

Metaphor Computing

 Dan Fu Matt Bishop
 Stottler Henke Associates, Inc. Department of Computer Science
 1670 S. Amphlett Blvd, Ste 310 University of California at Davis
 San Mateo, CA 94402 Davis, CA 95616-8562
 fu@stottlerhenke.com mabishop@ucdavis.edu

Abstract
We define metaphor computing as a way to transform
difficult computational problems into easier human-solvable
problems, and transform solutions back into computational
solutions. This report explores initial ideas.

Introduction
Training for today’s workforce is a key ingredient for

ensuring success for tomorrow’s business. The
development of critical skill sets results in productive
personnel able to handle complex problems. As the
complexity of problems we encounter increases in step
with industrial growth, there has existed a demand for an
ever more sophisticated workforce. To improve
productivity, especially with regard to large software
systems, interface designers are continually challenged to
study activity and make the user’s interaction as simple
and efficient as possible. In this report we do not advocate
ways to make training more effective for specialized skill
sets. In fact, we advance the opposite: that we should
examine what people are good at, and leverage those skills
to solve complex problems. Unfortunately, what most
people are good at has little to do with solving complex
problems. However, it may be possible to transform a
complex problem into a set of simpler problems that most
people can solve, and then map the solutions back to a
solution for the complex problem.

Consider research work on linguistic metaphor.
Metaphors are pervasive (Lakoff and Johnson, 1980).
Whether we talk about panes, windows, screens, or
firewalls at the local Home Depot or Apple computer store,
people move fluidly among these multiple metaphors to
understand the world and to act effectively. Rather than

Copyright © 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

relegate metaphor to an ill-fitting paradigm of idiom
creation, we advocate metaphor taking center stage by
providing the key insights that enable people to solve hard
problems. Indeed, the fundamental motivation for using a
metaphor is to articulate a new concept by using an already
familiar one. So then, we ask, why not use the familiar one
in the first place?

The innovation afforded by a computational form of
metaphor enables less sophisticated workers, already
trained in a given occupation, to leverage their skills to
solve problems in different domains that to them appear
very difficult. As an example, look at the problem of
computer network intrusion. Highly trained personnel and
sophisticated software are necessary to protect the
network—but what if metaphor software could transform
the network into a virtual environment such as a base with
a protective perimeter, security gate, buildings, rooms,
doors, locks, sensitive areas, and so forth? Then the
protection of the network amounts to defending this
“virtual fort.” Detecting intrusions into the network
amounts to recognizing suspicious individuals and
activities. Subduing the individual might be mapped to
suspending activity for an unverified user or software agent
in the network. We suggest this metaphor because
protecting a computer network as if it were a castle has
long been used in undergraduate computer science classes
(Frincke and Bishop, 2004). Thus, most people are
familiar with the metaphor and can leverage this already-
understood knowledge. If computational metaphor
transformations are successfully realized, there would be
fewer training requirements on personnel. Security guards
are a lot easier to hire and train than white hat hackers.
Less time would be expended on training.

Using this technique, a lightly-trained force could be
quickly mobilized to defend against cyber attacks.
Consider the attack on Estonia’s network infrastructure on
April 26, 2007 (Evron, 2008). Russian public forums

Human Computation and Serious Games: Papers from the 2012 AIIDE Joint Workshop
AAAI Technical Report WS-12-17

29

discussed attacks for days before the Estonian attacks. In
fact, instructions on how to attack the Estonian
infrastructure were published in these forums, potentially
enabling anyone with an Internet connection to participate
in the attacks. This is in contrast to the average Estonian
citizens who might have had an interest in fending off the
attacks. They were powerless; indeed, even though Estonia
is one of the most Internet-integrated countries in the EU,
citizens could only rely on their CERT team to protect
them. One might even assume that a portion of their own
computers were used against them.

This example describes an equally important property of
metaphor. Most people know how to protect their home:
lock doors and windows when you leave, don’t leave a key
under the mat by the front door, etc. If this metaphor can
be translated such that protecting a home network or
system required the home user to “lock” a virtual house,
then people who have no security training, and, in all
probability, would actively resist such training, can provide
their system or network with basic protection. The intuition
involved makes securing the system less difficult, and at
the same time more acceptable.

