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Abstract

Spatiotemporal reasoning is a fundamental contributor to ef-
fective problem solving. In an effort to design better problem-
solving agents, we examined and evaluated the strategies that
humans use to solve Tower Defense puzzles, a complex and
popular class of real-time strategy games. A consistent and
unexpected finding was that humans frequently treated time
and space as equivalent. Players stated temporal goals but
solved spatial problems. An analysis of human data and com-
puter simulations showed that re-representing temporal prob-
lems as spatial problems was beneficial, but treating the two
separately can lead to higher scores. The work presented here
holds several possibilities for level designers and others who
design and analyze maps and spatial arrangements for do-
mains requiring strategic reasoning.

Introduction

While computers have exceeded humans at many types of
reasoning tasks, they still lag behind humans in complex
temporal and spatial reasoning tasks such as the game of Go
and real time strategy (RTS) games (Buro 2003).

An interesting and previously unstudied domain of this
type is Tower Defense (TD) games. In TD the player
attempts to stop enemies from moving across a map by
placing guard towers at strategic locations. TD combines
the complexity of spatiotemporal reasoning found in RTS
games with a simple environment that is deterministic, non-
adversarial and perfect information. TD provides an arena in
which to study spatiotemporal reasoning, problem and pro-
cess representation, and transferring expertise across maps.

We created a research version, called Gopher TD, of a
popular TD game and instrumented it to study how humans
represented, reasoned about, and solved the spatiotemporal
reasoning problems presented by TD. Although TD initially
appears to be a predominantly spatial reasoning problem,
solution quality depends heavily on subtle and nonobvious
temporal considerations.

One notable observation, derived from observing humans
attempting multiple TD problems under a think-aloud pro-
tocol, is that subjects often treated time and space as in-
terchangeable. This is consistent with findings and theo-
retical accounts of other researchers with respect to lan-
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guage (Boroditsky 2000) and motor actions (Miles et al.
2010) and might be innate (Mandler 2012). We are unaware
of any research showing how this conflation affects task per-
formance. We found that, compared to a random baseline,
re-representing time as space performed quite well. How-
ever, by explicitly decoupling the two, experienced players
were often able to earn higher scores.

In this paper we discuss the concept of space-time confla-
tion, introduce several spatiotemporal strategies used by hu-
man subjects and the effectiveness, applicability and limita-
tions of those strategies we implemented in various Als. We
first introduce the domain and then discuss the early study
which led to a catalogue of strategies and representations
that informed the construction of the Als. The main part
of the paper presents the results of a recent study with hu-
man subjects in which we evaluated a subset of the strategies
used in our initial study and compared their performance to
the performance of the Als.

The contributions of this paper include introducing the
TD domain as an environment for studying spatiotemporal
reasoning, showing the feasibility of using spatial reasoning
to solve temporal problems, and illustrating how decoupling
of time and space can, counterintuitively, lead to a more ad-
vanced manipulation of time.

Related Work

People, when faced with spatiotemporal decision problems,
such as planning a shopping trip, construct mental represen-
tations that simplify reality and that are specific to the task
at hand (Arentze, Dellaert, and Timmermans 2008).

Mental model theory (Johnson-Laird 1983) states that in-
dividuals mentally simulate the effect of actions before ex-
ecuting them. Previous work has studied spatial representa-
tions used by people, such as the mental spatial maps con-
structed for navigation tasks (Kuipers 1978), and represen-
tations used in naive physics models for predicting the out-
come of an action (Friedman and Forbus 2009).

Research suggests that simpler mental models are pre-
ferred over more complex models for making deductions be-
cause the inference process is easier (Johnson-Laird 2001;
Jahn and Knauff 1998). Problems that require multiple
mental models are harder for people. Specifically, when
people use temporal relations to assess the relative order
of events, having a single mental model reduces process-



ing time and increases accuracy (Schaeken, Johnson-Laird,
and d’Ydewalle 1996). Similar effects have been shown
for problems that require both temporal and spatial reason-
ing (Vandierendonck and Vooght 1997), creating strong sup-
port for how humans use mental models.

