
Evolutionary Learning of Goal Priorities in a Real-Time Strategy Game

Jay Young and Nick Hawes
The University of Birmingham

Birmingham, UK

Abstract

We present a drive-based agent capable of playing the real-
time strategy computer game Starcraft. Success at this task
requires the ability to engage in autonomous, goal-directed
behaviour, as well as techniques to manage the problem of
potential goal conflicts. To address this, we show how a case-
injected genetic algorithm can be used to learn goal prior-
ity profiles for use in goal management. This is achieved by
learning how goals might be re-prioritised under certain op-
erating conditions, and how priority profiles can be used to
dynamically guide high-level strategies. Our dynamic system
shows greatly improved results over a version equipped with
static knowledge, and a version that only partially exploits the
space of learned strategies. However, our work raises ques-
tions about how a system must know about its own design in
order to best exploit its own competences.

Introduction

Autonomous AI systems should be aware of their own goals
and be capable of independently formulating behaviour to
address them. We would ideally like to provide an agent with
a collection of competences that allow it to act in novel sit-
uations that may not be predictable at design-time. In par-
ticular, we are interested in the operation of AI systems in
complex, oversubscribed domains where there may exist a
variety of ways to address high-level goals by composing
behaviours to achieve a set of sub-goals taken from a larger
set. Our research focusses how such sub-goals might be cho-
sen (i.e. where dispositions towards certain goals come from
in the first place, and the conditions under which they might
change), and also techniques for goal management in cases
of conflicts between goals. This paper describes an inte-
grated AI system capable of operating in a complex, over-
subscribed domain: the real-time strategy game Starcraft 1.
We show how an integrated system utilising a drive-based
architecture, data mining, learning, and novel strategy selec-
tion techniques can be used in an AI agent capable of playing
a full game.

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1http://eu.blizzard.com/en-gb/games/sc/

Background
A motivational framework (Hawes 2011) employs a system
of drives, each of which generates goals to satisfy the de-
sires of a system, plus processes to select and manage goals.
These processes work in concert as mechanisms to direct
system attention and produce goal-directed behaviour. Cod-
dington and Luck (2003) make the case that motivational
frameworks act as bridges between high-level, abstract plan-
ning systems and the environment in which an integrated
system is situated, providing a sense of context to planning
that would not otherwise be available. This affords the abil-
ity to include a variety of additional semantic information in
the planning process, as well as providing a framework for
dynamic goal generation.

Such frameworks are often studied as components of inte-
grated intelligent systems (Nourbakhsh et al. 1999; Stoytche
and Arkin: 2004; Coddington 2007; Molineaux, Klenk, and
Aha 2010) and artificial life systems (Grand, Cliff, and Mal-
hotra 1997; Scheutz 2004). However, due to the small num-
bers of goals present in existing systems, goal management
is a relatively simple affair. Hanheide et al. (2010) describe
a system similar in architecture to our own that manages
just two goals, whereas the one discussed in this paper must
manage upwards of forty. As the number of goals increases,
the potential for goal conflict grows. This leads to a require-
ment for more sophisticated management processes, such as
dynamic goal re-prioritisation, allowing agents to alter their
behaviour to meet changing operational requirements. In the
oversubscribed problem domains we are interested in, en-
coding all possible operating strategies at design time may
be infeasible. Especially in our example case of the real-
time strategy game Starcraft, which is continuous, asymmet-
ric, and features partial observability. Such domains make
good test-beds for research into AI systems (Buro and Fur-
tak 2003).

Our system plays the Terran race in Starcraft. This is one
of three possible factions, each with their own strengths and
weaknesses. The main goals of the game centre around gath-
ering resources, producing military units and using them to
destroy an opponent’s buildings. The path to achieving these
high-level goals is a matter of player strategy. At the start
of a game, the number of possible actions is constrained; a
player starts off with a base, a handful of worker units, and
enough resources to train one more worker unit. Thus, one

87

Proceedings, The Eighth AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment



sensible course of action is to utilise the existing workers to
gather more resources. The starting resources can be used to
train a new worker or saved to spend later on something else.
A player might then choose to expend resources on con-
structing new buildings, such as a barracks to train marines,
a factory to train mechanised units, or on defensive struc-
tures to ward off attacks. Or by adding more bases, launch-
ing attacks on their opponent, upgrading existing units, or
perhaps do all of these simultaneously. There exists a con-
tinual expansion in the number of, potentially conflicting,
choices that a player must make, and choices made early-on
may not fully show their effects until later in the game.

