
Statechart-Based AI in Practice

Christopher Dragert and Jörg Kienzle and Clark Verbrugge
McGill University

Montreal, QC, H3A 2A7, Canada
chris.dragert@mail.mcgill.ca

{joerg.kienzle, clark.verbrugge}@mcgill.ca

Abstract

Layered Statechart-based AI shows considerable
promise by being a highly modular, reusable,
and designer friendly approach to game AI. Here we
demonstrate the viability of this approach by replicating
the functionality of a full-featured and commercial-
scale behaviour tree AI within a non-commercial game
framework. As well as demonstrating that layered
Statecharts are both usable and amply expressive, our
experience highlights the value of several, previously
unidentified design considerations, such as sensor
patterns, the necessity of subsumption, and the utility of
orthogonal regions. These observations point towards
simplified, higher-level AI construction techniques that
can reduce the complexity of AI design and further
enhance reuse.

Introduction

As recently as GDC 2011, it was argued that the lack of be-
havioural modularity stymies the development of high qual-
ity AI (Dill 2011) for non-player characters (NPCs). Im-
provements to modularity and reusability tend to focus on
either game or engine specific properties, staying away from
general investigations at an architectural level. Moreover, lit-
tle attention has been paid to the actual development process
and how large-scale, complex AIs can be constructed using
a fundamentally modular approach.

In part, this follows from the proliferation of agent-based
AI architectures used for NPC AI. Since none are univer-
sally superior, a wide range of formalisms are employed
and studied. Historically, scripting approaches and various
finite-state machines (FSMs) have been used, but more re-
cently behaviour trees (Isla 2005) and goal-oriented action
planners (GOAP) (Orkin 2006) have emerged as viable op-
tions. All have drawbacks: behaviour trees have a funda-
mental difficulty in expressing common stimulus or event-
driven behaviours; scripting approaches tend to be game
specific; FSMs can become unmanageably complex due to
state-space explosion; and planners are notoriously fickle,
requiring encapsulation of basic knowledge as heuristics in
an effort to tease out intended behaviours.

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Recent work on Statechart-based AI (Kienzle, Denault,
and Vangheluwe 2007; Kolhoff 2008) offers significant im-
provements to the complexity problems encountered by
FSMs approaches. Through the use of substates, history
states, and orthogonal regions, transition proliferation is lim-
ited, while modular layering controls state density. At the
same time, full Statecharts are more portable and reusable
than FSMs or hierarchical FSMs, since the feature set is
consistent. Finally, the layered Statechart approach is fully
compatible with subsumption approaches. That being said,
Statecharts have not at this point been explored deeply by
the video game industry, with criticisms focusing on com-
prehensibility (Schwab 2008), the existence of only small
examples, and concerns as to scalability.

In this work we develop an extensive Statechart-based AI
model for a non-trivial and commercially relevant game AI,
derived from the behaviour tree implementation described
for the Halo series of computer games (Isla 2005). As well
as providing a practical demonstration that Statecharts have
sufficient and appropriate expressiveness for such a large-
scale and complex AI, our efforts reveal useful and interest-
ing design considerations. This includes the classification of
several behaviour patterns, best-practices for efficiency, as
well as an examination of the complexity of the resulting AI
model. Specific contributions include:
• The development of a non-trivial Statechart implementa-

tion of a commercially relevant computer game AI. Ours
is the first work in this area to present results based di-
rectly on using a full-scale AI design derived from a mod-
ern computer game, thereby demonstrating the suitability
of Statecharts to game AI design, while providing a prac-
tical and meaningful testbed for future work in the area.

• The classification of several modular behavioural patterns
for usage in AI development, along with the description of
several techniques that manage complexity and efficiency
of the constructed AI.

• A demonstration of how a variant of subsumption can be
used to limit Statechart complexity without increasing co-
ordination requirements.

Background and Related Work

In modern computer games, AI most frequently comes in
the form of reactive agents used to control NPCs such
that they exhibit behaviours relevant to the character’s role

136

Proceedings, The Eighth AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment

in the game context. This is referred to as computational
behaviour or computational intelligence. The focus is on
choosing behaviours either through arbitrary code expressed
via a custom scripting context (Onuczko et al. 2005), or
relatively simple tree or graph structures such as decision
trees. Abstract models such as FSMs are commonly used,
wherein events cause the NPC to exhibit behaviours based
upon the current state in the FSM (Fu and Houlette 2002;
Gill 2004). Hierarchical FSMs (HFSMs) are commonly em-
ployed in industry, encapsulating behavioural sub-tasks by
allowing states to contain substates with internal transitions.

