
The Gold Standard: Automatically Generating Puzzle Game Levels

David Williams-King and Jörg Denzinger and John Aycock∗ and Ben Stephenson

Department of Computer Science, University of Calgary
2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4

{dcwillia,denzinge,aycock,bdstephe}@ucalgary.ca

Abstract

KGoldrunner is a puzzle-oriented platform game with
dynamic elements. This paper describes Goldspinner,
an automatic level generation system for KGoldrunner.
Goldspinner has two parts: a genetic algorithm that gen-
erates candidate levels, and simulations that use an AI
agent to attempt to solve the level from the player’s per-
spective. Our genetic algorithm determines how “good”
a candidate level is by examining many different prop-
erties of the level, all based on its static aspects. Once
the genetic algorithm identifies a good candidate, simu-
lations are performed to evaluate the dynamic aspects of
the level. Levels that are statically good may not be dy-
namically good (or even solvable), making simulation
an essential aspect of our level generation system. By
carefully optimizing our genetic algorithm and simula-
tion agent we have created an efficient system capable
of generating interesting levels in real time.

Introduction
Levels for puzzle games have traditionally been created by
human level designers. More recently, researchers have be-
gun automatically generating levels for puzzle games, both
to reduce the burden on human designers while still keeping
the game fun, and because level generation is an interesting
and challenging problem. Automatic generation may also
be important commercially, as it provides additional replay
value by varying levels each time they are played.

We focus on KGoldrunner (Wadham and Krüger 2003), a
non-scrolling platform puzzle game. Briefly, the player con-
trols a hero who can walk around, fall from as high as neces-
sary without injury, climb ladders and travel across monkey
bars. The objective is to collect all the gold nuggets, at which
point hidden ladders appear, and then escape by reaching the
top of the screen.

The most important gameplay element of KGoldrunner is
digging. When standing on a row of brick cells, the hero
can dig away the cell below and to the left, or below and to
the right. Digging holes allows the hero to drop through to
previously inaccessible sections, and to trap and slow down
the enemies that move toward the hero. In addition, holes

∗Supported in part by a grant from NSERC.
Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

eventually close up; if enemies are inside at that moment,
they will die and respawn.

Many puzzle games are NP-hard (Viglietta 2012), includ-
ing the 1983 classic Lode Runner (Smith 1983) on which
KGoldrunner is based. Furthermore some puzzle games,
like KGoldrunner, include dynamic elements which cannot
be evaluated statically. Examples of such dynamic elements
in KGoldrunner include enemies that move in response to
the player and holes that fill in over time. The search trees
created when generating levels are huge, and it is often im-
possible to explore them fully. Intelligent search heuristics
are required to slice through the search space and find a level
that is solvable, that is non-trivial, and hopefully, that is fun.

Although there are many papers that describe level gen-
eration for puzzle games with good heuristics, search meth-
ods, and data representations, few consider an obvious level
evaluation: to simulate a user playing the level all the way
through. This is, after all, what a level is designed for. Such
a simulation can give very useful information about the solv-
ability, difficulty, and time to solve a level.

In this work we use simple player simulations to create
an efficient level-generation system for KGoldrunner, which
we have named Goldspinner. Goldspinner uses a genetic al-
gorithm to breed levels, where static analyses are used along
with multiple player simulations to evaluate generated lev-
els. The resulting system generates complex solvable levels,
quickly enough that the next level can be generated as the
player solves the current level. Goldspinner can also start
with levels that have been partially human-created, making
it useful as a design tool, too.

Related Work
A lot of work has been performed previously on procedu-
ral content generation (Togelius et al. 2011) and level gen-
eration for platform games, especially Super Mario Bros
(Smith et al. 2009; 2011; Sorenson and Pasquier 2010a;
Jennings-Teats, Smith, and Wardrip-Fruin 2010; Compton
and Mateas 2006). A variety of different techniques have
been used, with some systems incorporating the player’s in-
put (Nygren et al. 2011; Yannakakis and Togelius 2011), or a
human level designer’s input (Mawhorter and Mateas 2010).
Our work fits most closely in the “simulation-based fitness
function” category of Togelius et al. (2011), but we use our
simulation for determining solvability, and in our case the

191

Proceedings, The Eighth AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment



level generation itself requires this simulation information.
Previous work has also explored techniques for creating

levels for puzzle games like Sokoban (Murase, Matsubara,
and Hiraga 1996). This work is particularly applicable to
level generation for KGoldrunner because each game must
consider cascading level modifications. Other related work
has generated levels for several kinds of games (Sorenson
and Pasquier 2010b), some with puzzle components. How-
ever, their approach is too slow for real-time level genera-
tion, making it impractical for our purposes.

