Musical Metacreation: Papers from the 2012 AIIDE Workshop
AAAI Technical Report WS-12-16

Meta-Score, a Novel PWGL Editor Designed for the Structural, Temporal, and
Procedural Description of a Musical Composition

Mika Kuuskankare
The DocMus Department of Doctoral Studies in Musical Performance and Research
Sibelius Academy, Finland

Abstract

In this paper we introduce a prototype of *meta-score’,
a novel visual editor in PWGL, aimed at defining the
structural, temporal and procedural properties of a mu-
sical composition.

Meta-score is a music notation editor, thus, the score
can be created manually by inputting the information
using a GUIL. However, meta-score extends the concept
of a musical score so that the musical content can be de-
fined not only manually but also procedurally. The com-
position is defined by placing scores (hence the name
meta-score) on a timeline, creating dependencies be-
tween the objects, and defining the compositional pro-
cesses associated with them.

Meta-score presents the users with a three-stage com-
positional process beginning from the sketching of the
overall structure along with the associated harmonic,
rhythmic and melodic material; continuing with the pro-
cedural description of the composition and ending with
the automatic production of the performance score.

In this paper, we describe the present state of meta-
score.

Background

The compositional process is divided into several steps,
which include, among others, finding and exploring the base
material, planning the overall form, sketching the individual
passages, and transcribing the material into the final score.
Usually, only some of the steps are realized with the help
of a computer. The composer might use Computer-assisted
Composition (CAC) software to explore the base material
but do the sketching using a pen and paper. Often composers
choose to do the higher-level structural planning using pen
and paper because it’s easier to experiment, add, remove,
and rearrange material. Furthermore, the computerized steps
can potentially be realized using a different piece of soft-
ware.

Most CAC software lacks a real score representation that
would allow for the manipulation of all the properties of
the score such as instrumentation, articulations, or even ar-
bitrary graphics, as a part of the compositional process.

Copyright (© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

49

The PWGL(Laurson, Kuuskankare, and Norilo 2009) en-
vironment provides users with music notational capabili-
ties through its notational front-end, ENP(Kuuskankare and
Laurson 2006). ENP allows us to represent complex musi-
cal output, consisting not only of rhythm and pitch, but also
of expressions, arbitrary user-definable graphics, etc. How-
ever, we currently lack a compositional/notational tool that
would allow us to easily manipulate the complex structural
organization of a musical composition. To that end we have
implemented a novel ENP-based editor, called meta-score.
It allows us to arrange score objects against a global se-
quence of time-signatures on a canvas representing the com-
position. It is possible to define the properties of the objects,
and associate them with computational processes thus defin-
ing the composition. Meta-score attempts to provide com-
posers with an environment in which it is possible to real-
ize the whole compositional process: working with the base
material, defining the structural and procedural organization
of the composition, and automatically producing the final
score.

There are several important concepts behind meta-score:
First, being based on ENP, it lets users manipulate the musi-
cal objects directly by editing the pitch and rhythm, inserting
expressions, and defining the instrumentation. Thus it be-
haves like a real score editor. Second, each object has its own
temporal structure, instrumentation and articulations. Fur-
ther to that, they can be written using either rhythm notation
or time notation. Thus, the objects can be manipulated inde-
pendently of the global structure. Third, meta-score extends
the concept of a musical score so that the musical content
can be defined not only manually but also procedurally. The
objects can have both temporal and procedural dependen-
cies and they can have generative processes associated with
them. Fourth, it is possible to visually define a global struc-
ture (temporarily organized base material) using real musi-
cal objects. The global objects can be manipulated and gen-
erated in the same way as other types of objects. Finally, it
provides strict visual/temporal synchronization allowing the
temporal organization and rearrangement of both the score
objects and the base material.

Previous work in this area consists primarily of the work
done at IRCAM in the form of Maquette and Sheets (J. Bres-
son 2011). Maquette is an extension of an OpenMusic (As-
sayag et al. 1999) patch with a time dimension. Sheets is

another attempt to develop a compositional tool in Open-
Music. However, as opposed to meta-score, both Maquette
and Sheets are not score editors strictly speaking but instead
they both extend the concept of a visual patch. The notation
is not directly editable at the score level, the score represen-
tation does not contain higher level structures such as parts
or instruments, and there is no concept of expressions. Also,
in Maquette, there is no strict visual synchronization.