Alternative computational intelligence models are found
in the robotics community where agent-based control is
commonplace (Wooldridge and Jennings 1995). The sub-
sumption architecture proposed by Brooks (Brooks 1986)
is highly influential, wherein low layers can express be-
haviours independent of higher layers. This allows for ba-
sic reactivity without involving high level reasoning. Impor-
tantly, subsumption techniques are not mutually exclusive
with HFSMs. It has been shown that when combined, hier-
archical subsumption architectures have significantly lower
representational complexity than behaviour trees, FSMs
and HFSMs, and pure subsumption architectures (Heckel,
Youngblood, and Ketkar 2010).

Our work adopts the formalism developed by Kienzle et
al. (Kienzle, Denault, and Vangheluwe 2007), who propose
an AI based on an abstract layering of Statecharts. The lay-
ered Statechart-based formalism describes a hybrid agent,
where a reactive agent is supplemented with limited mem-
ory. Each Statechart acts as a modular component by im-
plementing a single behavioural concern, such as sensing
the game state, memorizing data, making high-level deci-
sions, and so on. Due to the clear demarcation of duties, the
components are ideal for reuse, with techniques having been
developed for reuse specifically in a game context (Dragert,
Kienzle, and Verbrugge 2011; 2012). This work improves on
the original architecture through the introduction of a variant
of subsumption to manage state-space explosion and limit
state complexity.

Statecharts themselves generalize FSM and HFSM mod-
els. Transitions are of the form e[g]/a, where e is a triggering
event, g is a guard condition, and a is an action executed in
response. States can have substates, and transitions are pos-
sible from substates and enclosing states. Multiple transition
matches are resolved inside-out (i.e., child first). After leav-
ing a nested state, history states, denoted with an H , allow
for a return to the previous substate. Statecharts can have or-
thogonal regions, allowing for the Statechart to concurrently
be in a state in each orthogonal region, and to independently
make transitions within those regions.

Behaviour Trees and the Halo AI

Behaviour trees (BTs) recast HFSMs into a strictly hierar-
chical decision tree. While they clearly delineate how the
system selects behaviour, the strict hierarchy impairs reac-
tivity and lacks modal states that would encapsulate differ-
ent behaviour groupings. Recent advances, such as event-
driven and data-driven BTs improve efficiency (Champanard
2012), but sidestep reactivity issues through parallel nodes.

As the first popular commercial game to employ BTs, the
AI for the Halo trilogy was well received and highly publi-
cized (Isla 2005; Dyckhoff 2007; 2008). Many approaches
derive from the Halo implementation, with the AI for the
game Spore explicitly doing so (Hecker 2009). Halo is an
FPS game, where the player fights groups of aliens with the
help of an allied squadron. AI controlling the NPCs orga-
nizes behaviours under high-level functions: search, com-
bat, flight, self-preservation, and idle. Each of these contains
subtasks; combat, for instance, decides between grenade
use, charging, fighting, searching, and guarding. The tree for
Halo 2 has a maximum depth of four, with the bottom layer
consisting of leaf-nodes that execute concrete behaviours
and trigger corresponding animations. Nodes can be cross-
linked acyclically allowing a single behaviour to appear un-
der multiple nodes.

Designing the AI
The goals in developing a Statechart-based version of the
Halo AI were as follows: to capture the basic behaviour of
the reference AI without sacrificing key functionality, while
showing how reuse practices and modularity lead to a well-
constructed AI. The Halo AI was chosen due to its visibility
as an example of good AI design, and its success as a com-
mercial title. By developing a similar AI, we can credibly
conclude that layered Statecharts are capable of handling in-
dustrial scale AIs.