Our System
Our approach uses a drive-based architecture featuring
multiple, asynchronous goal-generating processes, and a
goal management system. Goal-generating processes en-
code high-level drives, as well as a payload of sub-goals that
can satisfy a particular drive. Goals may vary from abstract,
top-level goals down to more operation-specific sub-goals.
Building on the motive processing work of Sloman et al.
(1993) and Hanheide et al. (2010) we define that a goal gen-
erator is made up of the following basic components:

• A motivating condition describing a state of affairs, or de-
sire, that the system wishes to be in place.

• A measure of agitation representing the degree to which
a particular motivating condition may be violated, along
with a threshold on this value.

• A goal, or set of goals, designed to produce behaviour to
satisfy the motivating condition, each tagged with heuris-
tic information detailing the kinds of resource commit-
ments required in order to pursue a particular goal, and
including a measure of priority.

The role of a goal generator is to process its inputs to pro-
duce a measure of agitation, and to generate goals once a
threshold has been met. Generated goals are then passed on
to management mechanisms, and then on to a planning layer
if scheduled to be pursued. A system can have multiple,
asynchronous goal generators. In some cases it may be that
multiple goals can be generated and pursued concurrently. If
we also consider mutually exclusive goals then a system re-
quires a mechanism to manage which goals can be pursued
at any one time, and which should be scheduled for later
pursuance, or even abandoned. Such management processes
may rely on various forms of meta-information. The man-
agement problem could then be treated as a search to find a
set of goals that best satisfies the needs of the system at a par-
ticular point in time, or according to some overarching plan
or strategy. We also consider priority information attached to
goals. This information can be exploited to determine which
goals should be preferred when conflicts arise. To map goals
to priority values we introduce the concept of a priority pro-
file (PP). As management processes attempt to arbitrate be-
tween conflicting goals, differing PPs result in different ar-
bitration outcomes. The question remains as to where such
mappings might originate, but for now we assume a PP will

Figure 1: High-level system diagram

be supplied at design time. Later we shall discuss how these
configurations can (and should) be learned by a system.

In Starcraft the key element of a high-level strategy is a
build order. This describes how to order a sequence of build-
ing constructions to gain access to particular units and up-
grades. Much like in Chess, players utilise starting strategies
that dictate the first few moves that may lay the foundation
for a single strategy, or a wide range of potentially branching
strategies. Trade-offs exist in our domain, since focusing on
a particular avenue of play necessitates making sacrifices in
other areas, such as expending resources on unit upgrades,
base expansions or defensive structures. These factors lend
themselves to our idea of explicit prioritisation of goals.

Our system’s goal generators primarily encode build or-
der. They include motivators for each in-game unit and
building that can be constructed. The system of motivators
behaves in a greedy fashion, always attempting to generate
goals to build and produce as much as possible. The system
must then perform arbitration on this set of goals to produce
achievable sets of goals in line with high-level strategy.

As mentioned previously, early in a game, once a steady
flow of resources has been secured, the system must decide
which buildings to construct in order to begin the production
of an attacking force. Each building is capable of producing
several different types of unit, such as military units, sup-
port units, or unit upgrades and special abilities. There may
also exist synergy between different unit types – such as the
ability of medics to heal biological units. A typical strategy
might prioritise the production of marines, medics and tanks,
necessitating the construction of barracks and factories. As
these production goals surface they must go through a pro-
cess of arbitration before being sent on to the active set.

When compiling the active set, the system assumes that
all surfaced goals can be pursued concurrently, unless an
analysis of resource costs during arbitration determines that
this is not possible. If this happens it commits resources to
goals with higher priorities. The assumption of concurrent
action means the system is capable of distributing attention

88



and pursuing many goals at once, such as launching attacks,
managing resources, base expansions, production etc. to a
higher degree than human players, who must carefully ra-
tion attentional focus.