When people think about time, they use whatever spa-
tial representation is cognitively available to them. Time
typically is mapped to one dimensional space, for instance,
moving from left to right, or from back to front, to repre-
sent the passage of time (Miles et al. 2010; Casasanto and
Boroditsky 2008). Time is conflated with one-dimensional
space, but in this paper we address how humans reason about
temporal effects of actions performed in a two dimensional
space. Specifically, we examine how humans reason about
the motions of objects in 2D that move at different speeds.

Understanding mental models is essential to create cogni-
tive models, such as ACT-R (Anderson et al. 2004), which
models low-level operations and mental resources and can
be used to predict task difficulty and performance time. An
ACT-R model of simple human spatial relational reasoning
has been developed (Ragni and Briissow 2011). In this study
we are not aiming at creating a model of human spatiotem-
poral reasoning, but by understanding how humans handle
spatiotemporal problems we provide the foundations for de-
signing agents capable of replicating human performance.

Our work differs from computer-based complex scenarios
or microworlds, used to study dynamic decision making and
complex problem solving (Gonzalez, Vanyukov, and Martin
2005), in which people actively interact with an unknown
(nontransparent) system of many highly interrelated vari-
ables so as to actively generate knowledge to achieve certain
goals. TD problems contain no “hidden variables” and the
potential interactions of space and time — though sometimes
nonobvious and subtle — are open for observation.

In addition to providing insights on human reasoning, and
providing strategies for implementation in an agent, compu-
tational models of space and time have many practical ap-
plications, such as urban planning.

Tower Defense

Tower defense (TD) games ask players to protect a base
by organizing the base’s defenses. The player is given a
map (typically a simple maze) showing the path the ene-
mies (generically referred to as creeps) will follow through
the maze and a budget for purchasing defense towers to be
placed on the walls of the maze.

The player cannot directly interact with the creeps. The
only choices the player has are which types of towers to use
and where to place them. Towers have a fixed rate of fire, do
a fixed amount of damage per shot and never miss. Creeps
move at a fixed speed and never veer from the path. The
score in the game is based on the number of creeps stopped.
Although the creeps are nominally the enemy, they are de-
terministic and do not react to the player. As such, TD is
technically a puzzle, not an adversarial game.

A tower is only active when a creep is in its range. Be-
cause a tower’s rate of fire and damage per shot are fixed,
the only way to increase a tower’s effectiveness is to increase
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Figure 1: Left: Two lines of creeps move at a constant speed
along a pre-determined path. Right: Attack towers (A) dam-
age creeps while freezing towers (F) slow them down. The
white circle shows the area in the tower’s range area.

the time the tower is active, which means increasing the time
creeps are in a tower’s range. Although placing a tower is a
spatial decision, the ultimate goal is to maximize a temporal
variable, the amount of time a tower fires. This points to the
dependency between time and space, which is the subject of
this study.

Experimental Setup

Studies were conducted with GopherTD, which we based on
the commercial game Vector TD. GopherTD captured sub-
ject actions, timings, solutions and scores. Subject thought
processes were recorded under a think aloud protocol (Lewis
1982) and participants were interviewed after completion of
the testing phase. The data was compiled and qualitatively
scored and categorized by multiple reviewers. These data
were used to understand and classify the strategies used by
the subjects and later to inspire the design of several Als.

GopherTD contains 16 maps. Each path on the map has
14 creeps moving along it. There are different types of tow-
ers and those types differ in cost, attack power, speed, and
range. Towers are placed on a grid (the gold squares in Fig-
ure 1) but creeps move continuously along a pre-set path
(maroon squares in Figure 1). All towers attack the closest
creep, focusing on that creep until it leaves range.

