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Abstract

We present POMCoP, a system for online planning in collab-
orative domains that reasons about how its actions will af-
fect its understanding of human intentions, and demonstrate
its use in building sidekicks for cooperative games. POM-
CoP plans in belief space. It explicitly represents its uncer-
tainty about the intentions of its human ally, and plans actions
which reveal those intentions or hedge against its uncertainty.
This allows POMCoP to reason about the usefulness of in-
corporating information gathering actions into its plans, such
as asking questions, or simply waiting to let humans reveal
their intentions. We demonstrate POMCoP by constructing
a sidekick for a cooperative pursuit game, and evaluate its
effectiveness relative to MDP-based techniques that plan in
state space, rather than belief space.

Introduction

Digital games often feature computer controlled sidekicks or
allies that the player must closely collaborate with to achieve
their goals. Because players spend more time in contact
with these non-player characters (NPCs) than with typical
NPCs, and because coordinating with them is often crucial
to progression in the game, their behavioral systems have a
strong impact on a player’s gameplay experience, for better
or worse. The controllers for these NPCs are generally care-
fully crafted behavior trees (Isla 2005) or hierarchical finite
state machines. Building these systems burdens designers
and programmers with the difficult task of anticipating the
possible situations in which an NPC may find itself in order
to specify its response.

Alternatively, some games have used automatic planning
techniques such as goal oriented action planning (Orkin
2004) or hierarchical task networks (Straatman, Verweij,
and Champandard 2009) to automatically generate con-
trollers and relieve some of the development burden on pro-
grammers and designers. Recently researchers have also
proposed modeling games as Markov decision processes
(MDPs) and using a combination of MDP solvers and Bayes
filters to construct controllers that infer human intentions
from observing their actions and act to support those inten-
tions (Ngyuen et al. 2011).
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We present a new method, called partially observable
Monte-Carlo cooperative planning (POMCoP), for creating
NPC sidekicks that can reason about how their actions affect
their knowledge about the intentions of a human collabora-
tor. For instance, a POMCoP sidekick may plan to ask the
human directly about his or her intentions if it is confused,
or plan to take actions which hedge against its uncertainty
about a player’s goals. POMCoP achieves this by planning
directly in belief space, which is the space of probability dis-
tributions over possible configurations of the world, includ-
ing unobservable elements such as human intentions. Plan-
ning in belief space entails reasoning about how an agent’s
actions will change its own beliefs. This approach contrasts
with state space planning approaches, which assume that the
world’s dynamics are known and its state is completely ob-
servable, and so do not take into account how actions can
reveal information about the world.

POMCoP models its world as a partially observable
Markov decision process (POMDP), a decision theoretic
model in which agents have only indirect access, through
their observations, to the true state of the world. This nat-
urally models collaboration with humans, since their inten-
tions can never be directly observed in the game state and
must be inferred through interaction and observation.

POMDPs are challenging models to work with, since, in
general, finding a controller to solve them optimally for
fixed time horizons is PSPACE-complete or undecidable
in the infinite horizon case (Madani, Hanks, and Condon
1999). This intractability stems from the dual problems of
belief space being continuous and planning based on search
methods having to contend with a tree of action-observation
histories that grows exponentially with the planning horizon.

To address these challenges, POMCoP plans using par-
tially observable Monte-Carlo planning (POMCP) (Silver
and Veness 2010). POMCP is based on online tree search
techniques that perform well in domains with large state
spaces and high branching factors, such as Go. The scal-
ability of its tree search allows it to cope well with large
state spaces that would be intractable for POMDP tech-
niques using full-width solution algorithms, such as value
iteration (Kaelbling, Littman, and Cassandra 1995), and is
competitive with offline point-based POMDP solvers such
as SARSOP, which can find approximately optimal plans for
domains with thousands of states (Kurniawati, Hsu, and Lee
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2008).
POMCP requires a black-box simulator of the POMDP

that it is solving. This paper demonstrates through a running
example how a multi-agent Markov decision process model,
combined with a range of models of human behavior, can be
used to construct such a simulator. These elements together
with a POMCP solver constitute the POMCoP framework.
After discussing each element we present results on the per-
formance of a POMCoP controller on a collaborative game,
comparing it to other MDP-based planning approaches and
to planners with restricted communication.