Finally, several papers describe the genetic algorithm
techniques that we use in our work (Hong, Huang, and Lin
2002; Kimbrough et al. 2002).

Level Generation Overview
KGoldrunner is a challenging game to generate levels for
because of the dynamic nature of the gameplay. Bricks can
be dug away, but they soon fill up again. Careful timing is
necessary for the player to be successful at trapping enemies
or escaping from them. Sometimes the player must rely on
an enemy to carry gold into a reachable location. These fac-
tors combine to make static level analysis alone inadequate
for KGoldrunner. Thus, while we do as many static analyses
as possible, we augment them with player simulations that
evaluate the dynamic aspects of the game.

Our level generation strategy consists of two parts. First,
we use a genetic algorithm to breed levels that seem to be
good based on static analyses. A variety of static analyses
are performed which vary in complexity. Simpler analyses
filter out undesirable levels so that more complex analyses
are only performed on stronger candidates.

Second, we simulate gameplay, using an AI agent as the
player. This determines both whether or not the level is solv-
able and estimates the difficulty of the level. While our static
analysis can guarantee that the level will have many desir-
able properties, like any static analysis, it is unable to guar-
antee that the level is solvable because the game includes
dynamic elements. During simulations, the AI agent inter-
acts with the dynamic aspects of the game. Our AI agent
collects gold nuggets, digs bricks to open new paths, and
traps enemies in newly created holes.

The following sections describe each part in more detail.

Genetic Algorithm
The first part of the level-generation system is a genetic algo-
rithm that breeds individual levels. Each individual consists
of a base level (which may be empty or created by a human
designer) and a list of “features” such as walls and nuggets
that are overlaid on this level. The initial population consists
of one individual with the base level and no additional fea-
tures. Most of the genetic operators below take individuals
and work on their lists of features, removing, adding, and
splitting as necessary.

Plague. When our population reaches 50 individuals, a
plague occurs. All levels below the 40th percentile as mea-
sured by the evaluation function are discarded, reducing the
population to 20 individuals. (All parameter values in Gold-
spinner were determined through experimentation.)

Bake. For each individual, the feature list for that individ-
ual is “baked” into its base level and then emptied. Baking
the features into the level prevents them from being changed
by subsequent crossover and mutation operations. Large
feature sets negatively impact performance, making this op-
erator necessary in order to generate levels in real time. A
bake operation is performed every 500 generations.

Simplify. Occurs 12.5% of the time (assuming the special
operators, plague and bake, are not applied). This operator
removes a random number of features from an individual.

Crossover. Occurs 29.2% of the time. This operator se-
lects one individual at random, and one individual at ran-
dom from the upper half of the population as measured by
the evaluation function. The feature list of each parent is
split at a random point, and the left half of one parent’s list
is combined with the right half of the other parent’s list. The
base level of one parent is selected at random and the newly
generated feature list is added to it to form a new individual.

Mutation. Occurs 58.3% of the time. An individual in
the population is copied and mutated in one of four ways,
adding a new individual to the population:

• If the level feature list includes at least one element, there
is a 25% chance that a random feature will be removed.

• If no feature is removed, then there is a 50% chance that
a new “wall” will be added to the level. The wall may be
horizontal or vertical, with each direction being equally
likely; wall placement and length are randomly chosen.
The wall will be made of ladders (for vertical) or monkey
bars (horizontal) 25% of the time; diggable brick, 37.5%
of the time; or concrete, 37.5% of the time.

• If no feature is removed and no wall is added, there is a 1
6

chance that an enemy will be added at a random location.

• Otherwise, a nugget will be added at a random position.

The process of applying operators repeats, picking pre-
cisely one operator at each generation, until the specified
number of generations has passed. The highest-evaluated
level at that point is the final level. The evaluation function
is described in the next section.