Active goals are flagged as being pursued before being
sent to a reactive planning layer. This layer produces a plan
composed of a set of low-level commands, which it then exe-
cutes. Executing plans are continually monitored for errors,
and for completion. Should a plan encounter an error dur-
ing execution it may be abandoned entirely, retried from the
start, or a recovery attempt may take place by making use of
sub-routines to repair or retry specific parts of the plan.

Inspired by the work of Lewis et al. (2011) and Hsieh and
Sun (2008) the system design also exploits information gath-
ered from data mining and analysis of a corpus of event logs
from games played by expert players in professional league
matches. Specifically we employed a time-series analysis of
game-time and army size, which indicates that early in a
game a player tends to prefer a small force to attempt to
harass and hamstring an opponent, whereas during the mid-
game an attacking force will typically be much larger. Later
in a game, players tend to revert to a medium-sized force,
typically of more powerful, expensive units. This allows us
to encode in the system a goal generator equipped with a
drive function relating game-time to army size. Our AI then
attempts to launch attacks once enough units have been pro-
duced to satisfy the drive activation condition at a particu-
lar point in time. The unit make-up of forces can be speci-
fied at design-time, or can come about as a result of the re-
prioritisation of unit production goals. We later show how
the system learns to exploit this aspect of its design, and em-
ploys novel army configurations.

Static Profiles
Our initial implementation was configured with a priority
profile specified by a human designer. Due to the complex-
ity of managing 40 goal representations, designing a PP is a
complex task. This is exacerbated by the need to consider the
priority of a particular goal in the context of the wider strat-
egy, meaning that a small change to one goal priority may
have wide-ranging implications. The context-dependent na-
ture of PPs adds an extra layer of complexity to the configu-
ration process.

Our hand-configured system achieved victories in 53%
of 10,000 games against Starcraft’s built in AI. A compe-
tent human player, or advanced AI, should expect to achieve
a win rate of close to 100%. We also compared our sys-
tem against the EISBot system of (Weber, Mateas, and Jhala
2010), repeating their evaluation of 300 games against Star-
craft’s built in AI. Our static system achieves a win rate of
54%, compared to EISBot’s 73% in the same experiment.
We also entered an early prototype of this system into the
2011 AIIDE Starcraft AI competition2, where it performed
relatively poorly against other AIs. We shall discuss the per-
formance of this system further, but we mention these re-
sults now to serve as a motivating factor for the next phase
of work.

2http://skatgame.net/mburo/sc2011/

Conceptually an AI player capable of learning and adapt-
ing its strategy during the game should perform better than
those that rely on hard-coded strategies – the question that
motivates our following work is then one of how we might
systematically remove pieces of human-encoded knowledge
in our system, such as hand-configured PPs, and replace
them with systems to facilitate more dynamic behaviour.

Learning of Priority Profiles
We would like our system to be able to formulate new
high-level strategies, using past experiences to improve fu-
ture performance. To address this we use Genetic Algo-
rithms (GAs) as a learning mechanism (Janikow 1993;
Louis and McDonnell 2004), specifically the GA of Chop
(2005) (the “Chopper GA”) which employs heuristic mea-
sures to modulate population size.

A PP naturally provides a compact representation of high-
level strategic concerns upon which a GA can act. We score
the fitness of a particular PP using Starcraft’s internal scor-
ing mechanism. This is a multi-dimensional representation
of performance, covering such elements as the amount of
resources gathered, the number of enemy units killed, and
the number of buildings constructed. In professional games
where there is a hard time-limit, this score is often used as a
tie-breaker. We also apply our own weightings to the score
in order to bias in favour of profiles that typically result in
victories in the game, as it is possible to achieve a high score
and yet still ultimately be defeated. As such, when compil-
ing a score, we weight the component relating to destroyed
enemy units 30% higher than other components, and apply
the same overall bonus to scores that resulted in a victory.

