
Game-Based Data Capture for Player Metrics

Aline Normoyle, John Drake
University of Pennsylvania

3451 Walnut Street
Philadelphia, PA 19104

Maxim Likhachev
Carnegie Mellon University

5000 Forbes Avenue
Pittsburgh, PA, 15213

Alla Safonova
Disney Research Pittsburgh

4720 Forbes Avenue
Pittsburgh, PA 15213

Abstract

Player metrics are an invaluable resource for game de-
signers and QA analysts who wish to understand play-
ers, monitor and improve game play, and test design
hypotheses. Usually such metrics are collected in a
straightforward manner by passively recording players;
however, such an approach has several potential draw-
backs. First, passive recording might fail to record met-
rics which correspond to an infrequent player behav-
ior. Secondly, passive recording can be a costly, labori-
ous, and memory intensive process, even with the aid of
tools. In this paper, we explore the potential for an ac-
tive approach to player metric collection which strives
to collect data more efficiently, and thus with less cost.
We use an online, iterative approach which models the
relationship between player metrics and in-game situa-
tions probabilistically using a Markov Decision Process
(MDP) and solves it for the best game configurations to
run. To analyze the benefits and limitations of this ap-
proach, we implemented a system, called GAMELAB,
for recording player metrics in Second Life.

Introduction
The collection of player data is an integral part of game
development, particularly for design and playtesting. Many
modern approaches to playtesting involve the collection of
numerous player metrics (such as the number of times a
player uses a particular weapon or percentages of time a
player spends in different activities) which are then ana-
lyzed by designers and QA specialists (Kennerly 2003;
DeRosa 2007; Luban 2009; Ambinder 2009). Even after a
game is released, such data is useful for identifying cheating,
monitoring the economy, and designing new downloadable
content (Kennerly 2003). The most straightforward way to
collect such metrics is to passively record players, but such
an approach has potential disadvantages. First, a naive ap-
proach might fail to capture desired data when it corresponds
to an infrequent player behavior. Secondly, the acquisition
of this data from playtesters can be a costly, laborious, and
memory intensive process, even with the aid of tools.

Thus, in this paper, we explore an active approach for the
acquisition of metrics for describing player behaviors. Our

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

approach exploits the inherently malleable nature of games
to target data collection to those metrics which are most un-
certain and would therefore benefit most from having more
data. The approach is based on the idea that most modern
games consist of numerous scenarios (such as levels, mis-
sions, quests, or mini-games) in which players have oppor-
tunities to display different sets of behaviors. By modeling
the relationship between game scenarios and the types of
metrics which can be collected from each, we can config-
ure game scenarios based on the metrics we want to collect.
In some cases, the relationship between game scenario and
metric is trivial (for example, a player might only be able to
swim in environments with deep water); however, in cases
where players have choices, we cannot assume a simple re-
lationship. Player behaviors can vary significantly based on
skill level, interest, and personality; and designers often do
not have a good a priori grasp of how players will play.

The approach in this paper employs an iterative, online
method for data collection. We create initial estimates for
each metric by running each of our game scenarios once.
This information is also used to initialize a model of which
games provide samples for each metric. This model is for-
mulated as a Markov Decision Process (explained in detail
later). From this MDP, we can compute a locally optimal
policy which recommends the best game scenario to run
next. We then run this scenario, extract data for our metrics,
update our MDP model, and then compute a new recommen-
dation.

The approach in this paper is inspired by ideas from op-
timal experiment design (Chaloner and Verdinelli 1995;
Settles 2012), which aims to target experiments towards col-
lecting data with the highest uncertainty, where uncertainty
is usually defined in terms of variance. In these setups, the
goal of running additional experiments is to reduce the un-
certainty in the data. Similarly, the goal of our setup is to
select games for the purposes of reducing uncertainty in
our metrics, where we measure uncertainty in terms of con-
fidence intervals. Our approach for making game recom-
mendations is similar to (Shani, Brafman, and Heckerman
2002), which used a Markov Decision Process (MDP) to
model consumer choices as a sequential optimization prob-
lem. This MDP was then solved to produce a policy for
choosing product advertisements. Using a different MDP
formulation, we model the numbers of samples collected

B

44

Proceedings, The Eighth AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment



from different game scenarios. The advantages of such an
approach over passive data collection is that we can focus
our collection efforts on metrics with high uncertainty (mea-
sured in terms of confidence intervals, variance, or fewest
number of samples). Specifically, if a metric corresponds
to a rare behavior, the model will identify how best to ob-
tain samples for it. Overall, the entire set of metrics can
be potentially collected with greater accuracy while running
fewer games. This could be a huge benefit when running
more games might mean missing deadlines, spending more
money, or requiring massive data storage.

