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Abstract

Influence Maps have been successfully used in control-
ling the navigation of multiple units. In this paper, we
apply the idea to the problem of simulating a kiting be-
havior (also known as “attack and flee”) in the context
of real-time strategy (RTS) games. We present our ap-
proach and evaluate it in the popular RTS game Star-
Craft, where we analyze the benefits that our approach
brings to a StarCraft playing bot.

Introduction

Real-time Strategy (RTS) is a game genre where players
need to build an economy (gathering resources and building
a base) and a military power (training units and researching
technologies) in order to defeat their opponents (destroying
their army and base). RTS games are real-time, non de-
terministic, partially observable and have huge state spaces.
Therefore, compared to traditional board games, RTS games
pose significant challenges for artificial intelligence (Buro
2003). One of such challenges is unit and group control.
How to effectively control squads of units or how to simulate
complex tactical behaviors in a real time environment is still
an open problem in game Al research. Specifically, in this
paper, we present an approach based on influence maps to
simulate kiting behavior (also known as “attack and flee”).
This advanced tactical move is specially helpful to handle
combats where we are weaker than our enemy but our attack
range is bigger than the enemy. In those cases using a kiting
behavior is the difference between losing or wining.

There has been a significant amount of work on recre-
ating realistic squad movements. From using the flock-
ing behaviors described by Reynolds (1999) or improving
pathfinidng using Influence Maps (Tozour 2001), to com-
bining both techniques (Preuss et al. 2010) for RTS games.
Those approaches focus on building a robust navigation sys-
tem, which is still an open problem for real-time games. To
solve this problem several solutions have been proposed in
several areas. For example, in the area of robotics, Khatib
introduced the concept of Artificial Potential Fields (Khatib
1985) to avoid obstacles in real-time for a robot control. Po-
tential fields and Influence Maps have also been found use-
ful for navigation purposes in the domains of robot soccer
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(Johansson and Saffiotti 2002), or in computer games such
as Quake II (Thurau, Bauckhage, and Sagerer 2000) or RTS
games (Hagelbédck and Johansson 2008; Avery, Louis, and
Avery 2009). However, all of these approaches give more
importance to navigation rather than to tactical offensive or
defensive moves. Only in their work on potential fields,
Hagelbick and Johansson showed a simple version of the
“attack and flee” behavior, but it was not studied in depth.

The work presented in this paper represents a contribu-
tion towards achieving more complex and effective tactical
moves in real-time domains. Specifically, we propose the
use of influence maps (a sister technique to potential fields)
to achieve kiting. The approach presented in this paper has
been evaluated in the context of StarCraft, and incorporated
into the NOVA StarCraft bot (Uriarte 2011) for testing pur-
poses. One of the main disadvantages of potential fields
and influence maps is the need to perform parameter tun-
ing. One approach to deal with parameter tuning is to use
automatic techniques such as reinforcement learning to con-
verge to good settings (Liu and Li 2008). In this paper we
will provide analytic ways to define such parameters when-
ever possible.

The rest of this paper is organized as follows. First we de-
fine the problem statement and some background concepts.
Then, we briefly describe StarCraft (our domain) and NOVA
(the bot into which we have incorporated our approach). Af-
ter that, we describe our approach to simulate kiting behav-
ior. Then we present an empirical evaluation of the perfor-
mance of our approach. Finally, the paper closes with con-
clusions and directions of future research.

Problem Statement

This section describes the specific problem that we tackle in
this paper. Let us start by introducing the basic concepts of
RTS games and kiting.

In real-time strategy games, players control an army com-
posed of individual units (tanks, ships, soldiers, etc.). Each
of those units can move independently and attack enemy
units. Each of such units typically characterized by a col-
lection of attributes such as hit points, movement speed, at-
tack range, and so on. The collection of these attributes that
are relevant to the approach presented in this paper will be
detailed below, but for now it suffices to give the intuitive no-
tion that a unit can attack another unit only when the target



is inside of its attack range; when a unit successfully attacks
another, the target’s hit points get reduced in an amount de-
pending on the attack power of the attacker and the armor of
the target; and finally, a unit is destroyed when its hit points
get below zero.

In the rest of this paper we will distinguish between
friendly units and enemy or target units to distinguish the
units belonging to the player we are controlling from the
units of the enemy player.