Subjects were grouped, based on self-report, into novice
players (no knowledge of TD puzzles) and experienced play-
ers (familiar with TD rules and concepts). No subject had
prior experience with GopherTD.

Study 1 (n=38) focused on collecting data on subject rep-
resentations, strategies and problem solving processes. Un-
expectedly, no two players used the same sets of strategies.
Study 1 showed the breadth of the domain but the sparse
nature of the data made in-depth analysis difficult.

Strategies depend in part on which towers the subject
chooses. In study 2 (n=13; 4 novice, 9 experienced), all
subjects were required to use the same set of towers, con-
straining the problem enough to make in-depth analysis pos-
sible. Only two types of towers were used. Attack towers
fire 10 times a second and can attack 3 targets simultane-
ously. Freezing towers fire once every two seconds, attack
4 targets simultaneously and cause affected creeps to move
at half speed for two seconds. Subjects had 4 attack towers
and 20 freezing towers. Selected towers and quantities were



Figure 2: Objects on paths fall out of synchronization. Left:
Outer line has longer path around a corner. Right: Freezing
one line, ignoring the other.

based on those used by top subjects in study 1 and indepen-
dently verified through simulation.

In the training phase, subjects first played each map three
times. In the test phase, subjects played each map one more
time. Test scores and solutions were recorded.

Study 1: Results

Below are the main strategies subjects used in Study 1.

Temporal Strategy: Slow In Range. All subjects placed
freezing towers such that creeps were slowed while moving
through the attack tower’s range. We refer to this strategy as
SLOWINRANGE. Unless otherwise mentioned, it should be
assumed that all subjects used this strategy in combination
with their other strategies.

Spatial Strategy: Advanced Maximum Usable Range.
All subjects, regardless of strategy, tried to maximize the
amount of path area inside a tower’s range, called the usable
range. The MAXIMUMUSABLERANGE (MUR) strategy fo-
cuses only on usable range. No human player used MUR
by itself, but many, especially the less experienced players,
used the ADVANCEDMAXIMUMUSABLERANGE (AMUR)
strategy which combines MUR with SLOWINRANGE.

Temporal: Path Sync-Based. Although the two lines of
creeps normally move through the map side by side, sev-
eral subjects noted that they would sometimes fall out of
sync. This can be caused by the map geometry. When go-
ing around a corner, the creeps on the outside path travel
a longer distance and therefore fall behind those on the in-
ner path (Figure 2, left). We refer to this gap as the path
synchronization gap and placing towers where the natural
gap is large as the EXPLOITGEOMETRY strategy. Subjects
who used this strategy argued that, by having fewer creeps
in range at one time, the tower was less likely to be over-
whelmed, and by stretching out the arrival rate of the creeps,
the tower could be active for longer.

We refer to the strategy of using freezing towers to create
or enhance this gap as differential slowing, or DIFFSLOW
(Figure 2, right). In some cases, it is possible to completely
separate the two lines, doubling the activation time (and thus
effectiveness) of the tower. Using DIFFSLOW and EXPLOIT-
GEOMETRY together delays an already delayed line.

The path synchronization gap-based strategies are harder
to execute than AMUR and require several optimization de-
cisions. Attack towers must be placed after creeps have been
separated, which can rule out positions with significantly
more usable range. DIFFSLOW requires placing freezing
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towers outside the attack towers’ range, leaving fewer re-
sources for the SLOWINRANGE strategy (the ratio of freez-
ing towers allocated to DIFFSLOW vs. SLOWINRANGE var-
ied by subject). It is difficult to execute path synchronization
gap-based strategies if attack towers are spread out. SLOW-
INRANGE often undoes the effect of the other strategies,
making it hard to predict the creep line relationships for later
towers. DIFFSLOW cannot be used if there is no position that
can target only the desired line.