The model is divided into 8 layers: sensors, analyzers,
memorizers, strategic deciders, tactical deciders, executors,
coordinators, and actuators. Events originate at the sensors,
flowing up through the input layers to the strategic decider.
A high level goal is selected, then communicated down
through the output layers, ending up at the actuators which
issue commands causing the NPC to act. Every layer con-
tains one or more separate Statecharts that each manage a
specific aspect of behaviour. During the design process, it
was common to discover several isomorphic Statecharts at a
single layer. Using one as a pattern, it was possible to im-
plement other behaviours by event renaming, allowing for
modular reuse of a working behaviour. Since this was a sig-
nificant time saver during the design process, these patterns
are valuable as a contribution to others using this approach.

A key update to the layered Statechart approach was the
introduction of subsumption. Typical subsumption creates a
coordination problem when low level reactions conflict with
higher level behaviours. We avoid this by construction, never
allowing lower levels to enact behaviours without prior per-
mission. Instead, low level sensors and actuators communi-
cate information about the game-state to the output layers
in order to ‘preset’ the behaviour. For example, a Weapon-
Sensor would send information about the equipped weapon
to a tactical decider. When the high level goal to engage is
chosen, the CombatDecider has already been preset to either
melee or ranged combat, and immediately executes the ap-
propriate choice. Thus, tactical details are subsumed, lower
levels never take spontaneous action, and the need for coor-
dination is largely obviated.

The number of Statecharts in the model prevents a com-
plete exhibition; only the most interesting details are de-

137

health_normal

broadcastEvent(new ev_HealthNormal());

health_low

broadcastEvent(new ev_HealthLow());

ev_HealthChanged[health<low && health>critical]

ev_HealthChanged[health>normal]

health_critical

broadcastEvent(new ev_HealthCritical());

ev_HealthChanged[health<critical]

ev_HealthChanged[health<critical]

ev_HealthChanged[health>critical && health>normal]

ev_HealthChanged[health>normal]

Figure 1: The HealthSensor.

scribed herein. Interested parties are referred to the complete
set of models, freely available from http://gram.cs.mcgill.ca
for external examination and experimentation.

Input Layers

The sensors are responsible for transforming game events
and data into events used within the Statecharts. Sensors
were implemented as listeners for efficiency, rather than ac-
tively polling. Upon receiving a callback, Sensors generate
an event and pass it to the other Statecharts.

Of note, we found two Statechart patterns while creat-
ing sensors. The first we called a discretizing sensor, which
maps a continuous value to discrete events. The number of
states is equal to the number of discrete levels needed. Tran-
sitions between the states have guards constructed from de-
sired threshold values. The HealthSensor given in Fig. 1 is
an instance of a discretizing sensor with 3 states. Instead
of relying on guards, the ev HealthChanged event is gen-
erated internally in response to changes to health, thereby
preventing inefficient polling.

The second behavioural pattern was a sensor mapping in-
game events to AI events, creating a bridge between the
game and the AI. This was typically a state-independent
transformation, yielding a trivial Statechart with a single
state and no. We call these event-mapping sensors, and use
these as often as possible due to their overall efficiency.
However, in a case where event-mapping is state-dependent,
such as having on/off states, the event-mapping sensor can
be expanded to have a second state that does not generate
events, and appropriate transitions between.

Analyzers construct a high level view of the game-
state using sensed data as input. For example, a
ev PlayerSpotted event could be analyzed and result in
an ev EnemySpotted event, which could in turn result in an
ev EnemyInMeleeRange and so on. One pattern emerged
at this level, which we named the Binary Analyzer. An in-
stance is shown in Fig. 2, where the analyzer creates an event
for each nearby grenade, but does not give the all clear un-
til all grenades are out of range. After each unit is removed
from tracking, or the NPC moves, the binary analyzer enters
a state with two outbound transitions having mutually exclu-
sive guards, ensuring the condition is only checked when a

analyzing

no_grenades_near

grenade_near

ev_GrenadeThrown[inRange(grenade)]/
broadcastEvent(new ev_GrenadeNearby(grenade));
store(grenade)

ev_GrenadeThrown[inRange(grenade)]/
broadcastEvent(new ev_GrenadeNearby(grenade));
store(grenade)

check_store

ev_GrenadeExploded[inRange(grenade)]/
remove(grenade)

[store.empty]/
broadcastEvent(new ev_NoGrenadesNear())

[!store.empty]

ev_PositionChanged/updateStore()

Figure 2: The GrenadeProximityAnalyzer.

change is possible.