Most systems for metric collection implement some de-
gree of automation. A typical workflow might consist of a
human analyst who specifies the desired metrics and then
an automated system which then records data and gener-
ates corresponding reports and graphs (perhaps using a fixed
schedule (Kennerly 2003) or game scenarios chosen a pri-
ori (Luban 2009)) . The technique in this paper enhances
data collection by automating the choice of game scenarios;
however, our method does not aid in analyzing the collected
results, nor with determining which quantities are most im-
portant to measure.

To analyze the benefits and limitations of this approach,
we implemented a set of mini-games in Second Life from
which we culled five metrics: the distances between people
standing in either narrow or wide spaces; the timing of lane
crossings for slow and fast traffic; and the choice of whether
to use a health kit based on health level. For data collection,
we implemented a system (called GAMELAB) which can
run the mini-games, collect data, and then extract these met-
rics. With this system, we ran 70 games and collected data
from 179 international participants over a period of 5 weeks.

Related Work
For games, data collection is usually focused on the col-
lection of player data. Such data can be used to train Bots
and NPCs (Reeder et al. 2008; Priesterjahn et al. 2007; Mc-
Partland and Gallagher 2008; Bauckhage et al. 2007; Shar-
ifi, Zhao, and Szafron 2010; Tastan and Sukthankar 2011)
to customize gameplay to a player’s ability (Robin Hu-
nicke 2004; Gilleade and Dix 2004; Ponsen et al. 2005;
Charles et al. 2005) or to customize gameplay to a player’s
preferences (Shaker, Yannakakis, and Togelius 2010; Eun-
young Ha and Lester 2012).

However, the focus of this paper is the use of player data
for playtesting and design, where it is particularly useful
for identifying problems and improving gameplay (Ken-
nerly 2003; DeRosa 2007; Luban 2009; Ambinder 2009).
Playtesting research has focused on more effective develop-
ment and test cycles (Medlock et al. 2002), better automated
methods for logging, tracking, and reporting player data
(Kennerly 2003; DeRosa 2007; Kim et al. 2008), automated
methods for effectively training game agents (Alexander
2002), novel ways to organize and visualize the massive
amounts of data collected with logging (Chittaro, Ranon,
and Ieronutti 2006; Andersen et al. 2010; Moura, el Nasr,
and Shaw 2011), and better models for understanding col-
lected player data (Tychsen and Canossa 2008; Drachen and
Canossa 2009; Mahlmann et al. 2010). In this work, we aim

to enhance current automated logging and tracking methods,
which collect data passively, so that playtesters can collect
metrics more quickly. To our knowledge, we are the first to
explore an active game recommendation approach for such
a goal.

The goal of most active learning methods is to reduce
manual effort and cost (for good overviews, please see
(Chaloner and Verdinelli 1995; Settles 2012)). Such a goal
might correspond to reducing the number of samples that a
human needs to label (for example, in domains where label-
ing is time-consuming such as text classification (Roy and
Mccallum 2001; Hoi, Jin, and Lyu 2006), image classifica-
tion and retrieval (Tong and Chang 2001; Hoi et al. 2006),
and speech recognition (Tur, Hakkani-Tur, and Schapire
2005; Riccardi and Hakkani-Tur 2005)) or it might corre-
spond to reducing the number of experiments to run. For
example, (King et al. 2004) describes a ”robot-scientist”
that uses an active learning strategy to isolate gene func-
tions in the yeast Saccharomyces cerevisiae with minimal
cost. (Krishnamurthy 2002) describes an active learning al-
gorithm for dynamically computing a schedule for sensors
using a Hidden Markov Model. (Cooper, Hertzmann, and
Popović 2007) uses an active learning approach for the cre-
ation of character controllers that aims to reduce the amount
of motion data that needs to be captured. In this work, we in-
vestigate whether an active learning approach might reduce
time and cost for metric collection.