The main objective in the meta-score project is to study
the possibilities of automation in the compositional process
using a rich music notation representation as a starting point.
Currently, there is no comparable environment. Most music
notation software does not allow for the algorithmic gen-
eration of material. Furthermore, they are not well suited
for sketching because of their rigid, and non-modular mu-
sic representation models. The available CAC environments
usually lack full music representation concentrating mainly
on representing pitch and rhythm. This will make it impos-
sible to write, for example, idiomatic instrumental music.
Moreover, it will make it impossible to include, in the com-
positional process, more unconventional components, such
as electro-acoustic parts.

The meta-score is still in a prototypical stage, and under
active development. Eventually, it will be part of the family
of musical editors found inside PWGL.

Meta-score

The fundamental idea behind meta-score is somewhat sim-
ilar to that of IXTEX, the document preparation system used
widely in academia, that automates most aspects of typeset-
ting and desktop publishing. Similarly, when working with
meta-score, composers work on the description of the com-
position, defining the base material, the processes, and the
temporal organization. The product, the performers score, is
produced automatically from that description.

At the moment, the score is generated with the help of
Lilypond, mainly because we want to experiment with the
automatic production of all of the components of the score.
Furthermore, the use of Lilypond allows us to export a rich
set of special notational graphics, such as microtones, tape
notation, time notation, etc. In the future, the final score will
be generated with the help of ENP.

The user is not assumed to directly edit the final product.
Although this is perfectly possible, as the output is a com-
plete Lilypond project, it makes little sense in our case since
it breaks the connection between the source and the end
product. Instead, if a change is needed, the composer/user
goes back to the description, makes the changes, and gener-
ates the final score again. This approach is very much along
the lines of some of the pioneers of algorithmic composi-
tion, namely Lejaren Hiller and Pierre Barbaud, who be-
lieved that:

[...] the output score generated by a composition pro-
gram should not be edited by hand; rather, the program
logic should be changed and run again.

(Roads 1996)

50

Components of Meta-score

The structural definition consists of the global structure, the
temporal structure (time signatures), and the score objects.
The logical definition consists of the dependencies and the
processes. The three parts of the global structure are de-
scribed first, and are then followed by the descriptions of the
various system dependencies. The sections to follow outline
the details of the process description that can be used to ma-
nipulate objects.

Global Structure

Global structure allows us to represent base material that
can be aligned with musical objects. It can be used to define
the higher-level structural organization of the composition,
such as, the overall harmonic plan. We can also represent
other time-varying information, such as, breakpoint func-
tions. The latter could be used to visually define the overall
“tension’ or to define a global dynamics curve.

The global objects are drawn above the score. Visually,
they can be drawn either as empty rectangles indicating only
their temporal extent, or they can reflect the material they
represent by displaying a sequence of chords, a breakpoint
function, etc.

Temporal Structure

The temporal structure is defined by a stream of time-
signatures (see Figure 1). The time-signatures are superim-
posed on top of the score and they always override the local
structures. This makes it convenient to 'restructure’ musical
objects. When creating the final score the objects are quan-
tized according to global time-signatures.

The Objects

The musical objects that can be arranged along the time-
line are ENP scores with their own internal structure and at-
tributes. Any pre-existing score can be pasted or imported
into meta-score. Their content can be directly edited and
they can be freely positioned both vertically and horizon-
tally. The horizontal placement defines the start time of the
scores. The vertical placement is purely visual and doesn’t
have any functional purpose.

Dependencies

Each object can depend on another object. Currently, an ob-
ject can only depend on one other object at a time. Circular
dependencies are not allowed. A dependency is visualized
by drawing an arrow between the objects, with the arrow
head pointing towards the depending object (see Figure 1b
for an example). From the UI point of view a dependency
can be made by dragging a connection line from one object
to another. When the connection is made the programs asks
the user which type of dependency he/she wants to make.
The available dependency types are enumerated in the sub-
sections that follow.

Procedural Dependencies A procedural dependency can
be created between two objects. A connection creates a de-
pendency with two main purposes. It provides the processes

with input material and it defines the order of calculation. As
an example, if object A depends on object B, the contents of
B are used when composing object A. Therefore, B has to
be composed before A can access its contents. To ensure
the correct order of calculation the scores are topologically
sorted. The processes are then applied to each of the scores
in the given order.

Temporal Dependencies It is also possible to define tem-
poral dependencies. The start-time of an object can depend
on the start-time of another object. For example, a score
could be ’pinned’ to a time-signature and would thus get
its temporal cues from there. Furthermore, an object can be
constrained to start only after another object has ended, thus
creating sequences of objects.
Figure 1 shows both kinds of dependencies:

e (a) and (b) are procedural dependencies. The object
marked as ’Vibraphone’ reads the pitch content of the
"Flute’ and creates the displayed chord according to a pro-
cess defined by the user. The connection (b) connects the
two 'Flute’ objects. The process of the second object is
"copy’, which creates an exact copy of the dependency.

e (c) is a temporal dependency, i.e., the start-time of the
object depends on the start-time of the time-signature to
which it is connected. The small icon resembling a clock
face is used here to mark a temporal dependency.