Evaluation Function
In order to calculate the evaluation function we build a
graph, which we call the group graph, describing how the
player can move within the level. In addition, a second ver-
sion of the group graph, the hidden group graph, allows us
to determine the same properties once any hidden ladders
are revealed after the last nugget is collected. When it is
possible for the hero to travel between two nodes, they are
connected by a directed edge in the graph.

Each node in the group graph represents a non-empty set
of cells in the level that are related to each other in one of
three ways: commutative, freefall, and diggable.

Commutative. The hero can move backward and forward
between any two adjacent cells in the node.

Freefall. Once the hero enters the group, the hero will fall
downward. The hero can only exit the group from the cell
closest to the bottom of the screen.

192



Diggable. All of the bricks in this group can theoreti-
cally be removed by digging. When Diggable groups are
identified they assume that the hero is capable of reaching
all necessary open areas around the node, and that the holes
that are dug never disappear. In practice it is generally not
possible to dig every brick identified in the Diggable group.
The simulations we perform ultimately determine whether
or not all of the bricks necessary to complete the level can
be removed.

Our evaluation function begins by examining the static
characteristics of the level. Later, simulations are performed
if the static characteristics are sufficiently strong to justify
doing so. A level’s evaluation value is calculated as follows:

1. The evaluation value, E, is initialized to 0.0.

2. A flood fill is performed from the starting location to iden-
tify all areas that can be reached without passing through
concrete (non-diggable walls). The flood fill considers all
directions, even straight upwards. If there are nuggets that
are not reached by the flood fill, or the top of the screen is
not reachable, then the level is definitely not solvable, so
a negative evaluation is returned immediately.

3. A breadth-first search of valid moves from the initial
player position is considered, where brick walls are con-
sidered passable. If all the nuggets can be reached in this
manner, followed by the top of the screen, then 1000 is
added to E. This search does not consider enemy move-
ment, hole creation, or holes’ refill rate.

4. Using the group graph, we determine whether every
nugget position is forward-reachable in the group graph,
and backward-reachable in the hidden group graph. If so,
10,000,000 is added to E because this is a very good in-
dication the level is solvable. Forward-reachable means
the hero can get to the position, and backward-reachable
means that from the position, the exit locations are not all
cut off. These are necessary conditions unless enemies
can carry gold to the hero.

5. If the cell corresponding to the start position is backward-
reachable in the hidden group graph, then 1,000,000 is
added to E, because the top of the screen is reachable
once hidden ladders are exposed.

6. If the number of features is less than or equal to 10 then
10 times the number of features in the level is added to
E. If the number of features exceeds 10 then 110 minus
the number of features in the level is added to E, giving
diminishing values as the number of features grows.

7. If the number of enemies in the level is nonzero, then 250
minus fifty times the number of enemies is added to E.

8. Finally, 30 times the number of nuggets in the level is
added to E, to heavily favor levels with more nuggets.
Nuggets are also counted as features in step 6.

This completes the static part of the evaluation function. If
E is at least 11,000,000 — meaning that all the group-graph
tests indicate that the level looks solvable — then simula-
tions are run on the level as described below. The simula-
tions’ results are incorporated into E as follows:

9. If the number of successful simulation plans (where
twenty in all are run) is less than three, then 1e9 times
the number of successful plans is added to E. Otherwise,
if the number of successes is at least three, then 3.3e9 mi-
nus 1e8 times the number of successes is added to E.

Figure 1: A level constructed using only static analyses.

Using static analyses alone can result in interesting look-
ing levels. For example, the level shown in Figure 1 was
created after 1000 generations of static analyses. It in-
cludes a mixture of ladders and monkey bars, many dig-
gable bricks, and four nuggets that must be collected by the
player. The level scores very well in the evaluation function
(E = 1.10011 × 107), because the group-graph indicates
the hero might be able to pass through the upright brick wall
in the centre; however, dynamic simulation shows that the
level is not in fact solvable.

Simulations
Levels that are generated by the genetic algorithm, and
which pass static tests, are subjected to an additional eval-
uation step. To see whether a level is solvable, Goldspinner
generates a series of high-level global “plans” based around
the group graph, and runs a full simulation of the game for
each plan to see whether any of the plans are successful. If
no plans work, we consider the level unsolvable; if too many
plans work, the level may be too easy. Plans are constructed
as follows.