Subject Descriptions

A notable feature of subject descriptions is that language
was predominantly spatial. People who used the AMUR
strategy typically used terms such as, “I want to cover as
many maroon squares as possible” (path area was maroon),
“I chose corners because they overlook the most [path]
area,” and “I want to keep the creeps slow while they are in
range.” Those who used temporal strategies used a mixture
of temporal and spatial language. They would say things
such as, “I look for areas where the creeps are separated,’
“I’'m going to pull this line so that they fall behind” and “I
want to give the tower more time to focus on each creep.”

It is important to note that problem solving reflected a
combination of simple strategies rather than a single com-
prehensive strategy. Most subjects drew from the same set
of strategies but combined them in ways that resulted in a
unique play style.

We observed six (non-exclusive) classes of strategies: po-
sitional (placement choices of towers on the map and with
respect to one another), tower selection (preference for par-
ticular tower types or combinations), target selection (place-
ment of towers with respect to which creeps they would
attack), tower distribution (how towers were placed with
respect to one another, e.g., single kill zone, spread out),
emotional-motivational (e.g., place towers near exit to mini-
mize regret) and aesthetics (e.g., preference for symmetrical
tower placements).

Strategies ranged in complexity from rules like the ones
above to patterns (always place towers in a 4x2 pattern) to
biases (prefer corners, avoid single-sided interior corners).
Multiple strategies could be used concurrently. For example,
DIFFSLOW was always paired with the AMUR strategy and
instantiated as a compromise between maximizing path gap
and usable range.

Strategies were often described in spatial terms. For ex-
ample, in the target selection strategy in which towers are
placed near each other so that they focus on the same target,
subjects would explain their reasoning as “I am trying to kill
the creeps as fast as possible [temporal goal] and because
the towers select the creep that is closest to them, I try to put
the towers as near each other as possible [spatial action] so
that they select the same creep.”

Study 2: Strategy Evaluation

Although every map had a substantially different lay-
out, subjects tended to categorize maps based on how
amenable they were to their preferred strategies. The path
synchronization-based strategies try to decrease window
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Figure 3: Top: NoGap maps. Paths have the same length.
Middle: PersistentGap maps. One path is longer than the
other. Bottom: DynamicGap maps. The outer path around
corners is longer, causing creeps on it to fall behind, but later
corners in the opposite direction allow creeps to catch up.

density by stretching the two creep lines using spatial ge-
ometry or freezing towers. The degree to which one line
has fallen behind another is the path gap. Using type and
frequency of path gaps, we grouped the maps into the cat-
egories of NoGap maps, PersistentGap maps and Dynamic-
Gap maps. NoGap maps cannot use the EXPLOIT GEOME-
TRY strategy. PersistentGap maps have one line of creeps
that is consistently behind the other. DynamicGap maps
have corners that cancel each other out, minimizing the num-
ber of places to apply EXPLOITGEOMETRY and undoing the
effects of DIFFSLOW.

Study 2: Results

Preliminary data screening showed that three maps yielded
very high (ceiling performance) scores, one map led every-
one to use basically the same solution and one map was qual-
itatively highly similar to another map. We focus on the 9
standard maps (three in each of the three categories) that
yielded a range of scores and strategies across participants.
Average scores for the Al and Human player types for the
three map types are given in Table 1. The AI was run 100
times and the mean score reported. Score is the number of
creeps killed and ranges from O to 28.

Experience Level: Novice vs. experienced. We first
examined skill differences between novice and experienced
players to determine whether the domain is complex enough
to require experience but solvable by experienced humans.
A 3 (Map Type: NoGap, PersistentGap, DynamicGap) x 3
(Map Number: 1, 2 or 3) x 2 (Experience Level: Novice,
Experienced) mixed factor analysis of variance (ANOVA),
with map type and map number as within-subjects factors
and experience level as a between-subjects factor, showed a
significant main effect of experience level: F(1, 11) =7.48, p
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=.019, MSE = 21.51, with experienced players (M = 23.46)
outperforming novices (M = 20.92).