Strategic Decider

At the highest level of abstraction, our StrategicDecider uses
states to store current goals: changing states implies that a
new goal has been selected. This is communicated through
the creation of an event using the on-entry block of the state.
When a state is exited, an on-exit action creates a stop event
notifying downstream Statecharts that they should cease cur-
rent behaviours.

This approach proved very practical. Since lower level
Statecharts are aware of the current game-state through sub-
sumption, it is sufficient for the StrategicDecider to simply
give commands to lower levels, without having to deal with
unnecessary details. The Statechart itself looks nearly iden-
tical to the high-level approximation of the Halo AI given in
(Isla 2005). This means that our Statechart approach yields a
high level strategy that is visually explicit, free of complica-
tion, and nicely conforms to the original designer’s intuitive
understanding of what it ought to look like.

Output Layers

At this layer the effect of our limited subsumption becomes
clear. While the StrategicDecider could store enough infor-
mation to decide on a specific tactical strategy, this would
unnecessarily complicate its structure. Instead, tactical de-
ciders directly receive relevant sensor and analyzer data so
that their decisions are prepared in advance. This has the ad-
ditional effect of making tactical deciders more modular, in
that their logic is self-contained and readily comprehensible.
To demonstrate this, one of our most complex Statecharts,
the CombatDecider, is presented in Fig. 3. Events relating to
equipped weapons and ammo level come directly from the
WeaponSensor, while enemy location comes from the Ene-
myAnalyzer. Upon receiving an ev Engage event from the
Strategic Decider, the orthogonal region activity switch
enters the engaging state and permits activity, and immedi-
ately triggers an on-entry event in the main region. As new
relevant inputs are received, the CombatDecider is free to re-
visit its own tactical decisions, so long as the activity switch
remains on. This approach is only possible due to the orthog-
onal region—without it, the number of states would double

138

normal

attacker_nearbyev_EnemyInMeleeRange

ev_NoEnemyInMeleeRange

flee_all

broadcastEvent(new ev_FleeAll())
broadcastEvent(new ev_StopFleeAll...

ev_Flee

ev_StopFlee

flee_nearby

broadcastEvent(new ev_FleeNearby())
broadcastEvent(new ev_StopFleeNearby())

ev_Flee

ev_NoEnemyInMeleeRange

ev_StopFlee
ev_EnemyInMeleeRange

Figure 4: The FleeDecider.

as each state would have to have an active and non-active
version.

A fourth pattern was isolated at the tactical decider level,
the Priority Decider. These are used in the situation where
a tactic A is the default activity, but always prioritizes tac-
tic B when the triggering event is received. In Fig. 4, we
see how FleeAll is the default behaviour, but is superseded
by FleeNearby when an enemy is detected in melee range.
Upon abatement of the threat, the decider returns to default.

Coordinators solve potential conflicts between actions
and correct for changing conditions. Since subsumption
does not result in action without prior permission from
the StrategicDecider, there are no inter-layer conflicts to
resolve. Instead, the only coordinator automatically trans-
forms move actions into vehicle movements if the NPC
is driving, or run movements otherwise, simplifying move
events at higher levels. It also uses a movement cool down
timer to prevent movement oscillation in corner cases.

While most actuators trivially receive events and execute
actions, one new pattern emerged. Similar to exceptions in
code, actions can fail for a variety of reasons, e.g., trying
to pick up an item that has just been picked up by another
player. When these failures are relevant to the AI, it is useful
to have the actuator itself track the results of an event and
produce appropriate feedback. We call actuators of this type
Feedback Actuators. Upon creating a move action, the feed-
back MoveActuator show in Fig. 5 can receive a callback
event after executing its pathfind(target) call and react
accordingly. For instance, if a move fails because a new ob-
stacle has appeared, a reasonable course of action is to retry
and allow the pathfinder to calculate a new path around the
new roadblock; usage of a feedback actuator allows this. On
the other hand, if the failure is due to no path existing, higher
levels may wish to change behaviours. This is signalled by
having the sensing portion of the feedback actuator create an
ev MoveFailed event, notifying higher levels that a new des-
tination should be determined, or a new behaviour chosen.