The Nugget Graph and Clique Graph
There are three graph structures, shown in Figure 2, involved
in the construction of a plan. Starting from the group graph,
the first step is to construct a nugget graph. The nugget
graph nodes are the subset of nodes in the group graph
which contain one or more nuggets; there is an edge be-
tween nugget nodes if there is a path of any length between
those nodes in the original group graph.

Nugget graph → clique graph. From the nugget graph,
we construct the clique graph, which is based on the nugget
graph but has any cliques1 compressed into one node. We

1A clique is a completely connected subgraph. As the nugget
graph is transitively closed, detecting cliques is at most O(n2).

193



Figure 2: Graph construction (“N” is a nugget node).

Figure 3: The steps to building the group plan.

examine the clique graph to ensure it is linear, i.e., its nodes
can be laid out in a connected line (with additional edges
to all nodes further forwards, since the graph is transitively
closed). This is done by finding a path of length n (where n
is the number of nodes in the clique graph). If the graph is
linear, the player will be able to pick up all the nuggets.

Clique graph→ group plan. Starting from the path in the
clique graph, which can be reused as necessary for any one
level, we generate 20 plans as described below and simulate
each one in full. The initial path goes through several steps
to reach a group plan. This is later expanded to form a con-
crete plan, which is relatively easy for our AI agent to follow
in the simulation. The group plan is constructed as follows
(see Figure 3):

1. First, start with a sequence of clique graph nodes: the path
of length n mentioned earlier.

2. Next, turn the clique graph into a sequence of nugget
nodes by randomly selecting a permutation of the nodes
within each clique and replacing the clique node with that
permutation. This is the order in which the plan will at-

tempt to visit nugget nodes.
3. An extra node must be added at the end of the sequence

which is an exit node. The normal group graph must be
used until the last nugget node has been reached, at which
point the hidden group graph must be used instead. There
will exist some valid exit node because each nugget node
is backwards-reachable in the hidden group graph.

4. Add some randomness to the sequence by performing the
following between zero and two times: pick a random
node, r, and its successor, s, in the sequence. Select a
node n such that r can reach n and n can reach s. Insert
n between r and s so that the sequence now reads r, n, s.
If no such node n exists, skip this round.

5. Now the sequence consists of elements with arbitrary
paths between them, but we need a sequence of group
graph nodes that are directly connected. So for each r
and s in order in the sequence, find a random group-graph
path of minimal length,2 and expand the sequence with
those nodes.

This gives the group plan, which outlines the order in which
group graph nodes will be visited. There are a few additional
steps that must take place to form the concrete plan for the
AI agent to use, however.

Group plan→ concrete plan. For each r and s in the se-
quence, where there is an edge r → s, select a random pair
of exit/enter cells such that the exit cell is in r, the enter cell
is in s, and the hero can move directly from the exit cell to
the enter cell. (The set of these valid exit/enter cells is com-
puted per edge in the group graph upon the group graph’s
construction.) The plan will require the hero to exit and en-
ter each node at these positions. The first node does not need
an enter cell, as the hero’s starting position is known, but the
last node does need an exit cell, which can be anything along
the top row of the level.

Finally, each (concrete) node is given a set of goals that
must be visited by the hero before going on to the next node.
All the nuggets in the level are added as nugget-goals to
the enclosing nugget node, the first time it occurs in the
sequence of nodes (since paths between other nodes might
well revisit a nugget node again). After this, dig-goals are
added to nodes which transition into diggable group graph
nodes; the dig-goals are such that if the hero satisfies all of
them, the transition to the next node will be possible.3

This gives the concrete plan, which is used directly in the
simulation of the game, described next.

Game Simulation
Once a concrete plan has been established, game simulation
takes place with an AI agent that tries to follow the plan.

We carefully examined the source code for KGoldrunner
while we were creating our simulation. We used exact mil-
lisecond timings from the real game for movement speeds
and dug-brick times. We copied the enemy AI directly into
our program, using an interface that maps our data structures

2This can be done with a randomized breadth-first-search,
which adds successors to any node visited in random order.

3The system can only currently dig through one layer of brick.