The problem we tackle in this paper is how can a friendly
unit or group of friendly units attack and destroy an enemy
unit or group of enemy units while minimizing the losses
amongst the friendly units. Moreover, we will specifically
focus on addressing that problem through the simulation of
kiting behavior.

Intuitively, the basic idea of kiting is to approach the target
unit to attack, and then immediately flee out of the attacking
range of the target unit. More specifically, given two units
w1 and ue, unit u; exhibits a kiting behavior when it keeps
a safe distance from wuy to reduce the damage taken from
attacks of us while the target us keeps pursuing .

Furthermore, we say that a unit u, performs perfect kiting
when it is able to inflict damage to uy without suffering any
damage in return, and we say that u; performs sustained
kiting when it is not able to cause enough damage to kill
unit us, but us is also unable to kill u;.

Sustained kiting is useful in many situations. For ex-
ample, in many RTS games players need to send units to
“scout” what the opponent is doing; these scout units can
exploit sustained kiting behavior while scouting the enemy
base to remain alive as much as possible, and to make the
enemy waste as much time as possible trying to destroy the
scout. However, the approach presented in this paper aims
at perfect kiting. The execution of perfect kiting depends on
the characteristics and abilities of the unit and the target unit.
In this paper we will present a method to detect when perfect
kiting is possible, and provide an algorithm to execute this
behavior successfully.

StarCraft and NOVA

In this paper we use the game StarCraft: Brood War as the
testbed for our research. StarCraft is a military science fic-
tion RTS game that is gaining popularity as a testbed for
RTS research (Weber 2010). In particular, players in Star-
Craft can choose between 3 different races (Terran, Protoss
and Zerg). Each race has its own units and abilities, requir-
ing different strategies and tactics.

To test our approach we extended the NOVA StarCraft
bot with the capability of performing kiting. NOVA uses
a multi-agent system architecture (shown in Figure 1) with
two types of agents: regular agents and managers. The dif-
ference between regular agents and managers is that NOVA
can create an arbitrary number of regular agents of each
type, but only one manager of each different type. The dif-
ferent agents and managers shown in Figure 1 have the fol-
lowing function:

e The Information Manager is the environment perception
of the bot, it retrieves the game state from the game and
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Figure 1: NOVA multi-agent architecture

stores all the relevant information in a shared blackboard.

e The Strategy Manager, based on the data from the Infor-
mation Manager, determines the high level strategy and
sends orders to other managers (Build Manager, Planner
Manager, and Squad Manager) in order to execute it.

e The Build Manager is in charge of creating the different
buildings that constitute a base.

e The Worker Manager is in charge of controlling all the
workers and balance their tasks such as harvesting the dif-
ferent types of resources, or performing scouting tasks.

e The Planner Manager is in charge of producing the nec-
essary military units, deciding which are the next units to
be produced.

e The Production Manager balances the production of new
units and research amongst the different buildings capable
of performing such tasks.

e The Squad Manager is in charge of commanding all the
military units to attack the opponent. In order to do so, the
Squad Manager spawns one Squad Agent per each group
of military units.

e The Squad Agent controls the group behavior of one
group of military units, assigning them a common target
and ensuring they move together as a group.

e The Combat Agent controls the low level actions of one
military unit, including using the special abilities.

In particular, the approach presented in this paper was im-
plemented as part of the Combat Agent.

An Influence Map Approach to Kiting

Our approach to model kiting behavior divides the problem
in three subproblems: 1) deciding when kiting can be per-
formed, 2) creating an influence map to guide the move-
ment, and 3) target selection. The following three subsec-
tions deal with each of those subproblems in turn, and then
we present the high-level algorithm that puts them together
into the NOVA bot.



Unit HP | speed | deceleration | acceleration | turn | attackTime | attackRange
Zealot | 160 | 4.0 0 2 1 2 15
Vulture | 80 6.4 0 9 3 1 160

Table 1: Vulutre and Zealots attributes (times are measured in game frames, and distances in pixels)

When Can Kiting Be Performed?

It is not always possible to successfully perform a kiting be-
havior. Some conditions must be met in order to execute it.
This section focuses on identifying such conditions. Let us
start by introducing some preliminary concepts.

