Proceedings of the Ninth AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment

Ropossum: An Authoring Tool for Designing,
Optimizing and Solving Cut the Rope Levels

Mohammad Shaker!, Noor Shaker? and Julian Togelius®
'Faculty of Information Technology Engineering, Damascus, Syria
2Center of Computer Game Research, IT University of Copenhagen, Copenhagen, Denmark
{mohammadshakergtr} @ gmail.com, {nosh, juto} @itu.dk

Abstract

We present a demonstration of Ropossum, an authoring tool
for the generation and testing of levels of the physics-based
game, Cut the Rope. Ropossum integrates many features: (1)
automatic design of complete solvable content, (2) incorpo-
ration of designer’s input through the creation of complete
or partial designs, (3) automatic check for playability and (4)
optimization of a given design based on playability. The sys-
tem includes a physics engine to simulate the game and an
evolutionary framework to evolve content as well as an Al
reasoning agent to check for playability. The system is opti-
mised to allow on-line feedback and realtime interaction.

1 Introduction

Physics-based puzzle games are a flourishing genre of
games that is receiving increasing attention in the game in-
dustry. Typical examples are the very popular games An-
gry Birds, Tower of Goo, Crayon Physics and Cut the Rope
which sells millions of copies. Very few attempts can be
found, however, on studying these games in academia.

Physics-based puzzle games provide an interesting
testbed both for content generation and for investigating
the applicability of various AI methods. The generation
and testing of playable content for this genre is not an
easy task since this presents several distinctive challenges.
The physics constraints applied and generated by the differ-
ent components of the game necessitate considering factors
when evaluating the content other than the ones usually con-
sidered for other genres — it is far from obvious what makes
a good level for such a game. Testing for playability is an-
other issue that differentiates this genre since this can be best
done based on a physics simulator.

Few examples are reported in the literature on the design
of authoring tools (Smith, Whitehead, and Mateas 2011;
Liapis, Yannakakis, and Togelius 2013). In this paper, we
present Ropossum, an mix-initiative design tool that allows
designers to actively interact with an automatic generation
and testing system for a physics-based puzzle game. The
designer can edit procedurally generated levels, play them
or ask an Al agent to solve them. The tool also assists game
designers by suggesting modifications so that the final de-
sign is guaranteed to be playable. The designer can further

Copyright (© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

215

define a set of constraints and ask the system to generate
levels that satisfy them.

2 Testbed Game: Cut The Rope: Play
Forever

The testbed game chosen for our experiments is a clone of
Cut The Rope. There is no open source code available for the
game so we had to implement our own clone called Cut The
Rope: Play Forever that features most of the fundamental
characteristics of the original games. The gameplay in CTR
revolves around feeding a candy to Om Nom. Solving the
level puzzle depends to a great extent on timing: specific
actions should be taken in certain game states.

3 System Architecture

The system we build constitutes of two main modules:
an evolutionary framework for procedural content gener-
ation (Shaker et al. 2013) and a physics-based playabil-
ity module to solve the game (Shaker, Shaker, and To-
gelius 2013). The second module is used both for evolving
playable content and for play testing levels designed by hu-
mans. We tried to optimize the parameters of the evolution-
ary system and the AI agent so that the system can respond
to the user’s inputs within a reasonable amount of time.

Evolving Game Levels

Grammatical Evolution (GE) is used to evolve the content.
The level structure is defined in a Design Grammar (DG)
employed by GE. The DG specifies the structure of the lev-
els by defining the positions and properties of the different
components of the game and it permits an easy to read and
manipulate format (Shaker, Shaker, and Togelius 2013).

Al Reasoning Agent

First-order logic is used to encode the game state and the
physics relationships and properties of the objects (Shaker et
al. 2013). The game state is represented as facts specifying
the components of the level and their properties. The rela-
tionships between the components are represented as rules
used to infer the next action to be performed. For example,
cutting the rope is performed if doing this action results in
an interaction between the candy and at least one other com-
ponent.



(2] 5 ZGTR CRUST Engine V2.1 - Cut the Rape: Play Forever

oo o .,

Figure 1: A screenshot for the first set of functions in the
authoring tool.

Evolving Playable Levels

The two methods for evolving game design and assessing
whether the design is playable are combined together in a
framework to evolve playable content. An initial level de-
sign, according to the design grammar, is generated and en-
coded as facts that can be used by the Al agent. Given the
game state, the agent infers the next best action to perform.
This action is then sent to the physics simulator that per-
forms the action and updates the game state accordingly.
The new game state is sent to the agent to infer the next
action. If the sequence of actions does not lead to winning
the level, the system backtracks. A state tree is generated
that represents the actions and states explored. For each ac-
tion performed, a node in the tree is generated and the tree
is explored in a depth-first approach.

Evolving Actions

In the framework described, a precise playability check is
performed for each level design evolved. Although this
guarantees that the final design will be playable, the process
is time consuming. Therefore, the software provides an ad-
ditional feature that allows faster, but not as precise, playa-
bility testing. In this method, a set of actions according the
level design is generated. A given design is evaluated a num-
ber of times and in each time we start by a random action
selected from this set. The physics simulation then proceeds
by randomly selecting an action from the remaining subset
according to the new game state. This continues until either
the level is won, lost or a predefined timer expires (Shaker
et al. 2013).

4 Demonstration

Figure 1 presents the user interface of the authoring tool
designed. The functions presented can be used to design
a new level by choosing from the set of different compo-
nents and changing their properties. The designer can then
play the level or ask the system to do an automatic check for
playability. The designer can then chose to further modify
or save the level. Figure 2 presents the more advance fea-
tures. The designer choses whether to evolve designs that
are not necessarily playable, designs that are guaranteed to
be playable (using the Al agent) or do a faster check for
playability using evolved actions. The designer can query

216

Figure 2: A screenshot from the second set of functions. The
components highlighted are the ones fixed by the designers
and therefore will not be changed during evolution.

Figure 3: Two example playable levels evolved satisfying
the set of constraints by the designers presented in Figure 2.

the system about the actions performed to solve the level
which are then demonstrated via a play-through. The inter-
face also allows modifying the design grammar permitting
the evolving of different patterns. This can be done by di-
rectly editing the grammar or through the visual interface
by specifying a set of constraints that are later embedded in
the grammar. Figure 2 present an example of the latter case
where the highlighted components are the ones fixed by the
designers. Examples levels generated to complete these de-
signs so that it becomes playable are presented in Figure 3.

References

Liapis, A.; Yannakakis, G. N.; and Togelius, J. 2013. Sentient
sketchbook: Computer-aided game level authoring. In Proceedings
of ACM Conference on Foundations of Digital Games.

Shaker, M.; Sarhan, M.; Al Naameh, O.; Shaker, N.; and Togelius,
J. 2013. Automatic generation and analysis of physics-based puz-
zle games. In IEEE Conference on Computational Intelligence and
Games.

Shaker, M.; Shaker, N.; and Togelius, J. 2013. Evolving playable
content for cut the rope through a simulation-based approach. In
Proceedings of the AAAI Conference on Artificial Intelligence and
Interactive Digital Entertainment.

Smith, G.; Whitehead, J.; and Mateas, M. 2011. Tanagra: Reactive
planning and constraint solving for mixed-initiative level design.

IEEE Transactions on Computational Intelligence and Al in Games
3(3):201-215.