Overview
For data collection, we built an online framework for
autonomously collecting player metrics, which we call
GAMELAB (Figure 1). Testers input a set of desired met-
rics and a set of game configurations. GAMELAB then itera-
tively collects data to improve the estimates for each metric,
specifically, it

1. computes a game schedule for recommending the next
game to run

2. runs the recommended game and extracts new samples
3. updates its model and metric estimates, and repeats
In the next two sections, we will describe how we model the
relationship between metrics and games as an MDP and then
use this MDP to compute a game schedule.

Figure 1: GAMELAB Overview. Testers input a set of met-
rics and a set of game scenarios. The system outputs distri-
butions for the metrics. At each iteration, the system com-
putes a game schedule which is then used to select a game
for the next testing activity. Samples are extracted after each
game, metric models updated, and a new schedule is com-
puted.

45



Game Scheduler
We envision a scenario in which an analyst or designer
wishes to collect a set of player metrics. Such metrics could
aid testing a hypothesis or correspond to game parameters
which require tuning. Our goal is to collect these metrics
efficiently by running as few game sessions as possible.

We formulate this problem as follows. First, let us define
the M metrics we wish to collect as the set P (for parame-
ters). Secondly, let us define the set of possible game config-
urations as G : T× E× S, where T enumerates game types,
E environment configurations, and S game type settings. G
formalizes how we can tune our given game set for data col-
lection. For example, tweaking the game environment or the
number of hazards might affect the numbers of samples we
receive for our game metrics. Let us assume that we have
K games to choose from, where for each game gk ∈ G we
have an estimate for the likelihood Pk(pm) of obtaining pm
number of samples for a parameter m, 1 ≤ m ≤M .

In our current system, we model the decision of which
game to run next using a Markov Decision Process, or MDP.
Recall that an MDP is a 4-tuple, consisting of states, ac-
tions, transition probabilities, and rewards. In our formula-
tion, states si correspond to the numbers of samples we have
collected so far for each metric.

si = {p1, p2, . . . , pm, . . . , pM}

State nodes are organized in a simple tree structure (Fig-
ure 2). Each level in the tree corresponds to a choice to be
made after each game. The outcome of this choice deter-
mines which node in the next level we transition to. Because
the depth of the tree determines how far into the future we
consider outcomes, we also refer to the tree depth as the
amount of lookahead employed by the schedule. Note that
some states will be repeated between tree levels, but that this
structure allows us to compute a corresponding policy very
efficiently (linear in the number of states).

Actions gk correspond to running a game. Possible action
outcomes consist of the numbers of samples we might re-
ceive when we run gk. We can estimate the probabilities for
each outcome based on the data we have received so far and
in some cases, a priori knowledge. Suppose λk,m is the aver-
age number of samples that we collect from game gk for the
m-th parameter. As we run games, we update this estimate
for λk,m.

We can also estimate our transition probabilities based on
λk,m. Because we are dealing with counts, we can estimate
the probability of receiving samples for the m-th parameter
with a Poisson distribution with mean λk,m. An experiment
outcome corresponds to the number of samples we receive
for each parameter. Thus, if we assume that the acquisition
of samples is independent for each parameter, then the prob-
ability of a particular outcome will be the product of the
probabilities of receiving samples for each parameter. As a
technical note, we split the possible counts of samples into
bins to keep the number of transitions and states tractable.
Put together, the probability of a transition from state si to
state sj is given by

Figure 2: Game scheduling. States represent the numbers of
samples collected so far for each metric. Running a game
gk provides additional samples, leading to a new state in the
next level of the MDP.

Pk(si, sj) =
M∏
m=1

Pk(θam ≤ pm < θbm | λk,m)

where each θm corresponds to a range of counts [θam, θ
b
m)

for the m-th metric, and where Pk(θam ≤ pm < θbm | λk,m)
is the probability that the number of samples pm will lie in
the interval θm if we run the game gk. Note that in some
cases, a game gk is incapable of providing samples for a
metric. In this case, we define a special case corresponding
to zero samples such that

Pk(θam ≤ pm < θbm | λk,m) =

{
1 if θam = θbm = 0;
0 otherwise.