Related Work
An effective sidekick NPC should understand a human’s
goals in order to help achieve them. Inferring human goals
from observing game actions has been a topic of growing
interest in game AI research. Researchers have recently pro-
posed methods including Markov Logic Networks (Ha et
al. 2011), Bayesian Programs (Synnaeve and Bessire 2011),
and inverse planning using MDP solutions and Bayes fil-
ters (Ngyuen et al. 2011). The latter approach has also been
proposed by cognitive scientists as a model for plan recogni-
tion in humans (Ullman et al. 2010). POMCoP goes further
by planning actions that help a sidekick to actively gain more
information about their human collaborator’s intentions.

The CAPIR framework for producing NPC sidekick con-
trollers is closely related to POMCoP (Ngyuen et al. 2011).
CAPIR decomposes a game into MDPs that model the sub-
tasks that a human may be trying to accomplish within the
game world and uses the value iteration algorithm to com-
pute the expected cumulative reward of states within those
MDPs. It then estimates which subtask the human is work-
ing on using a Bayes filter derived from assigning likeli-
hoods to actions in proportion to these expected rewards,
along with a probabilistic model of subtask switching. It
selects its actions according to the QMDP rule, which es-
timates the expected values of actions based on its cur-
rent belief, the expected rewards computed, and an assump-
tion that all uncertainty will be gone on the following time
step (Littman, Cassandra, and Kaelbling 1995). However,
because of this assumption, and unlike POMCoP, the CAPIR
will never select an action to gain more information.

Fern et al. proposed a similar framework which lacked
the subtask switching model and used approximate solution
methods to scale beyond problems for which value iteration
was intractable (Fern et al. 2007). This approach has also
been demonstrated in a practical development setting in the
game Dearth, developed by Singapore-MIT GAMBIT Game
Lab (http://gambit.mit.edu/loadgame/dearth.php).

In their work on ad hoc teamwork, Barrett, Stone, and
Kraus proposed an agent architecture that used a fixed set
of models of teammate behaviors to generate action likeli-
hoods for a range of possible teammate types. These were
then used in a Bayes filter to allow an agent to infer its team-
mate’s type from observed behavior (Barrett, Stone, and
Kraus 2011). The agent then took the best response move for
that teammate type based on expected rewards computed ei-
ther using value iteration or UCT search on the tree of state-
action histories (Kocsis and Szepsvari 2006). POMCoP uses

a similar strategy, including a range of possible human mod-
els as a part of its problem formulation and using tree search
techniques for planning, but uses observations rather than
states in its histories, which allows it to account for unob-
served state variables in its plans.

Broz, Nourbaksh, and Simmons presented a POMDP
framework for planning in socially situated tasks that for-
mulated the transition function of their POMDP represen-
tation as a composite of environment and agent dynamics
in a similar manner to POMCoP and additionally tuned the
parameters of their human models using recorded human
data (Broz, Nourbakhsh, and Simmons 2011). They demon-
strated their approach on a driving task that was not strictly
cooperative, in contrast to POMCoP, but which discouraged
overt adversarial behavior.

The Cops and Robbers Game
To motivate POMCoP for building NPC sidekicks we intro-
duce the Cops and Robbers game. In Cops and Robbers,
the player and their NPC sidekick are cops, chasing robbers
who are fleeing from them through the corridors of a build-
ing full of twisting passages and one-way doors. The object
of the game is to catch any one of the robbers as quickly as
possible, but it takes two cops to overpower a robber, so the
player and their sidekick must coordinate to corner a rob-
ber and catch them. The presence of one-way doors means
players have to be careful about the routes they take or they
could find themselves wasting a lot of time.

The play field, shown in Figure 1, is top down, with the
positions of all of the cops and robbers fully visible. A key
strategy for the game is to cut off robbers’ escape routes so
that the two cops can trap them. To help coordinate this,
the sidekick is allowed to ask the player which robber they
should aim for, but doing so spends a turn for the sidekick to
ask and for the human to respond.

Figure 1: The Cops and Robbers play field. The human is
in the top right, the sidekick is in the bottom left. Chevrons
indicate the direction of one-way doors.

