Intelligent Narrative Technologies: Papers from the 2012 AIIDE Workshop
AAAI Technical Report WS-12-14

Generating Narrative Action Schemas for Suspense

Spyridon Giannatos, Yun-Gyung Cheong, Mark J. Nelson, and Georgios N. Yannakakis
Center for Computer Games Research
IT University of Copenhagen
Copenhagen, Denmark
{spgi,yugc,mjas,yannakakis } @itu.dk

Abstract

A bottleneck in interactive storytelling is the autho-
rial burden of writing narrative units, and connecting
them to the interactive narrative structure. To address
this problem, we present a hybrid approach that com-
bines Al planning and evolutionary optimization in or-
der to generated new plan operators representing possi-
ble story actions, within the framework of a planning-
based interactive narrative system. We focus our work
on inventing plan operators that are useful for contribut-
ing to suspenseful interactive stories, using suspense
metrics that have been proposed in the literature. We de-
vise an encoding scheme for converting a plan operator
into a genetic-algorithm chromosome and vice versa,
respecting constraints that are needed for an operator
to be well-formed. We discuss the performance of the
system, and several examples from preliminary experi-
ments carried out to evaluate the evolved operators.

Introduction

Interactive storytelling systems often have a flavour of se-
quencing content, or guiding the sequencing of content. The
space of possible stories that a particular system supports
can be represented in several ways: for example, as a graph
of important plot points and sequences through them (Nel-
son et al. 2006), or, in a planning framework, as story state
and operators that modify story state (Young 1999). A drama
manager then ensures that traversals through this story space
meet certain properties, to maintain narrative coherence and
any other, more specific, properties the author may wish the
stories to have. A long-term goal of many interactive story-
telling systems is to turn this content-sequencing approach
into a more generative approach, where new content is cre-
ated as needed. This problem is related to a larger Al re-
search topic—automated knowledge learning.

In this paper, we explore adding generativity to an interac-
tive storytelling system based on a planning representation.
As is common in such representations, the story world, and
interaction within it, are modelled by: 1) predicates, and 2)
action operators that refer to those predicates in their pre-
and post-conditions. The predicates specify an ontology of
the story world, and the actions are story events that can

Copyright (© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

happen, defined within that ontology. Here, we focus on in-
venting new planning operators, defined within an existing
story-world ontology (in other words, we do not invent pred-
icates). This makes the scope of the problem more tractable,
since the generation problem is kept within a background
setting that the author has already ensured makes sense.
However, it can still add a significant generative component
to interactive stories, because the defined operators, that is,
the story’s actions and events, are a key to interesting inter-
active stories. To produce sensible stories, these operators
need to cover a space less than all possible operators that
could be defined with a set of predicates, but we hypothe-
size that there should be more operators than are typically
hand-authored for a particular domain.

To further focus our research, in this work we aim to in-
vent story actions for one kind of storytelling: telling sus-
penseful stories. Therefore new operators are judged by how
useful they are for creating suspense in a given context,
which is a particularly interesting problem because suspense
is not a property of a single event in a story, but of how the
events fit together; and therefore there may be very differ-
ent solutions in different story contexts. We generate oper-
ators via FI2POP (Kimbrough et al. 2008), an evolution-
ary algorithm that performs optimization within a set of
constraints. The constraints are that the generated operators
must be well-formed, with preconditions and postconditions
that share some parameter types. Among those well-formed
operators, the metric being optimized is one based on theo-
ries of storytelling suspense.

On a tripartite narrative generation model which consist
of fabula, sjuzhet, and discourse layers (Cheong 2007)—
where fabula denotes a complete story containing all the
events happening in the story world, sjuzhet contains only
those events and their orderings that are presented to the au-
dience, and discourse is the final product (e.g., text, film, an-
imation) delivered to the audience—our system contributes
to the fabula generation layer by the provision of varied op-
erators as bulding blocks for building a fabula. Although it
is our intention to implement a fully automated system that
creates, evaluates, and annotates semantic meanings to the
newly generated narrative units, a practical application of
the current work would be to suggest plausible operators for
story authors for authoring systems.

chromosomes | |
Encod

Predicate &
Parameter type
DB
| chromosome. operator (plans Fit
GA Decoder Planner ! ne‘ss
| I 'L Function

fitness value |

plan
operators
planning
problem

Figure 1: The proposed framework

Our approach

The goal of our system is to generate plan operators as nar-
rative units for constructing a story represented as a plan
structure which consists of story actions and their causal
relationships and temporal constraints. Planning technol-
ogy has been widely used in interactive storytelling systems
(Lebowitz 1983) due to its capability of generating interac-
tive stories (Trabasso and Sperry 1985; Cavazza, Charles,
and Mead 2002) via re-planning and its data structure and
algorithm can account for the reader’s story comprehension
process (Christian and Young 2003). More on the represen-
tations for interactive storytelling can be found in (Magerko
2005; Roberts 2011).