The optimal policy, in the discounted expected cost sense,
π(si) consists of the best game to run when in state si, given
by

π(si) = arg max
gk

∑
sj

Pk(si, sj)(Rk(si, sj) + γv(sj)) (1)

where v(s) is defined recursively as

v(s) =
∑
sj

Pπ(s)(s, sj)(Rπ(s)(s, sj) + γv(sj)) (2)

with v(s) = 0 when s is a leaf node.
Above, sj is the resulting number of samples after run-

ning a game gk, 0 < γ < 1 is a discount factor, P is the
probability of transitioning from si to sj , and R is the esti-
mated reward for transitioning from si to sj .

The optimal policy π is solved by iterating through each
tree node once, evaluating v(si) at each state on a level-to-
level basis according to equations 1-2, starting at the leaf
level and working up to the root. Once we have π(si), we
simply need to look up which action to perform based on
our current state si.

Note that to initialize the schedule, we rely on estimates
of the numbers of samples we are likely to receive for each
game gk and if these initial estimates are non-representative
of the true values, the resulting policy will not be a good
schedule. To guard against poor initialization, the system
might periodically run a random game choice.

46



(a) (b)

Figure 3: Environments. 3(a) shows the exterior of our of-
fice environment. Players have access to both floors and the
roof. 3(b) shows the interior of the alien teleportation facil-
ity. Saucers appear at spawn points and then travel along the
red lanes of lava. Players can traverse these lanes at cross-
walks.

Reward Function
The choice of our reward function R will affect how the
schedule prioritizes metrics. A simple choice might be a re-
ward based purely on sample counts. The advantage of such
a choice is that no assumptions need to be made about our
metrics. Alternatively, a reward based on confidence inter-
vals assumes an underlying model for each metric. For ex-
ample, when estimating a mean, we might assume a nor-
mal distribution for it. This assumption allows us to esti-
mate confidence intervals easily as a function of the number
of samples and their variance.

In our experiments, we fit a Gamma distribution Γ(α, β),
chosen because it fit our initial 14 experiment set well,
whose data was noisy and showed skew. A Normal distri-
bution, or any other, might alternatively be used. Given this,
we define our reward function as

R(si, sj) =

{
0 if sj is a leaf node;∑M
m=1 [CI(pm)− CI(pm + θm)] otherwise.

where θm is the additional samples we receive if we transi-
tion to sj , and CI denotes a confidence interval as a function
of the number of samples. (θm is assumed based on the start
θam of the interval [θam, θ

b
m).) We compute CI(pm + θm) as-

suming the variance of samples remains constant. The ad-
vantage to assuming an underlying model is that we avoid
collecting more data unnecessarily. For example, a game
might provide lots of samples for a metric, but if that met-
ric already has a small confidence interval, obtaining more
samples is not necessary. However, if our underlying model
does not fit the data well, the policy will not perform well.

Proof of Concept
To analyze our method, we implemented a set of mini-games
in Second Life from which we culled five metrics: the dis-
tances between people standing in either narrow or wide
spaces; the timing of lane crossings for slow and fast traf-
fic; and the choice of whether to use a health kit based on
health level. To collect data, we ran our framework online
over the course of five weeks, approximately 23 hours in to-
tal. During this time, we ran 70 games which attracted 179
participants worldwide, 80 of which corresponded to unique
people (determined by avatar ID). Games consisted of scav-
enger hunts within two different environments: a building

Figure 4: Office environment. Floors are shown from bottom
to top. The left map shows the categorization of wide and
narrow spaces used for behavior detection when furniture is
present. The right shows the categorizations when furniture
is hidden. The presence of furniture in some of the rooms
affects steering; thus, we ignore these rooms when collecting
standing samples.

with hazards and an orbital platform filled with lanes of
space traffic.

Each environment contained switches for changing the
amounts of wide and narrow spaces (see Figure 4 and Fig-
ure 5). For the office building, we can block rooms, tog-
gle the presence of furniture, and enable hazards, such as
lasers and toxic waste. Locking rooms and hiding furniture
changes the numbers of narrow and wide spaces during the
hunt (see Figure 4). Enabling hazards allows us to collect
health kit data. For the orbital platform, where we collect
crossing behaviors, we can specify the saucer speed, cur-
rently 8 m/s for slow traffic and 12 m/s for fast traffic.

Experiments
Participants
Participants were a diverse group of players recruited from
the Second Life community. Of the 63 participants who
filled out our questionnaire, we had 39% male, and 61% fe-
male; 53% reported being between the ages of 18-25, 29%
between the ages of 25-45, 16% between the ages of 45-
65, and 2% over the age of 65. 75% of participants re-
ported living in the United States. The remaining 25% hailed
from Italy, Germany, Colombia, Argentina, Chile, Brazil,
the United Kingdom, Canada, and Australia. Participants
won in-game objects and Linden dollars for playing.