As mentioned above, each unit in a RTS game is defined
by a series of attributes, like movement speed, attack range,
etc. In particular, in this paper we are concerned with the
following attributes:

speed: top speed of the unit.

acceleration: time that a unit needs to get to top speed.
deceleration: time that a unit needs to stop.

turn: time that a unit needs to turn 180 degrees.

attackTime: time that the unit needs to execute an attack
(notice this is different from the “attackCoolDown” at-
tribute that some RTS games have, which defines the min-
imum time between attacks).

attackRange: maximum distance at which a unit can attack.

HP: hit points of the unit. When the HP are equal or lower
than O the unit is removed from the game.

DPS: Damage per second that the unit can inflict to a target.

Given two units u; and ue defined by the previous at-
tributes, u; can kite us only when two conditions are met:
1) when w; is faster than us, and 2) when u has an attack
range long enough so that when it attacks us, it has time to
attack, turn around and escape before it is in range of the
attack of us. The exact conditions under which those con-
ditions hold might be complex to assess, since they depend
on many low-level details of the unit dynamics. However, in
general, we can define two simple conditions that, if satisfied
ensure that we can perform a successful kiting behavior:

ey

uy.speed > us.speed
uy.attackRange > uy.attack Range
+ ug.speed x kitingTime(uy) (2)

where kitingTime represents the time that w; requires to
decelerate, turn around, attack, turn around again and leave:

kitingTime(u) = u.deceleration + w.attackTime
+ u.acceleration + 2 X u.turn

Condition 1 ensures that 4, can increase its distance from
us if needed. Condition 2 ensures that u; can attack us, turn
around and escape, before being inside of the attack range
of us. In other words, u; can attack and retreat before the
enemy unit us can attack. Figure 2 illustrates each of the dif-
ferent actions that consume time during a kiting movement.
Notice that in some complex RTS games, such as StarCraft,
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1.- Decelerate
2.- Turn to face B
3.- Attack B

3 4.- Turn to flee
B 5.- Accelerate

Figure 2: The five actions required when a unit A kites an-
other unit B.

the attributes of the different units are not constant, but can
be affected dynamically by some of the unit’s special abili-
ties during the game. For example, Marines (a basic unit in
the game StarCraft) can use an ability called “stim packs” in
order to increase their speed and decrease their attackTime
for a brief period of time. Thus, the previous equations con-
stitute just a simplification that might need to be adapted for
the specific game at hand.

For example, in the case of StarCraft, the previous equa-
tions are satisfied when u; is of the type Vulture (a fast and
versatile ranged Terran unit) and o is of the type Zealot (a
strong close-range ground Protoss unit). Table 1 shows the
attributes of both Vultures and Zealot units.

Influence Maps for Kiting

An influence map is a technique to store relevant information
about different entities of interest in a game, represented as a
numerical influence. In the context of RTS games, an influ-
ence map can be seen as a two dimensional matrix contain-
ing one cell per each position in the game map. An example
can be seen on Figure 3, where the influence map contains
numerical influence from a unit and from some walls in the
map. Influence maps are closely related to the idea of po-
tential fields (Hagelbdck and Johansson 2008), sharing the
same underlying principles.

We can use the abstraction of an influence map to keep
track of the dangerous areas (where friendly units will be in
range of fire of enemy units) or the safe ones. The main idea
in our approach is to use influence maps to detect which
areas are safe, then, when performing kiting, the friendly
unit will first attack the target unit, and then flee to a safe
position using the influence map. Once a safe position has
been reached, the kiting behavior will be repeated.

An important decision to be made while designing influ-
ence maps is the spatial partition. An influence map with a
high resolution can be computationally non-viable on real-
time environments, but a low resolution one may provide too
coarse grained information, making it useless for taking de-
cisions. In the experiments reported in this paper, we used
StarCraft as our testbed, which keeps three different game
maps at different resolutions: a pixel level map for keeping
unit location, a walk tile map (with a resolution of 8 x 8 pix-
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Figure 3: Example of Influence Map. The numbers are the
threat in that position, a higher value means more danger.

els) for collision detection, and a build tile map (with a res-
olution of 32 x 32 pixels) for determining where new build-
ings can be placed. In our case we decided to use build tile
resolution for influence maps since all units are bigger than
8 x 8 pixel size, and thus this resolution is enough for kiting.