From the perspective of the sidekick, the game state is
fully observable, with the exception of the human’s inten-
tions which it cannot directly observe. The player and their
sidekick take turns moving, with the robbers moving after
the sidekick in the direction that takes them furthest from
the nearest cop, breaking ties randomly. If the player and
the sidekick catch a robber within 100 turns they win, scor-
ing one point for each remaining turn, if not they lose.
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POMCoP requires a black-box simulator of Cops and
Robbers played from the perspective of the sidekick in or-
der to use the POMCP algorithm for planning. This simula-
tor must take an action from the sidekick and a state of the
world, including any unobserved state variables, and pro-
duce a successor state, reward signal, and an observation
generated from that successor state.

We will describe the construction of this simulator in
two steps. First we will formulate Cops and Robbers as
a multi-agent Markov decision process (MAMDP), which
models the general dynamics of the game. We will then de-
scribe how to formulate Cops and Robbers as a single-agent
POMDP, which models the game played from the perspec-
tive of the sidekick playing with a human partner whose in-
tentions it cannot directly observe, and over whose actions it
has no direct control. The POMDP will make use of human
models, described later, to produce actions for the human to
play in the previously constructed MAMDP. Figure 2 shows
the structure of the simulator.

POMDP

MAMDP
...πθ1

πθns, as

s’

ah s’’, r, o’’s’’

1.
2.

3. 4. 5.

Figure 2: The structure of the black-box simulator. 1. The
simulator is passed a state s and sidekick action as. 2. The
MAMDP dynamics update the state to s′ = T (s, as) 3. The
human model πθ for human type θ in s′ selects the human
action ah = πθ(s

′). 4. The MAMDP dynamics update the
state to s′′ = T (s′, ah). 5. The POMDP observation dy-
namics and reward signal produce o′′ and r, returning them
with the successor state s′′.

Cops and Robbers as a Multi-Agent MDP

The first step in constructing a simulator for POMCoP is
to formulate the game as a MAMDP. In the specific case
of Cops and Robbers this formulation is slightly awkward
because the dynamics are largely deterministic, aside from
some stochasticity in the movement of the robbers. How-
ever, performing this formulation will demonstrate the gen-
eral POMCoP approach and also motivate some of the ele-
ments of the POMDP that we will soon be formulating.

The Cops and Robbers MAMDP consists of a tuple
〈S,A, T ,R, T 〉, in which

• S is the set of game states. A state s ∈ S consists of
the locations of each of the cops and robbers and the turn
number.

• An action a ∈ A is a movement in one of the cardinal di-
rections, a pass, or communication. The sidekick can ask
for the human’s target and the human can reply. For clar-
ity we will use ah and as to refer to human and sidekick
actions respectively.

• The transition function T (s, a, s′) = Pr(s′|s, a) is the
probability that performing a in state s will lead to state
s′ on the next turn. In Cops and Robbers the human and

sidekick move deterministically. Robbers move to the fur-
thest space away from any cop within 3 spaces, breaking
ties uniformly at random. Locations containing one-way
doors can only be entered from the direction in which the
door opens. As mentioned above, the human and the side-
kick take alternating turns.

• R(s, a, s′) is the immediate reward received by both play-
ers after transitioning to s′ from s by performing a. In
Cops and Robbers all moves receive 0 reward, except if
they result in both cops standing on a robber, when the
reward is 100− t, where t is the number of turns that have
been taken in the game.

• T is the horizon, i.e. maximum number of turns in the
game, in this case 100.

A plan for acting in an MDP is a policy, π, which se-
lects an action conditioned on the current state. The value
function for π is V π(sn) = E

[∑T
t=nR(st, π(st), st+1)

]
,

which gives the expected cumulative reward for starting in
sn and acting according to π. Given a starting state s0,
the goal of planning in MDPs is to find the optimal policy
π∗ = argmax

π
V π(s0). This can be found exactly using the

value iteration or policy iteration algorithms, but both algo-
rithms scale exponentially with the number of state variables
in the MDP.