Figure 1 shows our framework for generating narrative
actions. It consists of a genetic algorithm (GA) component,
and encoder and decoder, a planner, and a fitness function.
The system additionally contains data structures and a pred-
icate database.

In the initialization step, the encoder creates the predicate
database, consisting of a list of all the predicates (i.e., log-
ical sentences) in a planning domain that is given as input.
Each of these predicates can be indexed by predicate ID. The
system also creates the parameter type database, which is a
list of the parameter types that exist in the planning domain.

The system repeats the following steps until it reaches
convergence or a pre-defined number of generations:

I The GA component generates a set of genotypes
through an evolutionary process guided by the fitness
function. These genotypes serve as input to the decoder.

II The decoder converts a chromosome from the GA into a
plan operator structure, consisting of preconditions and
effects.

IIT When the new operator is received from the decoder,
the planner generates solutions to the planning problem
using the set of initial plan operators augmented with
the newly generated operator.

IV The fitness function takes the solutions as input and re-
turns a numeric value representing the new operator’s
utility to the GA component.

Predicate Negation

Figure 2: A predicate block which consists of the predicate
ID as an integer and a binary value representing whether the
predicate is true or false.

<——— Preconditions Effects ———

Pradi Predicat:

. Pr
Negation D

Negation Pretljlljcate Negation Pre(l:lllacate Negation

Figure 3: Chromosome representation, as an array of predi-
cate blocks.

Encoding scheme

Evolutionary algorithms are a standard technique for opti-
mization problems, in which the solutions are often repre-
sented as binary or numeric values. On the other hand, Al
planning is an example of a symbolic approach in which
each condition in the preconditions/effects of a plan oper-
ator relates to a particular state and object in a story world.
Therefore, it is challenging to give semantic meaning to the
chromosome, which can be a random combination in the
worst case. This section discusses how we encode plan op-
erators in a way that a GA can comprehend and vice versa.
A plan operator is a tuple of three elements—(name, a set
of preconditions, a set of effects)—where preconditions and
effects reference the domain’s predicates. We begin with the
description of predicates since they are the basic building
blocks.

Predicate representation To bridge the two different rep-
resentations (numeric values and logical sentences), we em-
ploy a predicate database, where each tuple in the DB con-
tains an index which can be used as both a gene value, and
a way of accessing the corresponding predicate. In our ap-
proach, a predicate is encoded as a gene which contains an
integer denoting predicate ID and a binary value denoting
whether the predicate is true or false in this instance (see
Figure 2. Therefore, a plan operator is represented as a series
of predicate blocks, as illustrated in Figure 3. In this paper,
we use a fixed-length chromosome, and therefore the num-
ber of predicates representing a plan operator is also fixed, at
two conditions and two effects. The length of chromosome
was chosen through preliminary experiments.

Parameter binding problem One of the main challenges
in our framework is parameter assignment. Consider the
following example to illustrate the issue. Imagine a plan
operator containing the following preconditions and effects.

Preconditions: at(?z1) AND —has(?x2)
Effects: has(?x3)

This operator has three variables (71, 722, 7x3). When
these variables are bound to particular parameter types, the
plan operator may produce different meanings. For instance,
if the predicate at binds a place type value to ?z1 and the
predicate has binds an item type value, we can imagine

that this operator may mean PICK-UP under the condition
of (722 =7x3). However, if the parameter type for 722 is
different from the one for 7?3, the PICK-UP action is not
the best description of the operator.

In other words, constraining the parameter types of vari-
ables influences semantic meaning. A full solution to the pa-
rameter assignment problem is beyond our current research
scope, but as a simple solution, we view this as a constrained
optimization problem, in which parameter types in precon-
ditions are constrained to match the types in effects. In or-
der to meet this requirement, we use the FI2POP (Feasible-
Infeasible Two-Population) genetic algorithm for the GA
component.