Map Type: NoGap, PersistentGap, DynamicGap. To
determine whether key structural properties of the map influ-
enced the task difficulty as reflected by scores, we examined
performance as a function of map type. The above 3 x 3x
2 ANOVA revealed a significant main effect of map type:
F(2,22)=52.95,p < .001, MSE = 11.71, with means 19.85,
19.54 and 27.17 for the three map types, respectively.

Experience Level x Map Type. To determine whether
or not novices were uniformly worse than experienced play-
ers, we looked at the interaction of experience level and map
type. The above 3 x 3 x 2 ANOVA showed a significant
map type x experience level interaction, F(2, 22) = 3.59, p
= .046, MSE = 11.71. Experienced players outperformed
novices on NoGap maps (20.70 vs. 19.00) and Persistent-
Gap maps (22.07 vs. 17.00) but not on DynamicGap maps
(27.59 vs. 26.75). The experience advantage was greatest
for PersistentGap maps.

Excluding DynamicGap Maps. All subjects showed
near perfect performance on the DynamicGap maps. To de-
termine whether this masked other effects, we reanalyzed
the data excluding these maps. A 2 (Map Type: NoGap,
PersistentGap) x 3 (Map Number: 1, 2, 3) x 2 (Experience
Level: Novice, Experienced) mixed factor ANOVA, with
map type and map number as within-subjects factors and ex-
perience level as a between-subjects factor again showed a
significant main effect of experience level: F(1, 11)=5.76, p
=.035, MSE = 33.15, with experienced players (M = 21.39)
outperforming novices (M = 18.00). There was now no main
effect of map type, F < 1, but again a strong trend toward
a map type x experience level interaction, F(1, 11) = 4.39,
p = .06, MSE = 10.74. Experienced players outperformed
novices on NoGap maps (20.70 vs. 19.00) and Persistent-
Gap maps (22.07 vs. 17.00) but the experience advantage
was greatest for the PersistentGap maps (1.70 vs. 5.07).

Human Strategy. All novices (100%) and one third
(33%) of experienced players relied solely on the AMUR
strategy. This was the only strategy used by these play-
ers. Two-thirds (66%) of experienced players frequently
used DIFFSLOW, either with (33%) or without (33%) EX-
PLOITGEOMETRY. All subjects used either AMUR (54%)
or DIFFSLOW (46%).

Subjects were classified into two groups based on whether
they used spatial strategies (AMUR, n = 7) or temporal
strategies (DIFFSLOW, DIFFSLOW + EXPLOITGEOMETRY,
n = 6). A 2 (Strategy: Spatial, Temporal) x 2 (Map Type:
NoGap, PersistentGap) x 3 (Map Number: 1, 2, 3) mixed
factor ANOVA, with strategy as a between-subjects factor
and map type and map number as within-subjects factors
showed a significant effect of strategy, F(1, 11) =11.73,p =
.006, MSE = 24.44, with spatial (M = 18.57) scoring, on av-
erage, significantly lower than temporal (M = 22.42). There
was also a strong trend toward a strategy X map type in-
teraction, F(1, 11) = 3.91, p = .07, MSE = 11.09, reflect-
ing a smaller advantage for temporal strategies on the No-
Gap maps (spatial = 19.10, temporal = 21.44, advantage for
temporal = 2.34) than on the PersistentGap maps (spatial =
18.05, temporal = 23.39, advantage for temporal = 5.34).