The Sidekick’s Perspective: Cops and Robbers

as a Single Agent POMDP

The Cops and Robbers MAMDP describes a two player
game, but when playing with a human it becomes a single-
player game from the sidekick’s perspective, since it has
no direct control over the player’s actions. A POMDP
is a generalization of an MDP to partially observable do-
mains, where rather than directly observing the state of
the world an agent instead receives observations through
its sensors, from which it must then infer the underly-
ing state of the world. This reorientation can be for-
malized as a single-agent POMDP described by the tuple
〈θ,Πθ,S,A, T ,R,O, O, T, b0〉, where

• θ is the set of possible human types. In Cops and Robbers
a type θ ∈ θ represents an intent to pursue a particular
robber, with one type for each robber.

• Πθ is a set of stochastic policies representing the behav-
iors for each human type. A policy πθ ∈ Πθ is a non-
deterministic decision rule that selects an action ah given
that the game is in state s. In Cops and Robbers each
πθ corresponds to a plan for pursuing robbers for humans
of type θ. We will discuss methods for generating these
policies later.

• A state s ∈ S comprises not just the location of each of
the cops and robbers and the turn number, but also un-
observable type of the human, θ. In a POMDP the state
is not directly observable by the agents within it. Instead
they receive observations conditioned on the state.

• A in this case is the sidekick actions from the MAMDP.
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• T for Cops and Robbers is formed from the un-
derlying MAMDP’s transition function by chaining
it with the human policy, i.e. T (s, a, s′′) =∑

s′ Pr(s
′|s, a) Pr(s′′|s′, πθ(s

′)).
• R in Cops and Robbers is 50−t in a terminal state, as each

time step in the POMDP is two turns in the MAMDP.

• O is the set of observations that the sidekick can receive
from the game. In Cops and Robbers an observation is
a vector of the actions taken by the cops and the robbers
since the sidekick’s last action. These actions are move-
ments in each of the cardinal directions, passing, or com-
municating. Note that although Robbers can select ac-
tions non-deterministically in Cops and Robbers, the out-
comes of their actions are always deterministic, so it is
possible to reconstruct the current positions of each entity
in the game from their starting locations and a history of
observations.

• O(s, s′, o) = Pr(o|s, s′) is the probability that the side-
kick will receive observation o given that the previous
state of the game was s and the current state is s′. For
Cops and Robbers O is deterministic, with Pr(o|s, s′) =
1 iff o is the vector of actions that when taken in s results
in s′ according to the game’s deterministic dynamics.

• The horizon T is 50, since the number of turns is halved
as discussed previously.

• The initial belief b0 = Pr(s0) is a prior distribution over
the possible starting states of the game. In Cops and Rob-
bers the game begins with each of the cops and robbers
in known starting locations, so b0 is a uniform distribu-
tion over the states with this initial configuration, i.e. with
only θ varying across the states in the distribution.

In planning using the simulator, POMCoP will using of
histories and beliefs. A history in a POMDP is a sequence
of actions and observations ht = 〈a1, o1, ..., at, ot〉. A be-
lief bt at time t is the distribution bt(s) = Pr(s|ht). This
represents the sidekick’s belief about the true world state, in
particular the human’s intent θ, given the actions taken and
observations received by the sidekick up to that point.

The goal of planning in a POMDP is to find a pol-
icy π that selects actions based on the agent’s cur-
rent belief to maximize the value function V π(b0) =

E

[∑T
t=0R(st, π(bt), st+1)

]
.

POMCP

Having formulated our multiplayer game as a single-agent
POMDP we can now build a sidekick controller by solving
the POMDP. Since finding an optimal policy for a POMDP
the size of Cops and Robbers using exact methods is in-
tractable, we instead approximate optimal behavior by using
the POMCP algorithm to select actions (Silver and Veness
2010). POMCP performs UCT search on the tree of action-
observation histories rooted at the sidekick’s current history,
generated via Monte-Carlo simulation using the simulator.
The rewards accrued during a given simulation are used to
bias future searches towards promising parts of the search
space. Aside from the simulator, it requires specifying a tree

policy, used for trading off exploration and exploitation in
its search and a rollout policy used for exploratory search.
After taking actions in the game, POMCP uses a particle fil-
ter to updates its belief over the hidden states of the world
based on the observations it receives.

POMCP is an online algorithm which is guaranteed to
converge to the optimal policy given sufficient simulations.
In practice, there is a tradeoff between the runtime cost of
running more simulations and the quality of the actions pro-
duced. The horizon of the optimal plan also affects the num-
ber of simulations required to produce high quality actions.