Problem Transformation
Consider a two player game where each player, in turn,

chooses a number from 1 to 9. Numbers cannot be
repeated. The first player to have uttered any 3 numbers
that add to 15 wins. This problem is analogous to
identifying a legal row, column or diagonal on a magic
square. Do you recognize this game? It’s tic-tac-toe. The
two games are isomorphic: being good at one game
translates into being good at the other. Although a
contrived example, it embodies what we’d first like to
characterize; namely, classes of problems that can map to
other problems. In the ideal case, we’d discover classes of
problems that are difficult for machines, but easy for
humans.

We posit that there exist problems that are hard for
machines (machine-hard or M-hard), but easy for people
(people-easy or P-easy). We believe these problems, when
represented formally, are amenable to transformation from
M-hard to P-easy, but further, that the P-easy solution can
be transformed back into an M-hard solution. Figure 1 is
an informal chart of problems. An initial objective is to
scope and characterize these spaces formally so that we
can understand what makes a problem difficult to solve.
Most importantly, we want to mine a space of problems in
the lower right hand quadrant that are M-hard but P-easy.
Ideally we would discover classes of real world problems
that can be associated with as yet undefined classes of
“metaphorical environments”. This is a catch-all term for
where people can perform P-easy tasks. One can think of

the environments as being virtual worlds specifically
crafted to help solve M-hard problems.

Figure 1: Chart of problems to examine.

Lakoff and Johnson (1980) have identified several types
of metaphors. For example, one can use a building; e.g.,
when talking about a research paper, “I didn’t like the
façade, but the foundation was firm,” or, “They buttressed
their argument with solid references.” One could use a
transfer metaphor; e.g., “They conveyed their concepts
well,” or, “The few good ideas were buried in an avalanche
of jargon.” The point being that these metaphors use
physical concepts to facilitate understanding. Because
these concepts are rooted in the real world—perhaps the
gist of which a five year old could understand—we believe
it’s possible to automatically fabricate virtual worlds in
which a layman could work.

Figure 2 shows an idealized process where we have a
formal description of the real world problem which then
gets transformed into a virtual world problem. The
transformation results in a problem description consisting
of a virtual environment and set of user goals & tasks. The
environment consists of three elements:

1. Virtual 3-D Terrain: Holds the environmental data in
which the user operates. This should resemble a real
environment such as a house;

2. Actions: These dictate the ways in which objects
interact in the environment. The user’s ability to act or
manipulate objects is defined here;

3. Perception: A depiction of the environment.
The user’s “goals & tasks” are what will occupy the user

during a problem solving session. For instance, the user
may traverse the grounds of a house, searching for
anything out of the ordinary. That could be in an obvious
form, such as greeting a visitor knocking on the front door.
What the user does next will affect not only the virtual
world, but also the real world. In the case of the Estonian
attack, citizens could at minimum “patrol” their own
computers to prevent unauthorized outgoing DoS attacks.

30

Figure 2: Transforming a real world problem into a
virtual problem.

Metaphor Implementation
Once a virtual problem description has been defined, we

must examine how to make the metaphor operational.
Figure 3 illustrates this process. On the top portion there is
the relation between the real world and the virtual world,
linked together via a transformation algorithm. The real
world has effectors and sensors. The effectors cause
tangible change in the real world, while the sensors report
on real world state. The transformation algorithm maps
sensor information into the virtual world. Actions (events)
in the virtual world drive the effectors in the real world. On
the lower right there are the user who performs tasks and
the interface elements. The user acts using the monitor,
keyboard, joystick, etc.

Figure 3: Mapping virtual world problem to real world
problem.

Using the security example, an effector action could be
to block a port, while a sensor logs an attempted
connection to the port in question. In the virtual world, the
event driving the blocked port is likely a direct action by
the user. If a castle, then the action could be to lock a door.

Related Work
Several bodies of research informed the work as

described by Fu and Bishop (2009) along with more recent
advances.