NoGap PersistentGap DynamicGap
Strategy Player N1 N2 N3 P1 P2 P3 D1 D2 D3
RANDOM Al 386 8.18 1660 | 474 9.82 1425 | 26.84 23.49 25.78
PATHADJACENT Al 18.33  13.65 18.57 | 1391 18.28 18.63 | 26.77 25.03 26.17
MUR Al 21.89 1456 2344 | 13.71 17.84 18.12 | 27.98 27.86 26.24
AMUR Al 19.67 21.16 2434 | 17.75 18.13 18.00 | 28.00 28.00 26.31
AMUR Human, novice 12.75 20.25 24.00 | 14.00 15.75 21.25 | 2525 27.25 27.75
AMUR Human, experienced | 14.33 19.67 23.67 | 14.33 18.67 25.33 | 28.00 27.33 27.00
DIFFSLOW Human, experienced | 16.17 22.00 26.17 | 19.50 2533 25.33 | 27.67 27.83 27.50

Table 1: Mean scores for each strategy and player type (Al, Human) on each map. Maps are grouped by map type.

Stated differently, the strategy difference leads to more than
double the difference in scores for the PersistentGap maps
than for the NoGap maps.

AI: RANDOM vs. PATHADJACENT vs. MUR vs.
AMUR. Human subjects often used space as a proxy for
time. A question of interest is how effective this time-space
conflation is. To test this, we implemented as Al agents the
strategies RANDOM, PATHADJACENT, MUR and AMUR.

RANDOM places towers at random positions. They are
not guaranteed to be near a path. PATHADIJACENT places
towers at random spots along the path. MUR places the
attack towers where they cover the largest amount of path,
then does the same with freezing towers. AMUR places the
attack towers where they cover the largest amount of path,
then places the freezing towers at the path adjacent positions
closest to the attack towers. This is a mixture of spatial and
temporal strategies and was the simplest and most common
strategy observed in humans.

A 4 (AI Strategy: RANDOM, PATHADJACENT, MUR,
AMUR) x 2 (Map Type: NoGap, PersistentGap) x 3 (Map
Number: 1, 2, 3) mixed factor ANOVA with map type
and map number as within-subjects factors and strategy as
a between-subjects factor performed on the scores revealed
a highly significant main effect of Al strategy, F(3, 396) =
1422.74, p < .001, MSE = 8.70. MUR (M= 18.26) signif-
icantly outperformed RANDOM (M = 9.58, p < .001) and
PATHADJACENT (M = 16.90, p < .001). It underperformed
AMUR (M =19.84, p < .001).

Human AMUR vs. AI AMUR. Part of building an ef-
fective spatiotemporal reasoning agent is verifying the per-
formance of the lower-level systems. Since all strategies de-
pend at least in part on maximizing usable range, we tested
the Al implementation of this feature against novice and ex-
perienced players using the same strategy.

A 2 (Map Type: NoGap, PersistentGap) x 3 (Map Num-
ber: 1, 2, 3) x 2 (Human AMUR, Al AMUR) ANOVA
revealed that the Al AMUR (M = 19.84) achieved a slightly
higher score than the humans (M = 18.57), with this differ-
ence being statistically significant, F(1, 105) = 23.35, p <
.001, MSE =2.71. It is our belief that the modest but consis-
tent score gap in executing this strategy likely reflects con-
straints on attention. When asked in interviews, why they
did not select positions that covered slightly more path area
subjects often responded that they had not noticed the better
position but would have used it had they seen it.

Human DIFFSLOW vs. AI AMUR. To determine how
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the the human temporal strategy DIFFSLOW compared to
predominantly spatial Al AMUR strategy, a 2 (Map Type:
NoGap, PersistentGap) x 3 (Map Number: 1, 2, 3) x 2
(Strategy Type: Human DIFFSLOW, Al AMUR) ANOVA
revealed a significant effect of strategy type, F(1, 104) =
74.18, p < .001, MSE = 3.04, with the temporal human strat-
egy (M = 22.42) outperforming the spatial Al strategy (M =
19.84). There was also a significant map type X strategy
type interaction, F(1, 104) = 103.27, p < .001, MSE = 2.68,
with humans (M = 21.44) and the Al (M = 21.72) appar-
ently performing similarly for the NoGap maps but humans
(M = 23.39) outperforming AI (M = 17.96) on Persistent-
Gap maps. The lack of difference in the NoGap maps can be
partially attributed to particularly poor performance of two
human subjects on one of the maps.