Data Collection
We ran games in batches of three as part of a single hour-
long activity, advertised to Second Life residents through

47



Figure 5: Alien teleportation facility. Red indicates lanes
filled with lava over which saucers fly. Blue shows the lo-
cations of crosswalks. Saucer spawn points and directions
of traffic are also shown.

the events calendar. Figure 6 shows screenshots taken dur-
ing several of our activities.

A Second Life Bot automatically welcomed people and
directed them to equip a Heads-up Display (HUD). The
HUD showed rules, an IRB consent form, and game state,
such as the amount of time left for the game. A tutorial
area allowed participants to practice using our game wid-
gets. At the end of each activity, the system gave participants
a questionnaire via instant message, calculated final scores,
and then sent prizes and Linden dollars based on their per-
formance. A human assistant was also present during each
activity to answer questions and wait for participants to be
ready before starting each game.

Given a game configuration, GAMELAB automatically
initialized the game environment and logged the state of par-
ticipants, including positions, orientations, behavior state,
and game actions, to a database. With this system, we col-
lected multiple games of each of our 14 configuration types
(70 in total) for running the experiments in the next section.

Effect of scheduling
We compare the results obtained using our computed game
schedule against a brute force schedule where we ran each
game configuration with a fixed order. Both schedules are
initialized with the same set of 14 games, in which each
game configuration was run once. In our game set, we have
two traffic games (one with slow traffic and one with fast
traffic) from which we collect crossing and standing sam-
ples, six configurations of hazard games (each with different
numbers of narrow and wide spaces) from which we collect
health and standing samples, and six configurations of to-
ken collection games (each with different numbers of narrow
and wide spaces) from which we collect standing samples.
The brute force scheduler runs these 14 configurations in the
same order, whereas GAMELAB runs a computed policy

(a) (b)

(c) (d)

Figure 6: Participants and gameplay. In 6(a), a tiny partici-
pant browses our tutorial area. 6(b) shows lasers in one of
the cubical areas. 6(c) shows participants racing through the
main foyer of the office building to collect tiles. 6(d) shows
tile collection during the traffic game.

with 1-step lookahead (a pilot study showed that a greater
lookahead provided no benefit for this particular metric and
game set).

After initialization, the brute force schedule selects the
same set of 14 games in the same order, while the GAME-
LAB schedule selects three fast traffic games, three slow
traffic games, and eight hazard games (six run with most fur-
niture hidden, and two run with furniture). A comparison of
the changes in confidence interval, summed over all param-
eters, is shown in Figure 7. Though both the brute force and
GAMELAB schedule improve over time, the GAMELAB
schedule beats the brute force schedule on 3 parameters (fast
lane crossing, slow lane crossing, and narrow standing be-
haviors), ties for one parameter (wide standing behaviors),
and loses for one parameter (health kit usage).

The greatest benefit of the scheduling algorithm is that it
automatically reasons about differences between game con-
figurations. For example, most narrow waiting behaviors oc-
curred on the walkways to the alien teleportation facility,
making this the best choice for collecting narrow behaviors.
This was surprising to us, given that the office building con-
tained many more narrow spaces; however, further analy-
sis revealed that participants were rarely stationary inside
the building. This fact, combined with the need for crossing
samples, made the traffic game configurations good choices
at the start and contributed to the policy’s ability to perform
better than the brute force schedule on these parameters.

A major reason why the policy performed better than the
brute force schedule is that almost half our game set did not
contribute many needed samples. The brute force schedule
wasted time running these games whereas the policy did not.
When we remove these games, the brute force schedule does
equally well. This is not surprising. The true benefit of us-
ing the policy is to handle cases when some games provide

48



Figure 7: Comparison of sum of confidence intervals. We
compare the brute force schedule (blue line) against a 1-step-
lookahead schedule (red line). Both schedules were initial-
ized with 14 games, one for each configuration. The plots
compare the change in the sum of confidence interval af-
ter an additional 14 games. The GAMELAB schedule more
quickly reduces the confidence intervals across all parame-
ters.

samples unevenly for metrics.