Few security researchers have explored 3-D
technologies for visualization of network activity. Fisk et
al. (2003) describes a method for animating network traffic
by constructing a 3-D “shield” that one defends from
external connections. Fisk observes the use of metaphor
provides a comfortable level of abstraction for observers to
talk meaningfully. Von Ahn et al. (2003) through the use
of CAPTCHA distinguish between human and computer
capabilities for protection against automated misuse.

The field of human computation studies the interaction
between human and machine for solving problems, each
with their own set of capabilities. For example, von Ahn et
al. (2008) describe a method for solving optical character
recognition discrepancies by embedding them into
CAPTCHA challenges. The solutions are aggregated
across several human responses to achieve a high rate of
recognition. A related field is crowdsourcing which poses a
problem to a distributed, anonymous group of one or more
humans to solve. Amazon’s “Mechanical Turk” is a
marketplace for humans to be paid by solving “Human
Intelligence Tasks” which vary in complexity from writing
a website article to tagging images. Foldit is a successful
multiplayer videogame (Cooper et al., 2010) for solving a
molecular biology problem of predicting protein structures.
The game makes use of player’s spatial capabilities to
solve puzzles, some of which have been significant. Dietl
et al. (2012) describe a crowdsourcing game “Pipe Jam”
for computer program verification. They do this by
transforming a program and security property into a
videogame level whose solution (if it exists) can prove
partial correctness. These last two approaches transform
the problem into a more easily understood representation
for players.

Case-based reasoning (CBR) attempts to solve a
problem using a previously solved past problem (Kolodner,
1993). A problem is retrieved from a case base, mapped to
the current problem, tested, and possibly added to the case
base. CBR has historically been applied to narrow
domains. Whereas the foregoing work speaks to metaphor
implementation and refactoring of results, CBR is also
relevant to problem transformation since it must explicitly
link the current problem to the past problem, and then
leverage that case to generate a solution based on the past
solution. If one were to automatically generate videogames
on demand—i.e., transform a real world problem
description into a virtual world—there is the prospect of
automatic game design and development. This is a nascent
area that has received little attention in the research
community. A scattershot of efforts have presumed a

!"#$"%"&'($")*(
#$+,*"-(

!"#$%&'()$"*%
+'#,-.('*#/(,%

0$1('234*%

!506%78!69%
&!8:65;%

95<=!>&+>8?%

@>!+A06%&!8:65;%95<=!>&+>8?%

./$'0)*(
"&1/$+&-"&'(

234+&%(

5+)*%(6(')%7%(
8"$3"#4+&(

9"$$)/&(

:&+;*"<="("&=/&""$(

!"#$%&'"()*+,)-"'./,()

!"#$%&'()*#'+(

#,-.($/0,(
$1-234510-652(

&.751/890(

!"#$%#&'()*+*' ":$;#<&=;(;';>;:$?(

#;&'()*#'+(

,+-.."/'0"#*%1'

,()("'
-1$%#&)2%1'

342%1*'

!"#4"02%1'

5"##)-1'

,()("'
-1$%#&)2%1'

342%1*'

!"#4"02%1'

5"##)-1'

!"#$%&'(%&)*"+#%,&

31

narrow game domain—e.g., chess-like turn taking (Pell,
1992)—or focused on game design ontologies as a
precursor (Nelson and Mateas, 2007; Zagal et al., 2005).
Work has been done in the areas of procedural generation:
creating the art content one would visually see, and
procedural narrative: directing the narrative that one
experiences (Newell, 2008). Analogical problem solving
(Gick and Holyoak, 1980) is related to CBR, but more
concerned with cross domain relationships. It is a
psychology discipline that relates one problem to another,
relying on semantically deep structural similarity
(Falkenhainer et al. 1986; Gentner, 1993). For example, the
physics of heat flow can be understood in terms of fluid
flow by mapping temperature to pressure and metal
conductor to tube.

Conclusion
This report lays out some basic ideas for metaphor

computing. As we’ve argued, the chief benefit is that
relatively unskilled personnel, such as a high school age
videogame players, could be used to perform complex,
skilled tasks at the level of a network administrator or
information assurance red team. Rather than present neat
solutions, this report raises several questions of whether
metaphor computing is really possible. We view these
questions as basic precursors to finding an answer:

1. Can real world problems be represented to permit
automated 1-to-1 transformation?

2. Which metaphors will work best for a given person or
problem? Though it might seem intuitive, when was the
last time you protected a castle?