Using these measures we instantiate an initial popula-
tion of strategies by applying a Gaussian mutation oper-
ator to a set of five hand-configured profiles – a tech-
nique based on case-injection (Louis and McDonnell 2004;
Johnson and Louis 2004). These five profiles encode basic
approaches to prioritising each goal, and are configured pri-
marily through (human) trial and error. Each PP in the pop-
ulation is used to play games against Starcraft’s built-in AI
players on each map in our training set of seven maps taken
from the 2011 AIIDE Starcraft AI competition map pool. At
the end of a game the weighted score is recorded, which
we take as the fitness of a particular individual against a
particular opponent. The duration of a single game of Star-
craft, played at normal speeds, can potentially be upwards of
an hour. This presents an obstacle for any kind of machine
learning that requires the evaluation of a large number of
games. We evaluate 1000 generations of our GA, equating
to our system playing just over 250,000 games of Starcraft,
which took around three weeks to complete at the maximum
in-game speed. The key to this was the use of a distributed
network of computers, each equipped with several virtual
machines playing instances of the game to evaluate mem-
bers of the current GA population. This allowed us to play
many games in parallel, evaluating between 40 and 50 com-
plete populations per day.

As games are played we record a set of observations made
during the course of play, such as the size of the map, the
time from the start of the game to the opponent’s first attack,

89



the first military units observed being employed by the op-
ponent, and similar strategic concerns. For now such obser-
vations are chosen based on human knowledge of the game,
as we leave open the question as to what information can be
used to most effectively predict an opponent’s strategy for
future work. These observations allow us to make compar-
isons between the performance of particular PPs under given
conditions. That is, we can say that utilising PP x has histor-
ically resulted in a higher score than employing PP y given
that a set of strategic observations z has been made about the
current game state that match more closely those attached to
x than y.

Dynamic Profiles
Humans rarely stick to a single strategy throughout the
course of a game. Instead, players react to the choices made
by an opponent and the various situations that may arise
during play, drawing on past knowledge to make good de-
cisions. We extend our motivation system to do this by in-
cluding the novel capability to dynamically reconfigure its
PP, allowing for the modulation of high-level strategy.

Our training procedure provides a database of PPs and as-
sociated performance scores. The semantic information pro-
vided by the set of observations attached to each allows our
AI to reason about the set of strategies that are available to it.
In order to switch strategies, observations must first be made
in real-time and matched to PPs in the database, producing
a set of candidate strategies and their own observation sets.
This set of candidates may initially be large, and there may
not exist a direct mapping between observations made so far
and those of any of the candidates. In addition, some candi-
date PPs may represent a change in strategy, requiring many
modifications to its own current course of action. This may
repeat as each new observation is made, leading to thrashing
– a rapid switching between many radically disparate strate-
gies, producing behaviour that is incoherent.

To address these issues, we rank each candidate strategy
by calculating a heuristic measure of predicted improve-
ment. First, we take into account the expected improvement
between PPs by calculating the absolute score disparity be-
tween the current PP and the candidate. We then calculate
the strategic distance between them as the sum of Ham-
ming distances between the current and candidate PPs. This
represents the degree of strategic change required to move
between them. Finally, we consider the information dispar-
ity between profiles by comparing differences between ob-
servation sets. We weight each of these factors with indi-
vidual coefficients that allow us to control the attitude the
system has towards switching between PPs (e.g. by valuing
switches that require minimal strategic changes, or control-
ling the measure of risk involved in switching to strategies
where information disparity may be high). We prefer to bias
towards strategically similar PPs, meaning that our system
ranks candidate strategies that are genetically close to the
one currently being followed more highly, along with a small
information disparity (if one exists at all) and thus minimal
risk. With this we approach the problem of PP reconfigu-
ration as one of path-finding through a strategy space. We

Figure 2: Comparison of system performances in terms of
in-game score. Averaged results over 10,000 games.

Static Static-Learned Dynamic

Win Rate 53% 59% 68%

Table 1: Comparison of wins between system types.

use the predicted improvement measure to provide a trajec-
tory through this space using a best-first approach. Strategy
navigation in this way is simplistic, and more sophisticated
methods may provide better performance, such as A* path
finding.