Discussion

In introducing a version of TD to study spatiotemporal rea-
soning, we first needed to demonstrate that the tasks selected
were tractable but showed the benefit of experience. All sub-
jects did well, with novices, on average, earning 75% of the
available points across a variety of problems and difficulty
levels. Experts, on average, scored 12% higher than novices.
The benefit of experience varied by type of problem, with
experts scoring 30% higher on PersistentGap maps.

Choice of strategy is a significant predictor of score.
Novice players used spatial strategies exclusively while
many (but not all) experienced players used temporal strate-
gies. Temporal strategy users, on average, scored 13%
higher than spatial strategy users overall and 30% higher on
PersistentGap maps.

Much of the difference in map difficulty can be captured
by a few structural properties. Scores on DynamicGap maps
were 38% higher than other types of maps, independent of
strategy or player experience level. It is important to under-
stand that the higher scores are not necessarily caused by
dynamic path synchronization gap. The size of the path syn-
chronization gap grows, shrinks and reverses throughout the
map due to geometry. This typically happens because the
maps have complementary corners, with the line that was
on the outside of a left turn becoming inside on a right turn.
Complementary corners frequently cause paths to return to a
location, giving towers a second chance to attack (Figure 3).

Although using space as a proxy for time has been re-
ported in other domains, we believe this is the first time
that the effects of treating space and time as equivalent on



complex spatial reasoning have been assessed and modeled.
The purely spatial Al MUR strategy scored 91% higher than
RANDOM, indicating that re-representing temporal prob-
lems as spatial problems is highly beneficial. They are not,
however, optimal. The related AMUR strategy, which sup-
plements MUR with the temporal SLOWINRANGE strategy,
scored 9% higher. Strategies that treat time and space as in-
dependent and non-proportional, potentially sacrificing spa-
tial quantities (i.e., usable range) to increase temporal ones
(i.e., tower activation time), can do much better. DIFFSLOW
outperforms MUR by 23% and AMUR by 13%.

Benefits to Level Designers

The work presented here holds several possibilities for level
designers and others who design and analyze maps and spa-
tial arrangements for domains requiring strategic reasoning.
Level designers must create maps of different difficulty lev-
els to train and entertain players. Procedural content genera-
tion systems (Yannakakis and Togelius 2011) auto-generate
levels, sometimes in response to player abilities and inter-
ests. Automated Al “directors” (Snowdon and Oikonomou
2011) customize a game, including difficulty level, at run
time to make the game more enjoyable.

We showed that we can identify structural properties of a
map that are correlated with map difficulty. This approach
might be useful as part of an Al director for run-time selec-
tion of maps of desired difficulty. We have also shown that
structural properties are correlated with the success of indi-
vidual strategies. Combined with a recognition of the strate-
gies a player has used, an Al director could choose maps that
require a strategy the director feels the player should learn.
Such an approach might also be useful in partially or fully
auto-generating such maps.

The least popular maps had several structural features in
common, notably a lack of switch backs (paths that pass a
location more than once). We suspect that a formal analy-
sis of the relationship between player enjoyment and map
structural features would help level designers at least par-
tially automate the design of enjoyable maps.

Conclusions and Future Work

We have identified strategies used by humans when playing
TD and have shown how some of those strategies can be
used by Al agents with good results. We are currently im-
plementing the remaining strategies. We are also studying
the conditions under which these strategies are most effec-
tive and testing their scalability to harder problems. All po-
sitional strategies rely in part on maximizing the amount of
usable range but many are a compromise of usable range and
other factors (e.g., path synchronization gap). Determining
the right combination was easily done by human subjects but
optimally balancing temporal and spatial features in our Al
agents remains an open problem for future studies.
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