Human Models

Constructing POMCoP’s black-box simulator requires the
human types θ and policies Πθ , which serve as human mod-
els. As previously discussed, the POMDP’s transition func-
tion depends on the human models, because it is formed by
chaining together the MAMDP’s transition model with the
human model’s actions. In principle a human model could
be any arbitrary policy, and in the worst case we might not
know what a reasonable human policy would be.

For Cops and Robbers we implemented two human mod-
els, which represent a human who has some target robber
in mind and moves by the shortest path towards their tar-
get, relying on the sidekick to react to their actions appropri-
ately. We implemented this behavior using both A* search
and simple Manhattan distance minimization.

In general, the problem of constructing a human model is
challenging, particularly for domains where human strate-
gies are unpredictable. One possible option would be to
learn a model from observed human data, either online (Bar-
rett, Stone, and Kraus 2011) or offline (Tastan and Suk-
thankar 2012; Orkin 2008; Broz, Nourbakhsh, and Simmons
2011). Alternatively a human could be modeled as a noisy
optimal solver for an MDP or POMDP formulation of the
game, assuming such policies could could be tractably found
or approximated. We are currently investigating methods for
generating human models automatically by using statistics
from the POMCP search to estimate an optimal policy, pa-
rameterized only by a reward signal.

Evaluation

To evaluate our framework we built a POMCoP controller
for the Cops and Robbers game and tested its performance
on a range of different maps, in which to perform well it is
critical for a sidekick to reason about how its actions will af-
fect its own beliefs. We compared its performance against a
state space planner inspired by CAPIR. For evaluation pur-
poses we paired each planner with a simulated human that
took the myopic strategy of choosing a robber to pursue
and using A* to select actions with 10% noise. The simu-
lated human also answered questions about its intended tar-
get with 10% noise, and never changed targets.

We implemented two versions of the POMCoP planner;
one which was allowed to take communication actions and
one which was not. In Cops and Robbers a player’s response
to a communication actions can disambiguate the player’s
goal completely, meaning that communication actions act as
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a noisy oracle for the player’s goal. Disallowing communi-
cation actions allowed us to more clearly see the effect of
hedging actions, such as strategically passing to wait for the
human’s actions to reveal more about their goal.

Our communicative POMCoP planner used a simulator
constructed as described previously. We tested the com-
municative planner with two different human models types,
a set of A* models and a set of Manhattan distance min-
imizing models, each parameterized by the robber they
were chasing. The models responded truthfully to side-
kick queries and took greedy actions with respect to their
heuristics 70% of the time and responded noisily or chose
actions uniformly at random 30% of the time. The non-
communicative planner also used a set of A* models.

To give real-time responses for the sidekick, our imple-
mentation of POMCP used 50,000 simulations for each side-
kick turn, resulting in actions being selected by POMCoP
in under 2 seconds of wall clock time. One possible direc-
tion for improving the performance of POMCoP would be
to split the POMCP searches into an ensemble run across
multiple cores using root parallelization, which has been
shown to be an effective parallelization strategy for UCT
search across a range of domains (Fern and Lewis 2011).
For POMCP’s tree policy we used the standard UCB-1 rule
with an empirically chosen exploration constant of c = 100.
For its rollout policy we used a policy that selected randomly
from the sidekick’s legal actions, with a bias towards actions
resulting in a decrease in the Manhattan distance between
the sidekick and the target for the human model in the state.

As a point of comparison we built a QMDP planner, in-
spired by CAPIR and other MDP value iteration methods,
that planned in state space and used a Bayes filter to track
its belief. Our QMDP planner decomposed the game into
MAMDPs modeling the subtasks of catching each robber
individually then used offline value iteration to solve for
the joint policies of these subtask MAMDPs. Using the
human halves of the joint policies it then formed single-
player MDPs from each subtask MAMDP by chaining the
human’s half of the joint policy, with 10% noise introduced,
to the MDP’s transition function. It then used value iter-
ation again to find an optimal policy for interacting with
the resulting close-to-optimal, but noisy, human model. At
runtime the planner maintained a belief about the human’s
goal using a Bayes filter on action likelihoods derived from
the value function of the human’s half of the joint policies
and used the QMDP rule to select the best action as de-
scribed for other value iteration methods (Fern et al. 2007;
Ngyuen et al. 2011). Unlike CAPIR this planner did not
attempt to model goal switching.