Key Features

In the various publications and presentations regarding the
Halo AI, several key features were highlighted. These in-
cluded a technique enabling efficient event reaction and a
method to customize behaviours for individual NPCs. In the
conversion to the layered Statechart formalism, it was im-
portant to ensure that none of this functionality was lost.

ready

moving

pathing

pathfind(target)

ev_PathBlocked/
broadcastEvent
(new ev_MoveFailed());

new_obstacle

ev_ObstacleSpotted ev_PathBlocked

ev_Move

[destinationReached()]/
broadcastEvent(new ev_MoveSuccessful());

[moveFailed()]/
broadcastEvent
(new ev_MoveFailed())

Figure 5: The feedback MoveActuator.

Stimulus Behaviours

The Halo AI attempted to enable reactive behaviours by the
creation of stimulus behaviours. The framework used a stim-
ulus system that received events from the game at-large,
and reacted by inserting special stimulus nodes into the be-
haviour tree at run-time. Upon the next execution through
the tree, the new stimulus behaviour would run as expected.
The insertion point of a node was carefully chosen, so that
it respected the decision making process of the tree without
overriding higher level behaviours that may potentially su-
persede the inserted behaviour. While this provided the abil-
ity to react to rare events without repeatedly checking for a
condition, it came at the price of making the behaviour tree
less understandable by obscuring behaviours.

Fitting an event-based reaction into a Statechart-based ap-
proach is trivial. This can be done by adding a Statechart
that reacts to the event in question and produces an output
that triggers the appropriate higher level Statechart. The ex-
ample of a stimulus behaviour in Halo was for the AI to flee
if their leader was killed. Our Statechart approach accom-
plishes this by adding a new analyzer to check if the player
involved in an ev PlayerKilled event was actually their
leader. If so, it reacts by sending a special ev LowMorale
event to trigger fleeing behaviour at the StrategicDecider.
The AI behaviour is clear at all times since dynamic be-
haviour modification is not required. As well, the new be-
haviour is modularized, with all operations related to leader
tracking stored in one location, making it straightforward to
comprehend.

Behaviour Masks

Halo employs a shared static structure for the behaviour tree
which effectively limits memory usage, but this comes with
a downside: using a single data structure prevents each char-
acter from having their own customized AI. While this can
be tempered by clever design, for example by having char-
acters that wield ranged weapons travel down a different

139

deciding

vehicle

 if (in deciding.activity_switch.engaging){ broadcastEvent(new ev_VehicleCombat());}

ev_Engage

nonVehicle

unarmed

ranged

 if (in deciding.activity_switch.engaging){ broadcastEvent(new ev_RangedCombat());}

ev_RangedWeaponEquipped

melee

 if (in deciding.activity_switch.engaging){ broadcastEvent(new ev_MeleeCombat());}

ev_MeleeWeaponEquipped

ev_MeleeWeaponEquipped

ev_EnemyInMeleeRange ev_RangedWeaponEquipped
ev_OutOfAmmo

ev_NoEnemyInMeleeRange[npc.current
Weapon.isType("ranged")]

ev_VehicleExited

ev_VehicleBoarded

ev_Engage

config

engaging

idle

broadcastEvent(new ev_StopCombat())

ev_Engage
ev_StopEngage

activity_switchconfig activity_switch

Figure 3: The CombatDecider.

branch of the behaviour tree than those with melee weapons,
the problem remains that all AI characters use the same be-
haviour tree.

Halo 2 addressed this through styles. They provide cus-
tomization for characters by providing a list of disallowed
behaviours, effectively pruning branches from the behaviour
tree. This evolved into behaviour masks in Halo 3, which
gave designers the choice between 3 sets of disallowed be-
haviours, resulting in NPCs that were normal, aggressive,
or timid. An aggressive behaviour mask, for example, dis-
allows the branches of the behaviour tree concerned with
fleeing and taking cover.

In our layered Statechart-based approach, the situation is
not as simple as trimming branches, since decision making
and reaction to events is distributed across modules. Regard-
less, if a module does not receive a triggering event, no be-
haviour will occur. Two approaches exist: filter events, or
entirely ignore the generating Statechart. Implementation-
wise, the Statechart approach can also employ a shared static
structure, with the current state of each Statechart with re-
spect to an NPC stored in the NPC. By setting this to 0, it
can be communicated to the Statechart executor that NPC is
not using the referenced Statechart, causing that Statechart
to be skipped when processing events.