Discussion
In this paper, we present an approach for the active acquisi-
tion of player metrics based on a set of flexible game config-
urations. Our prototype shows the potential for scheduling
to be used to reduce the amount of time and cost necessary
for collecting a variety of metrics using a variety of game
scenarios. As data is collected, GAMELAB builds a model
of how metrics correspond to game situations. This model
enables GAMELAB to automatically detect how to record
rarely occurring metrics (such as narrow standing behaviors
in our proof-of-concept) as well as focus on the most uncer-
tain metrics. Alternatively, an analyst would need to man-
ually look at the data periodically to make these decisions.
However, the effectiveness of the policy will depend on the
accuracy of the initial estimates for Pk and possibly on the
underlying models for each metric.

Though our experiments show that our policy performs
better than a brute force approach, the brute force schedule
still makes progress over time. The additional complexity
of configuring games to be used in a scheduling policy may
not be worth it when it is easier to simply run more games.
Additionally, one can imagine many cases where designers
are interested in estimating where people do what they do.
The final MDP transition probabilities will offer some in-
sights into this, but it will not provide detailed spatial infor-
mation well, for example, heat maps of where deaths occur.
The technique in this paper is best for collecting the statis-
tics about the use of objects or about the amount of player
interactions. Future work might adapt this technique for dif-
ferent types of metrics or for modeling differences between
individual players, so that data collection might take advan-
tage of different play styles. Future work may also adapt this
technique to post-release data collection, where this tech-

nique might be used to select where and when to collect data,
rather than to change the settings of released games and en-
vironments. Lastly, given that our current analysis is with
a toy proof-of-concept, we would like to further investigate
the potential for this technique in more complex games and
environments.

Acknowledgments
This work was supported by NSF Grant IIS-1018486. We
also wish to thank Benedict Brown, Ben Sunshine-Hill, Alex
Shoulson and the anonymous reviewers for their comments.

References
Alexander, T. 2002. GoCap: Game Observation Capture.
AI Game Programming Wisdom, Charles River Media.
Ambinder, M. 2009. Valve’s approach to playtesting: The
application of empiricism. In Game Developer’s Confer-
ence.
Andersen, E.; Liu, Y.-E.; Apter, E.; Boucher-Genesse, F.;
and Popovic, Z. 2010. Gameplay analysis through state
projection. In Foundation of Digital Games.
Bauckhage, C.; Gorman, B.; Thurau, C.; and Humphrys, M.
2007. Learning human behavior from analyzing activities in
virtual environments. Machine Learning 12:3–17.
Chaloner, K., and Verdinelli, I. 1995. Bayesian experimental
design: A review. Statistical Science 10:273–304.
Charles, D.; McNeill, M.; McAlister, M.; Black, M.; Moore,
A.; Stringer, K.; Kcklich, J.; and Kerr, A. 2005. Player-
centred game design: Player modelling and adaptive digital
games. In Proceedings of the Digital Games Research Con-
ference.
Chittaro, L.; Ranon, R.; and Ieronutti, L. 2006. VU-Flow:
A visualization tool for analyzing navigation in virtual envi-
ronments. IEEE TVCG 12:1475–1485.
Cooper, S.; Hertzmann, A.; and Popović, Z. 2007. Ac-
tive learning for real-time motion controllers. ACM Trans.
Graph. 26.
DeRosa, P. 2007. Tracking player feedback to improve game
design. Gamasutra.
Drachen, A., and Canossa, A. 2009. Analyzing spatial user
behavior in computer games using geographic information
systems. In Proceedings of the 13th International MindTrek
Conference: Everyday Life in the Ubiquitous Era, MindTrek
’09, 182–189.
Eunyoung Ha, Jonathan Rowe, B. M., and Lester, J. 2012.
Goal recognition with markov logic networks for player-
adaptive games. In AAAI.
Gilleade, K. M., and Dix, A. 2004. Using frustration in the
design of adaptive videogames. In Advances in Computer
Entertainment, 228–232.
Hoi, S. C. H.; Jin, R.; Zhu, J.; and Lyu, M. R. 2006. Batch
mode active learning and its application to medical image
classification. In Proceedings of the 23rd international con-
ference on Machine learning, ICML ’06, 417–424.