For the purposes of kiting, each unit u; performing kit-
ing will compute an influence map. We are interested only
on storing two pieces of information in our influence maps:
whether a cell is inside of the range of fire of an enemy, and
whether a cell is too close to a wall and a unit might run the
risk of getting trapped. Those two pieces of information are
stored in the influence map in the following way.

Enemy units: We assigned an influence field to each en-
emy uy with a constant influence value based on the dis-
tance in Eq. 2. Then we use Eq. 3 to define the maximum
distance d,,q. (11, u2) of the field on Eq. 4:

Apmaz (U1, u2) = us.attackRange + k

3)
Where k is a confidence constant value to ensure a safe
distance. In our case we established this constant with

a value of 1. The value added to the influence map to a
position at distance d from an enemy us is defined as:

'LLQ..DPS if d S dmam(ul,ug)
Lenemy (w1, 2, d) = {0 if d > dyas (1, us)
“4)
Walls: One of the problems on a kiting movement is getting
stuck on a corner or in a closed area. In order to avoid this,
we define an influence field on each wall.

+ ug.speed x kitingTime(uy)

1 ifd<3
Iwall(d) = {0 ifd ; 3 (5)

Where 3 is the radius of the field for walls, which was
determined empirically.

We can see an example of generated Influence Map on
Figure 3. The influence map defined in this section can be
used by a unit to flee while performing kiting. The next
section describes how to decide which of the enemy units to
attack when performing kiting.
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Target Selection

Selecting the right target is essential to maximize the effec-
tiveness of kiting. In our approach, units select a target by
assigning a score to each enemy unit, and then selecting the
unit with the maximum score. The score is based on three
factors: distance to target, tactical threat and aggro'.

Distance: the pixel distance to the target.

Tactical threat: a fixed, hand assigned, value to each dif-
ferent unit type depending on its features and abilities.

Aggro: the result of the DPS (Damage Per Second) that
would be inflicted to the target by the attacking unit di-
vided by the time to kill the target.

We can calculate the aggro of unit u; for unit us in the
following way:

( ) us.DPS to uq ©)
aggro(uy,us) =

99 1720 ™ time for u; to Kill usg

. . UQ.HP

t f tokilup =————— 7
ime for uq to kill uo w1.DPS to 4y (7)

The score of an enemy unit is computed as the weighted sum
of the three factors:

Score(u) =aggro(u) X w;
+ tactical(u) X we

(®)

By default NOVA gives a lot of importance to aggro since
this variable indicates the most dangerous units that you can
kill more quickly. But this can lead in a wrong target selec-
tion on kiting behavior; skipping the closest units to attack
the one with the highest score, exposing our unit to enemy
fire as a consequence.

To solve this issue in order to successfully perform kiting,
the vale of w3 needs to be high enough to make the distance
the most significant factor.

+ distance(u) X ws

Kiting Algorithm

Figure 4 shows the kiting movement algorithm, where far-
getSelection returns the best available target for the current
unit using Eq. 8; canKite uses Eqs. 1 and 2 to check if
the current unit can kite the enemy unit selected; and get-
SecurePosition gets the unit’s actual position and returns the
closest secure position on the Influence Map. Then if we are
in a secure position we can attack the target, otherwise the
unit must keep fleeing.

In practice, it is not necessary to create a different influ-
ence map for each friendly unit reforming kiting, since all
units of the same type can share the same influence map.

Empirical Evaluation

In order to evaluate our approach, we performed three sets of
experiments in the domain of StarCraft. We incorporated our

'“agaro” is a slang term meaning “aggravation” or “aggres-
sion”. In RTS and role-playing games, aggro denotes the aggres-
sive interests of a unit.
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Figure 5: Experiment 1: Results for each of the different settings.
tick ) { Settings 1 2 3 4
target = targetSelection (); Games won 0.0% | 249% | 855% | 95.2%
if (canKite(target)) { on Experiment 1
kitingAttack (target); Games won 0.0% | 98.8% | 100.0% | 100.0%
} else { on Experiment 2
attack (target); Games won 17.6% - - 96.0%
} on Experiment 3
}
Table 2: Win ratio on each experiment and setting
kitingAttack (target) {
position = getSecurePosition (actualPos);

if (position actualPos) {
attack (target);

} else {

move( position);

// flee movement

Figure 4: High level algorithm to perform kiting.

approach into NOVA, and we confronted it against the built-
in Al of StarCraft. Kiting was incorporated into the behavior
that controls the Terran Vulture units of NOVA, since they
are good units to perform kiting.