FI2POP GA

Unlike most evolutionary algorithms, which deal only with
valid solutions, FI2POP (Kimbrough et al. 2008) is a con-
strained optimization algorithm that maintains feasible and
infeasible populations throughout the evolutionary process.
The feasible population contains only feasible individuals
(those that satisfy the constraints) and the infeasible popu-
lation contains only infeasible individuals (those that don’t).
Every individual is tested for feasibility and placed in the ap-
propriate population. Individuals in the feasible population
are selected by fitness with respect only to their objective
function values. Individuals in the infeasible population are
selected by fitness with respect only to function of their con-
straint violations. The infeasible population tends to probe
the neighbourhood of the boundary of the feasible region.
Children tend to resemble their parents, so feasible chil-
dren of infeasible parents tend to be close to each other. Be-
cause the infeasible parents were selected without regard to
their objective function, crossover and mutation will tend to
create feasible solutions that presumably are different from
those already in the main population. These solutions either
succeed or fail, but in either case they contribute to an ex-
ploration of the feasible region. Thus, if the optimal solution
is on or near the boundary, it is expected that the infeasible
population would contribute to finding it.

Measuring the coherence of an evolved operator relies on
domain knowledge. We use a parameter type database de-
rived from co-occurrences of types in the original domain.
If a pair of parameter types does not appear together in any
of the operators in the original domain, the coherence of the
operator is scored more poorly.

The coherence test is done by the means of penalty func-
tion or constraint violation function, which is used by the
FI2POP GA. This function accepts the chromosome and re-
turns the number of violations of coherence. This function
starts by enumerating all possible combinations of predi-
cates of our evolved operator. Then, for each pair, the func-
tion loops through all operators of the original domain. If
there is an operator that contains the pair of predicates in
question, then no violations exist for this pair and we con-
tinue with the next pair of predicates. In the case where there
is no operator containing the pair of predicates in question,
we increase the violations by one. The threshold for con-
straint violation function is set 3 in this study. It means that

10

Figure 4: A plan structure containing supporting and threat-
ening links (Cheong 2007). Actions (with their precondi-
tions on the left and effects on the right) are represented by
boxes. Solid arrows denote supporting links, meaning that an
action’s effect is unified with a precondition of another ac-
tion. Dotted arrows are threatening links, which means that
an action’s effect is a negation of another action’s precon-
dition. Please note that these terms are used unconvention-
ally. In conventional planning, a plan is considered complete
when there are no threats to causal relationship. The threat-
ening links in this paper are temporary threats which are re-
solved eventually. For instance, the threatening link connect-
ing the step M to the step A via the negation of p is resolved
by the subsequent step C that establishes the precondition p.
Similarly, the supporting link connecting the step K to the
step B via the condition g has been threatened by the step
H’s effect negating g and re-established by the step D.

a plan operator which has scored over 3 in constraint viola-
tion falls in the infeasible population.

Planner

Our approach uses a C# version of the Longbow planner,
which generates hierarchical, partial-order causal link plan
structures (Young, Pollack, and Moore 1994). When the de-
coder passes a new plan operator to the planner, it builds
a plan space which is composed of nodes representing par-
tial and complete plans. The planner finds the solution for
a given planning problem that achieves the goal state, start-
ing from the initial state by repairing the flaws in the partial
plans—open preconditions, threatened causal links, and ab-
stract steps which have not been decomposed into primitive
actions. This refinement search process continues until no
partial plans are left, or the number of nodes in the space ex-
ceeds a pre-defined search limit. A plan structure consists of
plan steps, binding constraints, temporal ordering informa-
tion, causal links, and decompositional links, as illustrated
in Figure 4. When the search process terminates, the plan-
ner returns all the solutions to the fitness function. Note that
the planner considers the new plan operator as well as the
initially given plan library.

Fitness function

In evolutionary algorithms, fitness functions take a genotype
as input and return a numeric value representing the opti-
mality of the provided genotype-solution. In our approach,
the utility of a solution is an estimate of its contribution to
generating suspenseful stories. While there are various tech-
niques for creating suspense in stories, our fitness function

focuses on one primary condition for suspense: the reader
feels suspense when anticipating an undesirable outcome for
the protagonist (Gerrig and Bernardo 1994).

In order to gauge the potential suspense that the new op-
erator can contribute, we rely on a heuristic function calcu-
lating the potential suspense of an action in a plan in the
approach to story structure generation for suspense (Cheong
2007). Simply put, the heuristic function in computes the
potential suspense of an action based on the number of sup-
porting links and threatening links (see Figure 4 for defini-
tions).