194



to the ones present in the KGoldrunner source, so that each
simulated enemy behaves exactly as it would in the game.
Overall, we try to have an accurate frame-by-frame simula-
tion of the game.4

In this game simulation, the AI agent is consulted each
time the hero must make a new move. The agent follows
the plan as closely as it can: if it moves outside the current
group graph node, the plan is considered a failure. Each
node is solved by finding a current path as follows:

1. For each nugget goal, in order, find a path to the goal.
2. Similarly, for each dig goal, find a path to a cell that can

dig away the goal (and then dig it).
3. Otherwise, find a path to the current node’s exit cell.
The first such path that is found is set as the current path, and
the agent will follow precisely those moves until the goal is
reached; then another goal is sought. If a goal cannot be
reached, the plan is considered a failure. As soon as an exit
cell is reached, the next move is automatically the transfer
to the enter cell of the next node.

Given enough plans, the system described above will of-
ten find a way to avoid enemies through a clever ordering of
group-graph nodes and enter/exit cells. However, if the AI
agent encounters an enemy on its chosen path, it will attempt
to trap the enemy by digging a hole and waiting for the en-
emy to fall in so the agent can run over top of the enemy
and continue along the path. As a side effect, any gold the
enemy may have picked up will be collected by this action.

Results
We ran Goldspinner numerous times with different parame-
ters to measure its efficiency. This section also shows, anec-
dotally, that Goldspinner generates interesting levels. A full
user evaluation, to see how many levels are actually “fun”,
is part of future work.

Figure 4: Here, the enemy must be trapped at least once.

Figure 4 shows a level where the enemy gets in the way
of the player and must be trapped at least once. This level

4We mostly followed KGoldrunner’s Traditional rule set. There
are features we did not implement, however, such as a rare case
preventing two enemies from ending up in the same cell.

also demonstrates the uncertainty that makes static analysis
difficult: will the enemy go left and get the gold, or not?
Where will the player need to trap the enemy?

Figure 5: Typical level, with lots of gold nuggets to pick up.

In Figure 5, a level generated from scratch in 5000 gen-
erations, there are many nuggets that must be picked up.
The gold nugget below and to the right of the hero must
be retrieved first, because the hero cannot get back to that
spot. The clique graph makes this immediately apparent to
the simulations, which always go for that nugget first.

Figure 6: Level generated from a “block of gold” base level.

Finally, the large block of gold in Figure 6 and its sur-
rounding bar, ladder, and brick were created by a human
designer (along with a few other features, including a hid-
den ladder on the right-hand side of the level). Goldspinner
took the base level and filled in more features, including an
enemy at the bottom, ending up with a solvable level that
very closely follows the structure of the original base level.

Performance. In order for an automatic level generation
system to be useful it must generate interesting levels in a
timely manner. This section shows that our system meets
this need. All of our performance tests were conducted using
one core of a 3.16GHz Intel Core 2 Duo processor running
Scientific Linux 6.1. Our system was developed in C++, and
was compiled with optimizations enabled (g++ -O2).

195



The following shows timing information with Goldspin-
ner starting from an empty base level:

Generations Percent solvable Generations
(1000 runs each) static dynamic per second
1000 76.50% 10.90% 822.91
2000 90.20% 31.70% 257.33
3000 92.90% 36.90% 141.31
4000 96.10% 44.20% 97.32
5000 97.10% 44.70% 71.25

“Percent solvable” refers to how many runs yielded a level
that was statically and dynamically solvable, respectively.

Running Goldspinner for more generations takes longer
but will generate more complex levels, and levels that are
more likely to be solvable. Goldspinner can be run multi-
ple times with a low number of generations and find a dy-
namically solvable level in a matter of seconds; or a smaller
number of instances can be run with more generations (like
5000), and a good level can be found in a few minutes. The
standard deviation on the runtimes is high, but Goldspinner
can be terminated at any point and it will print the best level
it has found so far. This is easily fast enough, especially if
parallelized, to generate a level while the player is playing a
previous level, meeting our definition of “real-time”.

The following shows timing information with Goldspin-
ner starting from different base levels, at 2000 generations
in each case:

Base level Percent solvable Generations
(400 runs each) static dynamic per second
1 ladder on right 99.75% 92.75% 63.06
1 hidden ladder 96.50% 92.25% 63.77
two ways 100.0% 73.50% 42.27
block of gold 100.0% 94.50% 33.36

If the initial base level is not dynamically solvable, Gold-
spinner takes a while to find a solvable variation and then
refine it from there. This is why “two ways”, the only base
which was not solvable, has a lower dynamic solvability
percentage. So a human level designer using Goldspinner
would get better results by supplying the program with a
solvable base level (as in Figure 6); if this is not done, how-
ever, Goldspinner can still find ways to generate good levels.

