . . a|R|] and
δ(nou , o) = [b0 . . . b|R|]. Then for each relation ri ∈ R,
ai = 1 if and only if (ri, ou) ∈ no, and bi = 1 if and only if
(ri, o) ∈ nou . That is, each object’s entry for each relation-
ship is set to 1 if and only if that object contains an entry for
that relationship referring to the other object involved in the
affordance.

For example, suppose we have four individual state
flags in our simulation: IsActor, IsChair, Empty, and
HasKey, and the following relationships: SittingOn,
and Friend. Let us define two characters a and b, and
a chair c. Character object a has the following state
information: IsActor, HasKey, and Friend(a, b).
Character object b has IsActor, Friend(b, a), and
SittingOn(b, c). Chair object c only has IsChair,
since b is sitting on it and it is not currently empty. We can
produce the following encoded states:

da(b) = [1 0 0 1 | 0 1], da(c) = [1 0 0 1 | 0 0]

db(a) = [1 0 0 0 | 0 1], db(c) = [1 0 0 0 | 1 0]

dc(a) = [0 1 0 0 | 0 0], dc(b) = [0 1 0 0 | 0 0]

By encoding relationships in this way, we reduce the im-
pact a single affordance can have on the world state, com-
partmentalizing the affordance domain into manageable re-
gions. Rather than considering a large set of relationships
for each object with every other object, we restrict the in-
formation that is encoded and made available to both the
affordance itself and any higher-level controller in charge
of activating the affordance. Since affordances are unable to
write to or reference any objects other than the two immedi-
ate participants, the scope of their possible effect on the state
of the world is very limited.

It is important to note that the high-level state of an object
(i.e., s and n) is very much an abstraction of its actual state

66

in the world. Objects in our virtual world contain a wealth
of information pertaining to factors like animation, inverse
kinematics, and geometry. The state domain for our problem
ignores most of these details, so the affordance functions
themselves are responsible for making sure that an under-
lying state change in the character is reflected with a change
in the high-level state of that character object. We treat two
characters with the same high-level state (i.e., their encoded
state vectors are equal) in the same affordance context as
functionally identical. That is, if objects u and v both use af-
fordance a of object o, and (su, δ(nu, o)) = (sv, δ(nv, o)),
then u ≡ v relative to affordance a. As far as affordance a is
concerned, u and v are interchangeable and should produce
the same result upon activation with o, even if the details
of their condition within the virtual world differ at a lower
level.

Event Domain The top-level action domain in PAStE is
based on the event domain. Behaviorally, an event is a pro-
cess that temporarily suspends the autonomy of any partici-
pating objects, carries them through an interaction, and then
restores those objects’ autonomy once the event completes.
Events are manually authored and stored in an event library.
In PAStE, the event’s behavior logic is encoded as a PBT
controlling a sequence of affordance activations. Note that
behavior trees ultimately report success or failure, and an
event’s tree may fail independently of the precondition func-
tion (though ideally this would not occur).

In the problem domain, each event is defined as
e = 〈t, c, φ : Wn → {0, 1},∆ : Se → S′e〉

where the t contains the event behavior, c is the event’s cost,
the precondition function φ transforms a selection of n ob-
jects from the world into a true or false value, and the post-
condition function ∆ transforms the event state subdomain
as a result of the event. The transition information for an ex-
ample event that instructs an actor to unlock a door would
take two objects, have preconditions such as “Object 1 is a
character”, “Object 2 is a door”, “Door is closed”, and “Door
is locked”, and effects such as “Door is unlocked”. Our goal
is to produce a system where an author designs only t and
part of c, while the rest of an event’s information is discerned
from pre-processing.