Logical Dependencies As will be explained in the sec-
tion "The Final Output’, meta-score constructs the final score
automatically based on the definition provided by the user.
This includes deciding the number of instruments needed to
realize the score. However, the user can provide hints as to
how to connect different objects in the final stage. Normally,
the vertical arrangement of the objects is of no importance,
but, by defining logical dependencies between objects they
can be grouped as one ’vertical line’.

4 4

Flute |

=~

e
Vibraphone 1 y
mf

Figure 1: Procedural dependencies (a) and (b), and temporal
dependency (c).

Cloning Musical Material In addition to all of the possi-
bilities of defining musical material through processes, the
meta-score allows the users to clone musical material by us-
ing a special kind of dependency. A ’cloning’ dependency
makes an exact ’live’ copy of another object. The object can
be displaced in time but its musical material will always re-
flect that of its data source.

Process Description

Each of the objects can be associated with a process descrip-
tion, defining both the name of the actual process as well as
all the properties associated with it. Currently, the processes
are defined as Lisp functions. In the future, they may be de-
fined using a visual patch.

The input for the process is a score. The process either
destructively manipulates its musical content or replaces it
with the result of the process. The return value must be either
the processed score itself or a new score. In the former case
the input score is manipulated destructively by the process,
and, in the latter case the contents of the processed score
are substituted with the new ones. Thus, the meta-score pro-
cesses are functions that use a score both as a parameter and
as a return value.

In addition to *process’, the objects can contain informa-
tion about instrumentation, scripts, rules, articulation, dy-
namics, etc. We have implemented a small domain-specific
language for entering the attributes for the objects. The lan-
guage is based on the concept of key-value pairs; thus, the
process description is a collection of tuples. An open-ended
data structure was chosen because it allows attributes to be
added and removed easily.

Most of the attributes are user-definable, i.e., their use and
behavior depends on the associated process. However, there
are some predefined attributes, such as articulation and dy-
namics, that behave more like post processes, i.e., they apply
a certain operation to the score after it has been generated or
processed:

1. :instrument (s)
This attribute defines the collection of instruments that
can be used by the given object. The instruments can be
entered using a ’standard’ syntax understood by profes-
sional musicians, e.g., £1, ob, 2 c1, for flute, oboe, and
two clarinets.

2. :articulation

The attributes are defined using common names, such as,
accent, staccato, etc. Any number of articulations
can be given.

3. :playing-style

defines an instrument-specific playing style applied to the
score, for example, *pizzicato’ or ’sul-tasto’.

4., :dynamics
The dynamics are defined by the tuple :dynamics
<value>, e.g., :dynamics pp. In addition to single
dynamic markings, several shorthands are provided for
some of the most common combinations. For example,

the shorthand o<mp means ——mp, i.e., a crescendo

that starts from total silence (niente) and ends in mezzo-
piano.

Moreover, the attributes :pre-process and
:post-process are used to name a list of opera-
tions applied to the score before and after calculation.

Example 1 gives one possible process definition for an
object whose musical content is generated using constraints

(the process name is ’csp’, as in Constraints Satisfaction
Problem). The definition also shows a set of rules (the
:rules attribute) as well as both the :dynamics and
rarticulation attributes.

:process csp
((x» 21 22 (21if (<

:dynamics o<mp

:rules (abs (= (m 22) (m 21))) 5))))

rarticulation sul-tasto

Example 1: A meta-score object attribute definition. The
process is "csp’, i.e., a constraint process. The rules are given
using the keyword : rules.

A Meta-score Example

In this section we will present a brief compositional assign-
ment defined with the help of meta-score. (See Figure 2).

We begin our example by composing the melodic line by
hand for the bassoon shown in (a). Next, our compositional
idea is to produce a background texture for the bassoon. To
accomplish this we add the object shown in (b).!

As our next step, we define the process of the object (b)
as :pedal. Pedal objects create orchestral pedal texture ac-
cording to the pitch and rhythm received from the object on
which it depends. The instruments used by the pedal object
can be defined by the : instrument key with a value, such
as, :strings or :woodwinds. The pedal process needs
a data-source in order to operate, thus, we create the con-
nection (c) between the objects (a) and (b), i.e., we define
that object (b) depends on object (a). The boundaries (verti-
cal and horizontal) of the object are adjusted accordingly as
soon as the process is applied.