Ignoring entire Statecharts has the disadvantage of being
relatively coarse-grained—a Statechart may produce more
than one event, and so ignoring the Statechart may affect
multiple downstream behaviours. Individual event filtering
gives more fine-grained control, but suffers from larger stor-
age requirements as well as additional computational costs
in verifying individual events. Statechart behaviours that are
fully filtered may also be a source of redundant computa-
tion. In our design we are able to exclusively make use of
Statechart removal to customize individual behaviours, re-
lying on use of small and relatively modular Statecharts to

achieve sufficient granularity.

Validation
The Statechart model we have created is based on infor-
mation made available through various presentations on the
Halo AI. This approach was chosen to ensure our work could
be used outside of any proprietary context, but has the dis-
advantage that the public description is incomplete, and so
our efforts represents our best approximation of what we in-
terpret the full AI to be. Moreover, our modelling work did
not involve the creating or coding of various algorithms in-
voked in the AI, such as target selection, pathfinding, or de-
termining cover, and this limits our ability to validate that
our Statechart AI is a complete and faithful reproduction of
the original behaviours.

Validation took place at two levels of abstraction. First,
the model was analyzed to determine the effectives of the
approach at the design level. Secondly, the AI was imple-
mented to verify correctness of the logic in the Statecharts,
as well as to learn how the model functions in practice.

The Model

Part of the motivation of using Statecharts was to reduce the
complexity of the representation. This is born out by a sta-
tistical analysis of the resulting system. In total, there were
48 Statecharts, containing an average of 4.00 states and 6.08
transitions. Only 5 Statecharts had 10 or more states (the
largest was the ThreatAnalyzer with 13), but all of these had
orthogonal regions in the state at the top of the hierarchy.
These regions can be separated into independent Statecharts,
and if this was done, the averages drop to 3.28 states with
5.18 transitions. While the overall number of Statecharts is
high for such a complex AI, each Statechart is small enough
to be easily understood. The StrategicDecider, for instance,
is only 8 states with 12 transitions, a comprehensible size.

140

The presented Statechart patterns proved useful. The
quantizing sensor appeared twice, binary analyzers were
employed three times, feedback actuators were used twice,
event-mapping sensors were needed four times, and priority
deciders were used twice. This accounts for 13 Statecharts,
meaning that 28% of the Statecharts were pattern instances,
varying only in state and event names.

Implementation

The AI was implemented in Mammoth (Kienzle et al. 2009),
a highly extensible research framework for MMOs. While
Mammoth lacks many features now common to AIs in FPS
games, such as cover maps and navigation meshes, this im-
plementation was sufficient to test core functionality of the
AI, demonstrating that the various Statecharts operated cor-
rectly in both their individual and collective roles.

Our implementation also allowed for practical verifica-
tion of potential performance concerns. For example, since
the design is modular, event profligacy is a concern. Event
generation was thus examined by looking at the number of
events potentially generated in response to various inputs.
The maximum number of events was 14, assuming that ev-
ery guard evaluated to true and that every Statechart involved
was in the appropriate state to react to an event thereby con-
tinuing the chain reaction. While this worst case is high, the
number of events generated in practice was quite low. Af-
ter several short executions of the AI, the AI generated a
mean of only 0.3 events per execution pass, while the me-
dian number of events in a single pass was zero. Aside from
the occasional burst of 5-10 events, event generation was
quite limited and did not cause a significant overhead.

Conclusions and Future Work

In performing this research several interesting properties of
the layered Statechart-based approach emerged. Of imme-
diate utility are the Statechart patterns, which can easily be
adopted into a variety of FSM approaches, or generated au-
tomatically through tool support. The value of modified sub-
sumption in managing complexity was also clear. The size of
the resulting Statecharts was small enough to be easily com-
prehended, due in large part to the simplification of high
level Statecharts. The use of orthogonal states also proved
to be a valuable tool in preventing combinatorial explosion
of states, noteworthy because this technique is not a part of
standard hierarchical finite state machines, and allows for
the specialized activity switch.