The final action domain, however, has one more compli-
cation. Rather than only considering which event to execute,
a controller must also select participants. Once a candidate
event is selected from an authored library of events, the event
must also be populated with n participating objects. The n
objects must be selected from the world, and the precon-
dition function φ must be evaluated on the selection. The
precondition function factors in both an objects’s individual
state, and its relationships to the other candidate objects. In
the earlier example with characters a and b, and chair c, the
total encoded state of the objects (a, b, c) passed to an event
would be a concatenation of their three individual states, fol-
lowed by their six relative relationship states, as follows:

[1 0 0 1][1 0 0 0][0 1 0 0][0 1][0 0][0 1][1 0][0 0][0 0]

Order matters in this encoding, and the input would differ if
the objects were given as (b, a, c). Because of this, the pre-
condition function needs to be aware not only that an object

has been nominated, but which role in the event the object
would take on. As a result, our worst case for picking n ob-
jects for one event would be |W|!

(|W|−n)! . We will introduce
some ways to avoid this combinatorial growth.

Goals The goal of PAStE in its current form is not to saf-
isfy story goals, but to expose the environment in a service-
able form to an attached virtual director that can. Ultimately
it is the director’s responsibility to select events and partici-
pants, but PAStE can help in this process. Rather than spec-
ifying a desired value for the composite world state, goals
can be predicated on the existence of an object with a given
state. For instance, we can specify that there exists an object
in the world with a certain set of flags, or that for a specific
object in the world, certain conditions hold on the state of
that object. A story goal could be for a character to be hold-
ing a certain prop, or for two characters to gain an Friend
relation. All of this information is made readily available by
the PAStE system.

Exploring the Affordance Domain
By definition, we encapsulate all character actions into affor-
dance activations, where a virtual actor can activate affor-
dances on itself, other actors, or non-autonomous props in
the environment. An affordance has only two participants,
the activator and the object being activated, and generally
comprises multiple mechanical tasks (navigation, reaching,
gazing, gestures, etc.) to accomplish one objective (such as
coming to sit on a chair, or picking up an object from a
table). The affordances of a smart object are manually au-
thored by an expert user, and given handwritten precon-
ditions and effects. An event can have an arbitrary num-
ber of participants, and generally expresses complex behav-
ioral phenomena (such as a group conversation or a riot).
All higher level behavior in an event is authored as a se-
ries of affordance activations with additional control struc-
tures for decision-making, synchronization, and so on. How-
ever, since events involve more participants, and represent
more complex behavior than an affordance, their precondi-
tions and effects are likely to be more complex and difficult
to manually author. Fortunately, if the system understands
the preconditions and effects of each affordance, and events
are presented as sequential or simultaneous affordance acti-
vations, then the preconditions and effects for an event can
be learned. This reduces authorial burden and allows less
trained authors to create events.

Once a world is designed with character and object
archetypes, our first task is to run a series of simulations to
exhaustively explore the affordance domain for the objects
designed by the author. This exploration task operates on a
reduced world called the Smart Object Laboratory (SOL).
The reduced world does not require complete functionality
emulating the full simulation space, as the goal of the SOL
is only to learn the behavior of each object. In practice, we
expect a simulation space to simply be a line-up of each ob-
ject archetype (including other actors in different configu-
rations), with one or more exemplar character(s) to exper-
iment with each object. Creating the laboratory would be
very simple to make alongside the intended full simulation

67

environment, requiring only the placement of each object in
a position that can be reached. The character attempts all se-
quences of interactions with all of the available objects, until
the behavior of each object (carrying state changes from one
object to the next) until all new discoveries are exhausted.

The process for exploring the SOL is illustrated in Al-
gorithm 1. The algorithm walks through the affordance do-
main, branching whenever it encounters previously unseen
combinations of object, affordance, and state. Whenever the
algorithm encounters a situation identical to a seen example
(defined by equality over do and dos), it ceases that branch.
Recall that we consider two objects to be functionally iden-
tical if their encoded states match – this is the property that
allows our search to terminate. The final result of the sim-
ulation is a set T of transition records {(o, a, (do, dou) →
(d′o, d

′
ou)} over all affordances a belonging to all object

archetypes o, over all possible state encodings do and dou for
o and candidate user object ou. Note that the state serializa-
tion is an optimization that is not required for the algorithm
to function properly.