Potential suspense calculation It is expected that the
more the threatening links hold, the higher the suspense is.
On the other hand, the more the supporting links hold, the
lower the suspense. Hence, we calculate the potential sus-
pense level of a story plot p through the function:

Susppiot(p) = t(p)/s(p))

where ¢(p) and s(p) are functions that calculate the
weighted sum of threatening and supporting links respec-
tively.

Since there exist multiple solutions, the system needs to
compute the potential suspense of each plan in all the solu-
tions. Therefore, our Potential Suspense fitness function is
given by the equation:

Suspense(o, s) = Susppiot(p) (2)

>

pEPlots(o,s)

where Plots(o,s) returns all complete plans in the set
of solutions s that contain actions instantiated from the
new operator o. The potential suspense fitness function is
domain-independent, which give us the advantage of using
the generic framework for various domains.

Evaluation
Experimental setting

We demonstrate this approach in a simple narrative domain
we created (we call it Sykes’ Mission). In this story, an ac-
tress named Agatha is in danger of being assassinated, but
she isn’t aware of this fact. Sykes plots to kill Agatha, and
plans to obtain a bomb from Kent (who has a bomb). One so-
lution to this problem that the planner generate is to let Sykes
get a loan in order to buy a bomb from Ken. Then Sykes car-
ries the bomb to the theatre on the date when Agatha is visit-
ing. He installs the bomb, sets the timer, and finally switches
it on. These actions establish the preconditions of the opera-
tor explode, which is the final action achieving the goal of —
alive(Agatha).

The following GA setting is carefully chosen through pre-
liminary experiments. The termination condition of our GA
application is set to 50 generations. The population size
is 40. In the crossover step of the GA we use Uniform
Crossover with crossover rate 80% and in the mutation step
we change we gene value randomly with mutation rate 1%.
Selection via elitism is an important aspect of the GA, as it

11

Table 1: This table presents the features of the best evolved
operator (Operator A) and the worst (Operator B) that our
framework managed to produce using the original domain
Sykes Mission.

‘ Features H Operator A ‘ Operator B ‘
Genes 8 8
Fitness value 16 1
7person
7bomb 7bomb
Parameters Iperson Iplace
isaperson(7person)
isabomb(?bomb) isabomb(?bomb)
Constraints isaperson(?person) isaplace(?place)
has(?person, 7bomb) | — at(?bomb, ?place)
Preconditions - installed(?bomb) | has(?person, ?bomb)
installed(?bomb) on(?bomb)
Effects — on(?bomb installed(?bomb)

helps to preserve parents with good fitness values. In our ex-
periments, the elitism rate is set to 5%. The entire process is
then executed ten times for each domain.

Results

We performed a pilot study demonstrating this method in op-
eration. First, we show the graphs of the GA evolution and
its corresponding infeasible population’s growth. We then
describe the best and worst operator we obtained, and show
how the best one maintains coherence and increases sus-
pense inside a plan instance. Figure 5 presents the results us-
ing the Potential Suspense fitness function for a story. These
charts show the progress of the best, the average, and the
worst evolved operators. While the fitness for the best oper-
ator reaches convergence, the other two showed some fluc-
tuation.

We obtained the best and worst evolved operators from
the experiment. Table 1 shows the important features of
these operators: the chromosome length, the fitness value,
the parameters and their constraints, the preconditions and
the effects.

Best operator Operator A in the table is the best evolved
operator that our framework managed to produce for the
Sykes’ Mission story. As the preconditions state, this oper-
ator can be executed only when a person has a bomb and
the bomb is not yet installed. After executing this action, the
bomb is installed, but the switch is turned off (even though
it might be on before). The original domain contains an op-
erator which is called installbomb and has the effect of in-
stalling the bomb. This new operator is quite similar to the
installbomb that exists in the original plan operators. The
difference is that the new operator keeps the bomb off. We
interpreted the meaning in two ways. First, this operator can
serve as a version of installbomb which requires another ac-
tion such as switch-on for the bomb to operate. An alter-
native interpretation is to treat the new operator as abstract
which combines two actions: 1) installation of a bomb, fol-
lowed by 2) an accidental damage to turn it off. Giving a se-