Next, we write the two lines for French Horn shown as
(d) and (e). The object (f) is created automatically by con-
necting (e) to (f) using the connection (g). The process of (f)
is :copy, which means that an exact copy is made of the
dependency.

Finally, an object with another kind of process can be seen
in (h). This object, in turn, uses (b) as a data-source, through
the connection (i), and its process is : accent. The object
looks for the pitch content of its dependency and generates a
chord, a percussive attack, reinforcing the current harmony.>
The final score can be seen in Figure 3.

A list of all of the objects in topological order is displayed
in the sidebar (see Figure 2). Here, the user can see the order
of calculation and the dependencies, and can go to a given
object by clicking its name in the list. By default, the objects
are represented by their unique, automatically generated ID
numbers, for example the object with ID# 66976595 is the
bassoon (a) and the ID# 66970694 represents the strings
shown in (b). However, even as these identification numbers

IBy default, the objects do not contain any data or have a du-
ration. Their vertical ordering is not important and can be freely
adjusted by the user.

2Here, the instrument is Vibraphone. The generative objects,
such as :accent and :pedal also take into consideration the
instrument ranges.

52

are generated automatically by the system, the user is free to
rename the objects.

The Final Output

The final output is the performers’ score exemplified in Fig-
ure 3. Meta-score also generates an instrumentation page
containing information about the needed instruments, dou-
blings, and range when appropriate. This would also include
percussion pictograms if the composer chooses to use them
instead of textual indicators. Figure 4 shows a potential in-
strumentation page.

Generating the Parts

The objects are automatically combined into parts. Every
object using a specific instrument is collected into a pool
of objects. In the simplest case, if there are no overlapping
events, one part is created for that particular instrument. If
there are overlapping events the objects are arranged so that
they result in a minimum number of parts.

Currently, the algorithm we use is simple and straightfor-
ward. For each instrument, there are multiple tracks (i.e.,
possible parts) where individual objects can be assigned.
The objects are first sorted by time and pitch (the mean).
After this the algorithm assigns each object to one of the
tracks starting always from the first track. In case the object
cannot be fit in the current track, the next one is tested until
one with sufficient free space is found.

In our example, the original meta-score definition con-
tained six violin parts. However, it is not defined which of
the two violin sections is going to play the parts. This is not
an oversight but rather by design. The parts needed to per-
form a certain score are constructed by the meta-score edi-
tor. We are only concerned by the number of simultaneous
parts. Here, after having determined that there are six simul-
taneous parts written for the ’same’ instrument, the exporter
uses a set of rules as to how to divide the instruments rea-
sonably among the available instrument sections, as can be
seen in Figure 3. The same applies to the horn part. In the
final score there is only one horn (as can be seen in Figure
3) since the horn lines in the meta-score do not overlap.

In the future there will be more heuristics involved, such
as assigning certain kinds of passages to certain 'mem-
bers’ of the section. For example, assigning the objects
for certain parts according to their rhythm or pitch content
(faster/higher) or according to their additional instrument
content. As an example, the higher and more agile parts
would be assigned to the Ist player, or, when a piccolo is
called for in an object written for the flute part, the object
would be assigned to the 2nd player. Likewise, objects con-
taining the indication ’solo’ would be assigned to the 1st
players.

Discussion

The current prototype of meta-score is fully functional. The
scores can be manipulated both algorithmically and manu-
ally. The dependency scheme is implemented allowing a sin-
gle dependency per object. Currently, the processes can be
defined using Lisp code and there is a collection of house

7
66983912
=

(a)
\ N . v e
66978040 | | ﬁ P TP ee— e .
Bassoon
—_— f—
o
/ (d) (e)
66976595
Frdnch Hom - —~ .
(inF) ‘
66982966 (g) (f)
A
66970694 (C) Freneh Hom g : ‘
66977908
g terd mates
Vibraphone
(b) (i)
Violin é —
,PP
.
Violin — — ——— —— —
o 4
s —
Violin — — —
& =
PP
5 ——
Violin =
5 = = =
PP
5
Violin
o e — —
A
Violin
& = = =
o

Figure 2: The meta-score editor with both hand written and automatically generated material (dependencies between the objects
indicated by the arrow-headed connections).