Data: simulation world object list W′

Data: a sampling object os
Result: transition record T
create sets O, C;
serialize current world state S;
foreach o ∈W′ do

foreach a ∈ Ao do
O = O ∪ {(S, o, a)};
C = C ∪ {(o, a, do, dos)};

while |O| > 0 do
select (S, o, a) from O ;
set current world state to S ;
record tin = (do, dos);
execute a(o, os);
serialize current world state S′;
if a is successful then

record tout = (d′o, d
′
os);

foreach o′ ∈W′ do
foreach a′ ∈ Ao′ do

let c = (o′, a′, d′o, d
′
os);

if c 6∈ C then
O = O ∪ {(S′, o′, a′)};
C = C ∪ {c};

T = T ∪ {(o, a, tin, tout)} ;

Algorithm 1: Exploring the affordance domain.

As long as a full representative set of examplar objects,
with all of their starting configurations, is tested on all start-
ing character configurations, this will generate an exhaustive
coverage of the affordance domain. If a state transition is not
present in the final database, then it cannot be achieved from
the starting configuration of the world, irrespective of user
input (which is also bound to the affordance domain). The
process, as it appears in our engine, is displayed in Figure 1.

Discovering the Event Domain
An understanding of the affordance domain allows us to ap-
proximate the transition function for each event. To do so,
we create replace each event’s affordance activations with
the modeled transition functions found in the SOL. Instead
of fully executing the affordance in the virtual world, these
“proxy” events transform the states of their participants ac-
cording to how each affordance would. If an object’s state
cannot be found as a valid input for that affordance’s tran-
sition function model, then the event is treated as a failure.
If the event terminates successfully, having executed all of
its affordances and transformed the states of its participants,
we store the input and output states of the participants into a
new table to produce a model of the event’s transition func-
tion, like we do with affordances.

Evaluating all permutations of input states as input would
be prohitively expensive. Suppose we have an event taking
a objects with Nt total unary state flags and Nr total rela-
tion flags in their encoding. Each of the a objects has a − 1
possible encoded relationship values, one relative to each of
the other objects. The number of possible encoded inputs
to the event then is 2(aNt)+(a(a−1)Nr). This grows too fast
to exhaustively enumerate, so we perform static analysis on
the event tree and detect all of the possible first affordances
each object could be instructed to activate. If the event is
nondeterministic, an object could have multiple first affor-
dances. For all of those affordances, we collect their valid
input states, and evaluate the event on that collection. This
number will be much smaller than the worst case estimate,
as each event will only have a small number of starting affor-
dances, and those affordances will have a small number of
valid inputs. This ensures coverage of all the ways an event
could possibly succeed, without wasting time on object con-
figurations that will fail on the first affordance invocation.

Creating a model for an event’s transition function is still a
storage and retrieval challenge. Because only a certain num-
ber of input configurations will allow an event to execute,
the transition function’s input and output values will be large
and sparse. This is the subject of ongoing work, exploring
two techniques. First, we can keep track of which flags in
each object’s state are actually read or written by an affor-
dance or an event, which would allow us to mask out and
ignore data that is never used. Second, we intend on produc-
ing an approximation based on model reduction methods,
using a technique like principal component analysis rather
than just a lookup table.

Reaching a Goal
Once we have a transition function for the event domain, we
can project the outcome of the event and the new states that
those objects will take on. We can also predict if a set of
candidate objects is a valid selection for an event, since we
know under what state conditions the event will succeed and
fail. These are the main tools that PAStE exposes to an at-
tached virtual director. The process of achieving a narrative
goal is to execute successive events until the result of one
of those events places a number of objects in a desired con-
figuration. With events, however, the action domain is more

68

Figure 1: Affordance domain exploration. The actor (a) sits, then (b) picks up an object and tries both (c) sitting with that
object and (d) handing that object to another dummy actor. We use Unity and the ADAPT platform (Shoulson et al. 2013) for
visualization.