49



Hoi, S. C. H.; Jin, R.; and Lyu, M. R. 2006. Large-scale
text categorization by batch mode active learning. In Pro-
ceedings of the 15th international conference on World Wide
Web, 633–642.
Kennerly, D. 2003. Better game design through data mining.
Gamasutra.
Kim, J. H.; Gunn, D. V.; Schuh, E.; Phillips, B.; Pagulayan,
R. J.; and Wixon, D. 2008. Tracking real-time user experi-
ence (TRUE): a comprehensive instrumentation solution for
complex systems. In SIGCHI, CHI ’08, 443–452.
King, R. D.; Whelan, K. E.; Jones, F. M.; Reiser, P. G. K.;
Bryant, C. H.; Muggleton, S.; Kell, D. B.; and Oliver, S. G.
2004. Functional genomic hypothesis generation and exper-
imentation by a robot scientist. Nature 427:247–252.
Krishnamurthy, V. 2002. Algorithms for optimal scheduling
and management of hidden markov model sensors. Signal
Processing, IEEE Transactions on 50(6):1382 –1397.
Luban, P. 2009. The silent revolution of playtests. Gamasu-
tra.
Mahlmann, T.; Drachen, A.; Canossa, A.; Togelius, J.; and
Yannakakis, G. N. 2010. Predicting player behavior in
tomb raider: Underworld. In Computational Intelligence
and Games (CIG).
McPartland, M., and Gallagher, M. 2008. Learning to be a
bot: Reinforcement learning in shooter games. In AIIDE.
Medlock, M.; Wixon, D.; Terrano, M.; Romero, R.; and Ful-
ton, B. 2002. Using the RITE method to improve products:
a definition and a case study. Technical report, Usability
Professionals Association.
Moura, D.; el Nasr, M. S.; and Shaw, C. D. 2011. Visualiz-
ing and understanding players’ behavior in video games. In
SIGGRAPH 2011 Game Papers, SIGGRAPH ’11, 2:1–2:6.
Ponsen, M.; Munoz-avila, H.; Spronck, P.; and Aha, D. W.
2005. Automatically generating game tactics via evolution-
ary learning. AI Magazine 27:2006.
Priesterjahn, S.; Kramer, O.; Weimer, E.; and Goebels, A.
2007. Evolution of human-competitive agents in modern
computer games. In Congress on Evolutionary Computation
(CEC).
Reeder, J.; Gita, S.; Georgiopoulos, M.; and Anagnostopou-
los, G. C. 2008. Intelligent trading agents for massively
multi-player game economies. In AIIDE.
Riccardi, G., and Hakkani-Tur, D. 2005. Active learn-
ing: theory and applications to automatic speech recogni-
tion. Speech and Audio Processing, IEEE Transactions on
13(4):504 – 511.
Robin Hunicke, V. C. 2004. AI for dynamic difficulty ad-
justment in games. In AIIDE.
Roy, N., and Mccallum, A. 2001. Toward optimal ac-
tive learning through sampling estimation of error reduction.
In In Proc. 18th International Conf. on Machine Learning,
441–448. Morgan Kaufmann.
Settles, B. 2012. Active Learning. Morgan & Claypool
Publishers.

Shaker, N.; Yannakakis, G. N.; and Togelius, J. 2010. To-
wards automatic personalized content generation for plat-
form games. In Youngblood, G. M., and Bulitko, V., eds.,
AIIDE. The AAAI Press.
Shani, G.; Brafman, R. I.; and Heckerman, D. 2002. An
MDP-based recommender system. In Journal of Machine
Learning Research, 453–460. Morgan Kaufmann.
Sharifi, A.; Zhao, R.; and Szafron, D. 2010. Learning com-
panion behaviors using reinforcement learning in games. In
AIIDE.
Tastan, B., and Sukthankar, G. 2011. Learning policies
for first person shooter games using inverse reinforcement
learning. In AIIDE, 85–90.
Tong, S., and Chang, E. 2001. Support vector machine ac-
tive learning for image retrieval. In Proceedings of the ninth
ACM international conference on Multimedia, MULTIME-
DIA ’01, 107–118.
Tur, G.; Hakkani-Tur, D.; and Schapire, R. E. 2005. Com-
bining active and semi-supervised learning for spoken lan-
guage understanding. Speech Communication 45(2):171 –
186.
Tychsen, A., and Canossa, A. 2008. Defining personas in
games using metrics. In Conference on Future Play: Re-
search, Play, Share, Future Play ’08, 73–80.

50