20
— best
—— average -
-~ worst

50

45

40

35

Constraints

— best
—— average
—— worst

\

0 i I I
20

I
25
Generations

(a) Feasible population’s progress

30

— i i
25 30 45
Generations

50

(b) Infeasible population’s progress

Figure 5: Evolution of the Potential Suspense fitness function tested across the Sykes Mission planning domain, using chromo-
somes of 8 genes. The figure on the left shows the progress of the feasible population with 8 genes (4 predicates), while the
figure on the right shows the progress of the infeasible population. Figures depict average values of 10 runs and corresponding

95% confidence interval bars every 3 generations.

mantic meaning to the operator is very important when we
try to convey that the new operator happened in a story to the
story consumer in a form of medium. For instance, an ac-
tion instantiated from the operator can be described as text,
“Sykes installed the bomb and it was turned off”, or can be
visualized showing the corresponding action. As described
above, the system can take the name of a similar operator in
the current library. Another way is to describe/show the state
before the execution of the operation and the state after the
execution, without realizing the action behavior. The inves-
tigation of effective presentation of this nameless operator
would fall in the discourse layer and is beyond our scope.

Worst operator Operator B (Table 1) was the worst
evolved operator for comparison with the best operator. The
worst operator is the evolved operator that has the lowest
positive fitness function and opposed to the best operator,
Operator B has higher number of supporting links in the
plan instances—i.e. decreased suspense. The preconditions
of this operator are: 1) a bomb is not at ?place, and 2) a
?person has a bomb, which is true in the initial state when
?person is bound with Kent and ?place is bound with the-
atre. After executing Operator B, the bomb is suddenly in-
stalled and the switch is on. As a result, augmenting this
operator in the plan library enables the planner to generate a
very short story which does not necessarily involve Sykes in
assassination, which in return gives the reader little chance
to experience suspense.

Related work and background

Learning primitive actions in narratives relates to work be-
yond interactive narrative components in particular. In exist-
ing research (Li et al. 2012), sociocultural knowledge (e.g.,
going to a fast food restaurant, taking a date to a movie) was
learnt from crowd-sourced narrative examples. The goal of

12

their approach is to learn a) actions through unsupervised
clustering and b) the causal, temporal relations between two
events based on probabilistic methods. The difference be-
tween their approach and ours is two-fold. First, unlike their
approach the generation of actions in this research is guided
by a fitness function. Second, the action script in our re-
search is a set of preconditions/effects, while their approach
is a precedence relationship. We propose to use their re-
search as a component to name the operator. For instance,
imagine a new operator containing the precondition of hav-
ing paid for food and the effect of carrying food. The ap-
proach in (Li et al. 2012) may suggest actions that can oc-
cur between pay for food and eat food as candidate operator
names. If nothing matches the conditions, it is likely that the
new operator does not exist in real-life situations. However,
we can still consider the operator in a fantasy world.

In the previous work (Giannatos et al. 2011), we have pre-
sented a system which can create interactive narrative ele-
ments from a direct acyclic graph representing plot points.
In this approach, a plot point contains a set of semantic fea-
tures such as location, thought, and motivation along with
temporal ordering constraints in relation to other plot points
in the story graph. A standard GA generates a new plot point
guided by fitness functions which estimate different types of
player’s experience based on the location flow, thought flow,
and motivation. The new plot point is integrated into the
original plot point graph through the incoming arcs from and
outgoing arcs to other plot points which represent the tem-
poral ordering relationship. While they have shown the fa-
sibility of combining symbolic and evolutionary appraoches
in generating plot elements, the limitation of this approach
lies in the lack of semantic information contained in the gen-
erated plot point, which makes it difficult to give meaning
to the new plot point beyond its formal location in the plot

graph. The approach presented in this paper is an attempt to
address that problem by using a planning-based representa-
tion, as those structures contain logical sentences represent-
ing pre-conditions and post-conditions of an action.

Conclusions and future work

We present a framework that learns actions for generating
stories for suspense guided by story evaluation functions.
The contributions this work made are 1) to design a sys-
tem architecture combining an Al planner and evolutionary
algorithm, 2) to devise an encoding scheme that translates
a plan operator into a chromosome and vice versa, and 3)
to devise a fitness function estimating the contribution of
a plan operator in generating suspenseful narratives when
added to an existing plan library. We also discovered that pa-
rameter types bound with preconditions and effects can de-
termine the operator’s semantic meaning and therefore need
special attention. We have carried out a pilot study which
showed a promising result where an evolved operator with
highest fitness value seems to be more meaningful than a
one with lowest fitness. However, the direct use of the new
operator requires a decision in translating the combination
of its preconditions and effects into an actionable behavior.
Therefore, an application of the work presented in this pa-
per would be to suggest plausible operators for the human
domain expert for interactive story authoring tools. To de-
velop a fully automated system without human intervention,
we will be investigating the cognitive process of granting
semantic meanings to the operator via crowdsourcing ap-
proaches.