than just a selection of which events to perform, but also
which objects in the world are selected to participate in those
events. The director could naively select all combinations of
objects from the world to explore the action domain for all
events, but this is intractable for rich worlds with numer-
ous props and actors. One way of reducing this complexity
is to divide objects into roles, and author role requirements
into an event’s parameter list. As a pre-processing step be-
fore runtime, we can divide all of the world objects into bins
by archetype, creating lists of objects each filling a partic-
ular role in the narrative. An event would then specify that
its first object must be of a certain type, its second object of
the same or another type, and so on. For an event e with n
participating objects, this reduces the possible combinations
of valid participants from |W|n to r1 · r2 · · · rn, where ri is
the number of objects matching the ith role required by e.
Thus, the number of candidates would be small for a diverse
environment.

One reason that a large number of candidates is undesir-
able is that all candidate objects are equal in value to the
controller. The controller has no knowledge of what the state
of an object means, other than seeing a binary vector encod-
ing. To reduce the uniformity of the objects in the world,
we introduce a metric called salience. As objects (actors
or props) participate in events, they are given a growing
salience weight. A controller searching through the action
domain is then highly incentivized to use objects and char-
acters with higher salience values. This metric can be eas-
ily integrated into exsiting control frameworks, for exam-
ple: as a reward function in Markov decision processes, or
as a heuristic to guide the search for automated planners.
Salience has two parts: a method of events leaving residual
information in their participants, and a search heuristic that
weights higher actors and objects that have already been fea-
tured in events. This creates a phenomenon we call progres-
sive differentiation (Shoulson, Garcia, and Badler 2011),
where characters begin as primordial actors with little in-
dividual qualities, and through involvement in events, pick
up traits and qualities that contribute to their involvement in
subsequent events. Salience does not mitigate preconditions
– a character still requires a key to unlock a door, but by in-
centivizing the use of salient characters, our hope is that this
would drive a controller to select a “main character” when it

needs an actor to retrieve a key and use it. We expect a single
character participating in three narrative events is to matter
more to the user than three characters participating in one
event each. There are other ways we can limit the branching
factor induced by the number of possible candidates to an
event, including priming and restricting selection to a geo-
metric radius (Stocker et al. 2010).

Conclusions
PAStE is designed to take an environment, populate it with
interesting props and a virtual populace of functional actors,
and cultivate a fertile environment for telling interesting sto-
ries and develop compelling characters. However, PAStE is
just one part of the interactive narrative ecosystem, and we
would like to explore ways to create a virtual director that
takes full advantage of the PAStE toolkit. As we do so, we
have a number of open questions to address going forward:

How do we continue to control the growth of the action
domain? Given the combinatoric effect of event parame-
ters, we will need to limit the growth of the event action
domain. We can control this in several ways, including
participant selection restrictions, and dividing the prob-
lem domain into subdomains (Kapadia et al. 2011).

What is the likelihood of an event leading us to the goal
state? To reach a goal state, a controller must apply suc-
cessive events to the virtual populace, until one or more
objects exhibit(s) a desired object configuration. How do
we compute the effectiveness of a given event on a given
subset of the population?

How do we handle non-determinism? Up until this
point we have assumed that the transition functions for
affordances and events are deterministic. However, virtual
worlds are chaotic systems, where navigation and proce-
dural controllers can fail, and events themselves can make
stochastic choices.

Answers to these questions and others will inform the de-
velopment of a more comprehensive event-centric narrative
controller capable of telling stories in a dynamic, interactive,
and living virtual world.