In addition, this research demonstrates for the first time
that a large-scale, complex game AI can be modelled using
the layered Statechart-based formalism.

Future work will focus on analysis and testing of our con-
structed models, for which the existence of a non-trivial and
realistic game AI is essential in order to demonstrate practi-
cal value, as well as for guiding the design of accompanying
analysis and verification tools.

Acknowledgements

The authors would like to thank the Natural Sciences and
Engineering Research Council of Canada for its support.

References
Brooks, R. 1986. A robust layered control system for a mobile
robot. Robotics and Automation, IEEE Journal of 2(1):14 – 23.
Champanard, A. 2012. Understanding the second-generation
of behavior trees. http://aigamedev.com/insider/tutorial/second-
generation-bt/.
Dill, K. 2011. GDC: Turing tantrums: AI developers
rant. http://www.gdcvault.com/play/1014586/Turing-Tantrums-
AI-Developers-Rant.
Dragert, C.; Kienzle, J.; and Verbrugge, C. 2011. Toward high-
level reuse of statechart-based AI in computer games. In Proceed-
ings of the 1st International Workshop on Games and Software En-
gineering, GAS ’11, 25–28.
Dragert, C.; Kienzle, J.; and Verbrugge, C. 2012. Reusable compo-
nents for artificial intelligence in computer games. In Proceedings
of the 2nd International Workshop on Games and Software Engi-
neering, GAS ’12, 35–41.
Dyckhoff, M. 2007. Evolving Halo’s behaviour tree AI. Presenta-
tion at the Game Developer’s Conference.
Dyckhoff, M. 2008. Decision making and knowledge representa-
tion in Halo 3. Presentation at the Game Developers Conference.
Fu, D., and Houlette, R. T. 2002. Putting AI in entertainment:
An AI authoring tool for simulation and games. IEEE Intelligent
Systems 17(4):81–84.
Gill, S. 2004. Visual Finite State Machine AI Systems. Gamasutra:
http://www.gamasutra.com/features/20041118/gill-01.shtml.
Heckel, F. W. P.; Youngblood, G. M.; and Ketkar, N. S. 2010. Rep-
resentational complexity of reactive agents. In 2010 IEEE Sympo-
sium on Computational Intelligence and Games (CIG), 257–264.
Hecker, C. 2009. My liner notes for spore/spore behavior
tree docs. http://chrishecker.com/My liner notes for spore/Spore
Behavior Tree Docs.
Isla, D. 2005. Handling complexity in the Halo 2 AI. Presentation
at the Game Developers Conference.
Kienzle, J.; Verbrugge, C.; Kemme, B.; Denault, A.; and Hawker,
M. 2009. Mammoth: A Massively Multiplayer Game Research
Framework. In 4th International Conference on the Foundations of
Digital Games (ICFDG), 308 – 315. New York, NY, USA: ACM.
Kienzle, J.; Denault, A.; and Vangheluwe, H. 2007. Model-based
design of computer-controlled game character behavior. In MOD-
ELS, volume 4735 of LNCS. Springer. 650–665.
Kolhoff, P. 2008. Level up for finite state machines: An interpreter
for statecharts. In Rabin, S., ed., AI Game Programming Wisdom
4. Charles River Media. 317–332.
Onuczko, C.; Cutumisu, M.; Szafron, D.; Schaeffer, J.; Mc-
Naughton, M.; Roy, T.; Waugh, K.; Carbonaro, M.; and Siegel, J.
2005. A Pattern Catalog For Computer Role Playing Games. In
Game-On-NA 2005, 33 – 38. Eurosis.
Orkin, J. 2006. Three states and a plan: The AI of F.E.A.R. In
Proceedings of the Game Developer’s Conference (GDC).
Schwab, B. 2008. Implementation walkthrough of a homegrown
“abtract state machine” style system in a commercial sports game.
In in Proceedings of the Fourth Artificial Intelligence and Interac-
tive Digital Entertainment Conference, 145–148.
Wooldridge, M., and Jennings, N. 1995. Agent theories, architec-
tures, and languages: A survey. In Wooldridge, M., and Jennings,
N., eds., Intelligent Agents, volume 890 of Lecture Notes in Com-
puter Science. Springer Berlin / Heidelberg. 1–39.

141

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