In the future, we plan to improve the fitness function for
better performance and formal evaluation. For instance, the
current function measuring the potential suspense of a plan
(equation 1) makes it difficult to gauge the maximum and
minimum fitness value. Likewise, the equation 2 can be en-
hanced by taking the average of potential suspense of plans
rather than summation. It would be also possible to consider
a complicated system that rates an operator’s contribution to
story generation as a fitness function in our framework. For
instance, the suspense detection system Dramatis (O’Neill
and Riedl 2011) can predict a reader’s suspense ratings at
specific moments in a story by taking into account her cogni-
tive capacity in estimating the likelihood of the protagonist’s
successful plans under time constraints.

References

Cavazza, M.; Charles, F.; and Mead, S. J. 2002. Character-
based interactive storytelling. IEEE Intelligent Systems
17:17-24.

Cheong, Y.-G. 2007. A Computational Model of Narrative
Generation for Suspense. Ph.D. Dissertation, North Car-
olina State University.

Christian, D. B., and Young, R. M. 2003. Comparing cog-
nitive and computational models of narrative structure. In
Proceedings of the 19th National Conference on Artificial
Intelligence, 385-390.

Gerrig, R. J., and Bernardo, A. B. I. 1994. Readers as

13

problem-solvers in the experience of suspense. Poetics
22(6):459 — 472.

Giannatos, S.; Nelson, M. J.; Cheong, Y.-G.; and Yan-
nakakis, G. N. 2011. Suggesting new plot elements for
an interactive story. In Proceedings of the 4th Workshop on

Intelligent Narrative Technologies, AIIDE. AAAI Press.

Kimbrough, S.; Koehler, G.; Lu, M.; and Wood, D. 2008.
On a feasible-infeasible two-population genetic algorithm
for constrained optimization: Distance tracing and no
free lunch. European Journal of Operations Research
190(2):310-327.

Lebowitz, M. 1983. Creating a story-telling universe. In
Proceedings of the Eighth international joint conference on
Artificial intelligence - Volume 1, 63—65. San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc.

Li, B.; Appling, D. S.; Lee-Urban, S.; and Riedl, M. O. 2012.
Learning sociocultural knowledge via crowdsourced exam-
ples. In Proceedings of the 4th AAAI Workshop on Human
Computation.

Magerko, B. 2005. Story representation and interactive
drama. In Proceedings of the First Conference on Artificial
Intelligence and Interactive Digital Entertainment, 87-92.

Nelson, M. J.; Mateas, M.; Roberts, D. L.; and Isbell, Jr.,
C. L. 2006. Declarative optimization-based drama man-
agement in interactive fiction. IEEE Computer Graphics &
Applications 26(3):30-39.

O’Neill, B., and Riedl, M. 2011. Toward a computational
framework of suspense and dramatic arc. In Proceedings
of the 4th International Conference on Affective Comput-
ing and Intelligent Interaction, 246-255. Springer-Verlag
Berlin, Heidelberg.

Roberts, D. L. 2011. Seven design challenges for fully-
realized experience management. In Intelligent Narrative
Technologies 4, AIIDE.

Trabasso, T., and Sperry, L. L. 1985. Causal relatedness and
importance of story events. Journal of Memory and Lan-
guage 24(5):595 - 611.

Young, R. M.; Pollack, M. E.; and Moore, J. D. 1994. De-
composition and causality in partial order planning. In Pro-

ceedings of the 2nd International Conference on Artificial
Intelligence and Planning Systems (AIPS), 188—193.

Young, R. M. 1999. Notes on the use of plan structures in the

creation of interactive plot. In Proceedings of the AAAI Fall
Symposium on Intelligent Narrative Technologies, 164—167.

Acknowledgments
This work has been supported in part by the EU FP7 ICT
project SIREN (project no: 258453). We thank Arnav Jhala
at UC Santa Cruz, and Antonios Liapis and Julian Togelius
at IT University of Copenhagen for the discussion.