Conclusion and Future Work
We have described a two-part process for generating lev-
els for puzzle games that include a dynamic element. Our
technique employs a genetic algorithm that initially evalu-
ates static properties of the level. When the static proper-
ties of the level are sufficiently strong, additional resources
are invested and full simulations of the level are performed
using an AI player. This ensures that the generated level
is solvable (a property that cannot generally be guaranteed
from static analysis alone when dynamic game elements are
present) while also allowing other desirable static and dy-
namic properties to be considered.

We have applied this technique to KGoldrunner, a puz-
zle based game with dynamic elements such as enemies and
holes that refill over time. We have shown that our system
generates interesting, appropriately complex levels, and that

these levels are guaranteed to be solvable. Our performance
results have also shown that these levels are generated in a
reasonable amount of time, allowing a new level to be gen-
erated as the player works to complete the current level.

While Goldspinner currently generates interesting levels
of appropriate complexity, we believe it can be further im-
proved. Our current implementation gathers additional data
during simulations such as the time for completion and the
number of cells traversed, data that we do not use at present.
Feeding that into the evaluation function along with further
tuning could yield even more interesting levels.

Finally, we conjecture that our technique may be general-
ized to other games with dynamic elements.

References
Compton, K., and Mateas, M. 2006. Procedural level design for
platform games. In 2nd AIIDE, 109–111.
Hong, T.; Huang, K.; and Lin, W. 2002. Applying genetic algo-
rithms to game search trees. Soft Computing 6(3):277–283.
Jennings-Teats, M.; Smith, G.; and Wardrip-Fruin, N. 2010. Poly-
morph: A model for dynamic level generation. In 6th AIIDE, 138–
143.
Kimbrough, S.; Lu, M.; Wood, D.; and Wu, D. 2002. Explor-
ing a two-market genetic algorithm. In Genetic and Evolutionary
Computation Conference, 415–422.
Mawhorter, P., and Mateas, M. 2010. Procedural level generation
using occupancy-regulated extension. In IEEE CIG, 351–358.
Murase, Y.; Matsubara, H.; and Hiraga, Y. 1996. Automatic mak-
ing of Sokoban problems. PRICAI’96: Topics in Artificial Intelli-
gence 592–600.
Nygren, N.; Denzinger, J.; Stephenson, B.; and Aycock, J. 2011.
User-preference based automated level generation for platform
games. In IEEE CIG, 55–62.
Smith, G.; Treanor, M.; Whitehead, J.; and Mateas, M. 2009.
Rhythm-based level generation for 2D platformers. In 4th Int.
Conf. on Foundations of Digital Games, 175–182.
Smith, G.; Whitehead, J.; Mateas, M.; Treanor, M.; March, J.; and
Cha, M. 2011. Launchpad: A rhythm-based level generator for 2-
D platformers. IEEE Transactions on Computational Intelligence
and AI in Games 3(1):1–16.
Smith, D. E. 1983. Lode Runner. Brøderbund.
Sorenson, N., and Pasquier, P. 2010a. The evolution of fun: Au-
tomatic level design through challenge modeling. In 1st Int. Conf.
on Computational Creativity, 258–267.
Sorenson, N., and Pasquier, P. 2010b. Towards a generic frame-
work for automated video game level creation. Applications of
Evolutionary Computation 131–140.
Togelius, J.; Yannakakis, G. N.; Stanley, K. O.; and Browne, C.
2011. Search-based procedural content generation: A taxonomy
and survey. IEEE Transactions on Computational Intelligence and
AI in Games 3(3):172–186.
Viglietta, G. 2012. Gaming is a hard job, but someone has to
do it! In 6th International Conference on Fun with Algorithms.
Forthcoming.
Wadham, I., and Krüger, M. 2003. KGoldrunner.
<http://www.kde.org/applications/games/kgoldrunner/> Re-
trieved 29 Sept 2011.
Yannakakis, G., and Togelius, J. 2011. Experience-driven procedu-
ral content generation. IEEE Transactions on Affective Computing
2(3):147–161.

196