3. Current real worlds aren’t mature. Events in the real
world require sensor output to map into the virtual world,
and conversely, actions in the virtual world require
effectors in the real world. It’s likely that for now the real
world must be a software-driven world.

4. The security purpose could mean lives are at stake.
Witness the unwillingness to adopt telepresence for
gunnery—an instance where the person actually knows
what they’re doing.

5. A metaphor will prove brittle if and when it breaks.
Graceful degradation of performance may not be possible.
Orchestration and transition between multiple metaphors is
likely.

6. Users will not know exactly what they’re doing. Two
things to infer are that (1) pulling a user further away from
the raw, complex problem may preclude insight and
innovation; and (2) there are ethical considerations.

References
Cooper, S., Khatib, F., Treuille, A., Barbero, J., Lee, J., Beenen,
M., Leaver-Fay, A., Baker, D., Popovic, Z., and Foldit Players.

(2010). Predicting protein structures with a multiplayer online
game. Nature, 466(7307): 756–760, 2010.
Dietl, W., Dietzel, S., Ernst, M. D., Mote, N., Walker, B., Cooper,
S., Pavlik, T., and Popovic, Z. (2012). “Verification games:
Making verification fun,” in FTfJP'2012: 14th Workshop on
Formal Techniques for Java-like Programs, (Beijing, China), June
12, 2012.
Evron, G. (2008). Battling Botnets and Online Mobs: Estonia’s
Defense Efforts during the Internet War. Georgetown Journal of
International Affairs. Winter/Spring 2008.
Falkenhainer, B., Forbus, K. D., and Gentner, D. (1986). “The
structure-mapping engine,” in Proceedings of the Meeting of the
American Association for Artificial Intelligence, 272-277.
Fisk, M., Smith, S.A., Weber, P.M., Kothapally, S., and Caudell,
T.P. (2003). “Immersive network monitoring,” in Proceedings of
the 2003 Passive and Active Measurement Workshop.
Frincke, D.A., and Bishop, M. (2004). Guarding the Castle Keep:
Teaching with the Fortress Metaphor. IEEE Security and Privacy
2(3): 69-72.
Fu, D., and M. Bishop. (2009). Metaphor Computing. Stottler
Henke Technical Report. San Mateo, CA. August 10, 2009.
Gentner, D. (1983). Structure-mapping: A theoretical framework
for analogy. Cognitive Science, 7, 155-170.
Gick, M. L., and Holyoak, K. J. (1980). Analogical problem
solving. Cognitive Psychology, 12, 306-355.
Kolodner, J. L. (1993). Case-based Reasoning. San Francisco,
CA: Morgan Kaufmann.
Lakoff, G. and Johnson, M. (1980). Metaphors We Live By.
Chicago: University of Chicago Press.
Nelson, M. J., Mateas, M. (2007). “Towards Automated Game
Design,” in Proceedings of the 10th Congress of the Italian
Association for Artificial Intelligence, pp. 626-637.
Newell, Gabe (2008-11-21). “Gabe Newell Writes for Edge”.
Edge. Retrieved 2012-05-29.
Pell, B. (1992). METAGAME in Symmetric Chess-Like Games.
H.J. van den Herik and L.V. Allis, editors, Heuristic
Programming in Artificial Intelligence 3 – The Third Computer
Olympiad. Ellis Horwood.
von Ahn, L., Blum, M., Hopper, N. J., and Langford, J. (2003).
“CAPTCHA: Using hard AI problems for security,” in Lecture
Notes in Computer Science -- Advances in Cryptology, E. Biham,
Ed., Vol. 2656, Berlin, Germany: Springer-Verlag, 2003, pp. 294-
311.
von Ahn, L., Maurer, B., McMillen, C., Abraham, D., and Blum,
M. (2008). reCAPTCHA: Human-Based Character Recognition
via Web Security Measures. Science, September 12, 2008. Pages
1465-1468.
Zagal J.P., Mateas, M., Fernandez-Vara, C., Hochhalter, B.,
Lichti, N. (2005). “Towards an Ontological Language for Game
Analysis,” DIGRA 2005.

32