Bassoon

French Horn 1

Vibraphone

Violin |

Violin I

J=60

. I’F rELe gFed s,

TITLE

sub title

COMPOSER

| —— -

/—'__‘—-‘
0 4 b . be bea |
i =1 = S S Pl . F b |
- 3 T 1 11 1 | | T o Lo ™ 1 | 1 |
o [[
[} |
)* A § 1 1 i)]
3+ = 1 = | = e————— |
@‘t 1 1 ™= 1
iz
i 0 |
Ao = e S . =
o-dio { :
Pr
0
A4 > O F'e) Fe - —
ot £
v L T
A ﬂ’l—JTI \
éi = F—— —
% r.y r ar i [%] [%] r A
v PP
H r33 .
]@";4 — — —
4 Te Lo o -
v P
0
= = = —
@ . = i
fe = |l @ |+
A PP
) A)
= 3 L_J £ L") 1 | 1 —1
»p

Figure 3: The final score, generated from the meta-score description shown in Figure 2, typeset using Lilypond.

53

INSTRUMENTS

2 Flutes (1st doubling Piccolo ; 2nd doubling Alto Flute)
Oboe (doubling English Horn)
*Perc ussion (6)
Timpani
Piano

*1) Marimba, Agogo Bells, Xylophone, 4 Tom -Toms, Crash Cymb als (60"), Gong
(60")
2) 4 Temple Blocks, Mark Tree, Gong (60")
3) Mark Tree, 2 S uspended Cymbals (medi um and very large), Wood Block
4) Triangle, Vibraphone, Xylophone, Tam -tam (47"), Maraca s
5) Flex -A-Tone

5) 6 Thai Gongs

6) 6 Crotales

e
=
H‘IIIII’

Figure 4: The instrumentation page generated automatically
by the meta-score.

processes’ already defined, including the pedal process used
in this paper. The final score is produced automatically.
However, there are only a handful of orchestration methods
defined.

Several interesting problems remain to be investigated
further: First, we should work on the temporal and procedu-
ral dependency scheme. The objects should be able to have
multiple dependencies.

Second, it would be interesting to investigate the use of
circular dependencies. One could imagine connecting the
last object in the score back to the first one thus creating
a feedback loop (a kind of evolving score). The composer
could then step through different evolutions of the score.

Third, converting the composer’s score into a performer’s
score presents several challenges: how to divide the frag-
ments between instruments, how many instruments to use,
and how to inform the composer about decisions or con-
straints that are impractical. This is an interesting problem
as such because it touches many important aspects of com-
position such as orchestration and instrument idiomatic writ-
ing. Computationally, this task could probably be seen as a
Resource Minimization Job Scheduling problem. More for-
mally, given a set P of score fragments for a given instru-
ment, where each score fragment p is associated with an on-
set time op, duration dp, and user-definable preferences pp
(such as range or agility), our goal is to allocate all score
fragments to specific instrument parts, using the minimum
possible number of instruments.

Fourth, we should investigate different strategies for rep-
resenting the structural organization of the composition. It
could be represented hierarchically, for example, as a tree.
This would, at the same time, act as a structural descrip-
tion and a user-interface component allowing us to select,
add, remove and rearrange sections or a selection thereof.
The selected sections, could, then, be displayed and edited
on the meta-score canvas. At the least, the score could be
divided into ’scenes’ much like in the case of video-editing

54

software. These ’scenes’—or ’sections’ in our case—could be
displayed on top of the time-line. They could have their own
time-line so that their horizontal size would correspond to
their proportional duration.

Finally, as a computational improvement, we should di-
vide the problem into sub-problems that could potentially
be solved in parallel. To that end, we should move to a more
powerful topological sorting algorithm, such as that of Tar-
jan’(Tarjan 1972).

Acknowledgment

The work of Mika Kuuskankare has been supported by the
Academy of Finland (SA137619). The author would also
like to thank CCRMA for hosting this research.

References

Assayag, G.; Rueda, C.; Laurson, M.; Agon, C.; and
Delerue, O. 1999. Computer Assisted Composition at IR-
CAM: From PatchWork to OpenMusic. Computer Music
Journal 23(3):59-72.

J. Bresson, C. A. 2011. Visual programming and music
score generation with openmusic. In IEEE Symposium on
Visual Languages and Human-Centric Computing.
Kuuskankare, M., and Laurson, M. 2006. Expressive Nota-
tion Package. Computer Music Journal 30(4):67-79.
Laurson, M.; Kuuskankare, M.; and Norilo, V. 2009. An
Overview of PWGL, a Visual Programming Environment
for Music. Computer Music Journal 33(1):19-31.

Roads, C. 1996. The Computer Music Tutorial. Cambridge,
Massachusetts, London, England: The MIT Press.

Tarjan, R. E. 1972. Depth-first search and linear graph al-
gorithms. SIAM Journal on Computing 1(2):146-160.