Figure 3 shows the maps used for our evaluation. Each
map emphasized the importance of planning with respect to
beliefs by requiring the human to initially take actions that
were ambiguous with respect to their goal, whereas the side-
kick’s choice of early actions could allow the human and the
sidekick to catch the human’s target much sooner if it could
disambiguate the goal. Maps b-e included one-way doors
that made it hard for the sidekick to recover from pursuing
the wrong target. Intuitively, the best way to ensure a good
outcome in each map was to either ask the human for their

target early, or to stall and wait for the human to perform an
action that disambiguated their target before committing to
chase any given robber.
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Figure 4: The mean number of steps taken to complete
each map over 100 runs for QMDP, POMCoP and non-
communicative (POMCoP-NC) with A* models, and POM-
CoP with Manhattan distance models (POMCoP-MD). Er-
ror bars indicate the standard error of the sample mean.

The results in Figure 4 show that, for the planners with A*
models, POMCoP significantly out-performed the QMDP
planner in the mean number of steps taken to win the game,
averaged across 100 runs. The high variance in the number
of steps taken by the QMDP planner demonstrates that the
QMDP rule can commit to actions that have a high expected
reward, weighted by the sidekicks current belief, and yet are
suboptimal. This is particularly pronounced when there are
three possible targets, the sidekick is completely uncertain
about the human’s intended target, and the best action for
pursuing 2 of the targets is deeply suboptimal for the remain-
ing target, as in map b. In this case QMDP typically selects
the possibly suboptimal action that is best for the majority
of targets, rather than waiting for the human’s actions to dis-
ambiguate its intentions. By contrast, POMCoP will either
ask the human for clarification, or plan to wait and see what
the human intends before committing to a potentially costly
action. On maps b and d especially, POMCoP with the Man-
hattan distance model was on par with, or outperformed by,
QMDP. The maze layout of these maps made Manhattan dis-
tance minimization a particularly bad approximation for the
simulated human behavior, which led to poor performance
in updating beliefs over human targets, demonstrating the
importance of a good human model.

Figure 4 also shows that the non-communicative planner
performed only marginally worse than the planner that had
communication actions available, with the exception of map
e, in which the communicative agent benefited from being
able to get a head start on the relatively long travel distances
from asking for the target early. This demonstrates that often
simply waiting and performing actions that hedge against
the sidekick’s uncertainty about the humans intentions can
be almost as effective as directly asking the human about
their intentions, and may also be less intrusive.

On maps b-e the POMCoP planner with communication
actions queried the human for its intention within its first 4
moves on every run. On map a it either queried the human
in 34% of runs within its first 4 moves or not at all. In any
given run the POMCoP planner queried the human at most
once, which reflects the fact that the humans response was
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Figure 3: The maps used in evaluating the three planners.

almost completely guaranteed to disambiguate their inten-
tions, making further communication unhelpful.

Conclusion

Planning in belief space allows NPC sidekicks to reason
about how their actions can affect their uncertainty about
human intentions. In particular this allows them to rea-
son about how communication with humans can reveal a
human’s goals and about how to act in a way that hedges
against their uncertainty. This kind of reasoning is particu-
larly helpful in games when prematurely committing to ac-
tions that help a human to pursue a goal that they are not
actually pursuing can be costly to undo.

We presented the POMCoP framework for developing
sidekicks that plan in belief space. POMCoP uses a POMDP
model of a game’s structure and a set of human models rep-
resenting different possible human intentions to build a sim-
ulator for belief space planning using POMCP.

We demonstrated constructing a POMCoP sidekick for
the Cops and Robbers game and showed that it outperforms
QMDP-based state space planning. This performance gain
comes from explicitly reasoning about how asking the hu-
man about their intentions can reveal the human’s goal, and
about how taking stalling actions to wait for the human to
disambiguate their goal, allowing the sidekick and human to
catch robbers faster than prematurely committing to a course
of action as a state space planner would do.
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