69

References
Helbing, D., and Molnar, P. 1995. Social force model for
pedestrian dynamics. PHYSICAL REVIEW E 51:42–82.
Kallmann, M., and Thalmann, D. 1999. Modeling ob-
jects for interaction tasks. In Arnaldi, B., and Hgron, G.,
eds., Computer Animation and Simulation ’98, Eurograph-
ics. Springer Vienna. 73–86.
Kapadia, M.; Singh, S.; Reinman, G.; and Faloutsos, P.
2011. A behavior-authoring framework for multiactor sim-
ulations. IEE CGA 31(6):45 –55.
Li, B., and Riedl, M. 2011. Creating Customized Game Ex-
periences by Leveraging Human Creative Effort: A Planning
Approach. Springer. 99–116.
Magerko, B.; Laird, J. E.; Assanie, M.; Kerfoot, A.; and
Stokes, D. 2004. AI Characters and Directors for Interactive
Computer Games. Artificial Intelligence 1001:877–883.
Massive Software Inc. 2010. Massive: Simulating life.
www.massivesofware.com.
Mateas, M., and Stern, A. 2003. Integrating plot , character
and natural language processing in the interactive drama fa-
cade. In Proceedings of the 1st International Conference on
Technologies for Interactive Digital Storytelling and Enter-
tainment TIDSE03, volume 2.
Mateas, M., and Stern, A. 2004. A behavior language:
Joint action and behavioral idioms. In Life-Like Characters.
Springer. 135–161.
Pelechano, N.; Allbeck, J. M.; and Badler, N. I. 2008. Vir-
tual Crowds: Methods, Simulation, and Control. Synthesis
Lectures on Computer Graphics and Animation. Morgan &
Claypool Publishers.
Reynolds, C. 1999. Steering behaviors for autonomous char-
acters. In Game Developers Conference 1999.
Riedl, M. O., and Bulitko, V. 2013. Interactive narrative: An
intelligent systems approach. AI Magazine 34(1):67–77.
Riedl, M. O.; Stern, A.; Dini, D.; and Alderman, J. 2008.
Dynamic experience management in virtual worlds for en-
tertainment, education, and training. International Transac-
tions on Systems Science and Applications, Special Issue on
Agent Based Systems for Human Learning 4(2):23–42.
Riedl, M. O.; Saretto, C. J.; and Young, R. M. 2003. Man-
aging interaction between users and agents in a multi-agent
storytelling environment, volume 34. ACM Press. 186–193.
Shao, W., and Terzopoulos, D. 2007. Autonomous pedestri-
ans. Graph. Models 69:246–274.
Shoulson, A., and Badler, N. I. 2011. Event-centric control
for background agents. In ICIDS, 193–198.
Shoulson, A.; Garcia, F.; Jones, M.; Mead, R.; and Badler,
N. 2011. Parameterizing behavior trees. In MIG, volume
7060. Springer. 144–155.
Shoulson, A.; Marshak, N.; Kapadia, M.; and Badler, N. I.
2013. Adapt: the agent development and prototyping
testbed. In Proceedings of the ACM SIGGRAPH Symposium
on Interactive 3D Graphics and Games, I3D ’13, 9–18. New
York, NY, USA: ACM.

Shoulson, A.; Garcia, D.; and Badler, N. 2011. Selecting
agents for narrative roles. In INT4.
Si, M.; Marsella, S. C.; and Pynadath, D. V. 2005. Thes-
pian: An architecture for interactive pedagogical drama. In
Proceeding of the 2005 Conference on Artificial Intelligence
in Education. 595–602.
Singh, S.; Kapadia, M.; Hewlett, B.; Reinman, G.; and
Faloutsos, P. 2011. A modular framework for adaptive
agent-based steering. In ACM SIGGRAPH I3D, 141–150.
Stocker, C.; Sun, L.; Huang, P.; Qin, W.; Allbeck, J. M.; and
Badler, N. I. 2010. Smart events and primed agents. In IVA,
15–27.
Thue, D.; Bulitko, V.; Spetch, M.; and Wasylishen, E. 2007.
Interactive storytelling: A player modelling approach. In AI-
IDE.
Weyhrauch, P. W. 1997. Guiding interactive drama. Ph.D.
Dissertation, Pittsburgh, PA, USA. AAI9802566.

70