The first two experiments evaluate kiting in isolation by
pitting Vultures against groups of opponent units. The third
experiment evaluates the impact of kiting in the overall per-
formance of NOVA by doing full-game experiments.

Experiment 1: One-Unit Kiting
In this experiment we show the performance increment that
each influence field and the improved target selection brings.
We run the experiments in an open square map with one Vul-
ture (our unit) against six Zealots (controlled by the built-in
StarCraft Al).

We configured NOVA in 4 different ways in order to eval-
uate all the different parts of our kiting approach:

Settings 1: Default behavior. Here we use the default attack
movement of NOVA, that means that when we order a unit
to attack a target, that unit will keep attacking without any
flee movement.

Settings 2: Influence Map (Enemy field). In this case we
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execute a kiting movement only assigning charges on en-
emy units.

Settings 3: Influence Map (Enemy and Wall fields). Here
we execute a kiting movement assigning charges on en-
emy units and map walls.

Settings 4: IM and target selection. Same as previous
scenario but now we use our proposed target selection
method. This is the full kiting behavior approach pre-
sented in this paper.

Our hypothesis is that each successive configuration is
better than the previous one. Table 2 shows the win ratio
of NOVA controlling only one Vulture against four Zealots
after executing the experiment 1000 times on each setting,
showing that kiting drastically increases the performance of
NOVA, from losing all the games, to winning 95.2% of the
time.

Figure 5a shows a more detailed analysis of the obtained
results by plotting the hit points ratio of the remaining units
at the end of a game. As expected, in each configuration our
final HP is higher than in the previous one. However, if we
look at the enemy HP only considering the games we lost
(Figure 5c¢) its HP also goes up. The main reason of that is
because on each configuration, NOVA is more cautious than
in the previous one since units spend more time fleeing than
attacking. This is also reflected on game time. If we look at
Figure 5b we can observe how by using kiting, games take a
longer time, since NOVA’s units spend more time fleeing to
avoid enemy fire.
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Experiment 2: Group Scalability

In this experiment we want to test how does our kiting be-
havior scale to groups of units and test whether the two fields
we defined are enough. To this end, we performed the same
experiments as before but in a map where NOVA controls
four Vultures against six Zealots; the results are shown in
Table 2. We observed that units did not disturb each other,
as can be seen by the win ratios in Table 2. Our kiting ap-
proach was able win 100.0% of the games.

Figure 6 shows that the HP at the end of the game are
very high even for simpler settings of NOVA. Finally, as
expected, the time required to win a game is dramatically
reduced compared to Experiment 1 as shown on Figure 7.

Experiment 3: Full Game

Until now, we tested our approach in a small melee scenario.
This set of experiments aim at evaluating the utility of kiting
in a full game. For this reason we evaluated the performance
of NOVA against the built-in Protoss Al of Starcraft. We
used two different settings of NOVA:

Settings 1: Default behavior. Here we use the default attack
movement of NOVA.

Settings 4: Kitting behavior. In this case NOVA uses a kit-
ting behavior when possible.

Table 2 shows the average of 1000 games with each con-
figuration. The result is that the percentage of victories in-
creases 445.45%, showing that kiting has a huge impact in
the performance of NOVA, by helping its units survive for
longer when fighting against enemy units against which kit-
ing can be performed.
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Conclusions

In this paper we have studied the implementation of tacti-
cal movement for real-time strategy games, which is part
of our long term goal of developing Al techniques capable
of handling large scale real-time domains. Specifically, in
this paper we have presented and evaluated an approach to
perform kiting behavior using Influence Maps. Our exper-
iments show the impact that incorporating effective tactical
moves like kiting can have in the performance of complete
RTS game playing bots, such as NOVA. Additionally, our
approach to kiting is computationally tractable, and can be
used in real-time bots. As a proof, we incorporated this ap-
proach into the NOVA bot, which participated in the annual
StarCraft AI Competition (Weber 2010).

As part of our future work, we would like to built on top
of our approach and explore more complex tactical moves.
For instance, using kiting to lead the enemy towards a cer-
tain part of the map for ambushing. Some more complex
moves might require explicit unit cooperation by, for in-
stance, adding friendly-unit charges onto the Influence Map.
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