Results
Quantitative Analysis
Figure 2 shows a comparison between three different ver-
sions of our system on in-game scores recorded across
10,000 games, with each game played on a random map
from our acceptance set (3 maps from the aforementioned
map pool not used for training) against a random AI oppo-
nent. The Static system uses a single, non-changing PP en-
coded by a human designer. The Static-Learned system uses
a single, static PP chosen from the database of learned PPs
based on the observations that can be made at the start of a
game (the size of a map, the faction chosen by an opponent,
starting position etc.). The Dynamic system exploits the full
range of PP reconfiguration mechanisms discussed above.
The performance of each system is stable, such that each
system exhibits a consistent level of performance, within
a certain error range as shown. We see that the Dynamic
system out-performs the other systems in terms of in-game
score, indicating that it is more successful along the met-
rics from which the score is calculated – resource gathering,
building and unit production, destruction of enemy struc-
tures etc.

We also compare the win/loss ratios of the three systems,

90



EISBot Static Static-Learned Dynamic

Win Rate 73% 54% 58% 66%

Table 2: Comparison of victory rates between our system
and EISBot.

since scores by themselves do not represent whether a player
has won or lost a game (a long, action-packed game would
allow a player to earn a high score, but may still result in an
eventual loss for that player). Table 1 shows that, on aver-
age, the system capable of strategy-switching out-performs
alternative systems in terms of games in which it is victori-
ous. In terms of the relationship between increased in-game
scores and game victories, in this experiment, an increase
in average game score of 109% appears to correlate with an
increase in win rate by roughly 28% when comparing our
strategy-switching system to our basic system using human
encoded knowledge. Starcraft is a game that requires mas-
tery of both macro-level strategy and micro-level tactics to
succeed. Our approach focuses largely on macro-level strat-
egy, so to see such improvements while mainly focusing on
the macro side of the strategic space is encouraging.

Comparison against existing work
We compare our system against EISBot (Weber, Mateas, and
Jhala 2010), a state-of-the-art Starcraft system which takes
a similarly goal-directed approach to gameplay, though us-
ing more statistical and case-based approaches. They also
evaluate their AI against the in-game AI players of Star-
craft across a selection of maps from the 2010 AIIDE Star-
craft AI tournament 3. This entails playing twenty games
against each of the three AI opponents on each of five maps,
totalling three hundred games. We repeat their experiment
with our systems, allowing us to provide a direct compar-
ison between our work and theirs. Table 2 shows our re-
sults in comparison. We see that our dynamic system does
not perform as well as EISBot, though it does still perform
better than the other versions of itself. The disparity of per-
formance with EISbot may be partially explained by bottle-
necks in our system pertaining to unit micro-management,
something we have briefly touched upon and shall re-visit in
our later discussion.

Qualitative Analysis
We have seen that our system shows increased performance
when harnessing a database of learned strategies, but we are
also interested in why such strategies are effective and result
in better performance. Learning algorithms based on case
initialisation techniques run the risk of creating endless gen-
erations of minor permutations of the same base solutions.
To avoid this it is necessary for the algorithm to escape the
initialisation cases, while maintaining the sense of strategic
viability and success that they provide. We believe this to

3http://eis.ucsc.edu/StarCraftAICompetition/

be the case, as our system exhibits behaviour not encoded at
design time.

Perhaps the most interesting learnt strategy we observed
is one which centres around the use of mechanised Goliath
units and Medic units. Medic units are unable to attack di-
rectly, but are able to heal friendly biological units (such as
other medics). Goliath units are large, ranged units capa-
ble of attacking air and land targets. A strategy learned by
the system prioritises goals associated with the production
and upgrading of these unit types quickly. As the AI moves
armies of units around the map, it attempts to do so such
that all of the comprising units stay within a certain range
of each other, maintaining a rough formation. This is part
of the system that is hard-coded at design time. In this case,
the smaller medic units surround the larger Goliath units,
forming a human shield, protecting the Goliaths with a wall
of medics who, though unable to attack by themselves, heal
each other as they take damage from enemy melee units at-
tempting to break through. At the same time, this enables the
Goliaths to deliver ranged attacks from relative safety. This
is a good example of how the system learns to take advan-
tage of not only game mechanics, but its own design.

Discussion
Although our system was capable of learning successful
strategies, training proved expensive in terms of time and
computational power. One reason for this is that our learning
algorithm was unable to exploit the complex relationships
between goals in our representation of high-level game strat-
egy. Our system falls prey to a phenomenon known in biol-
ogy as Fitness Epistasis (Chan, Aydin, and Fogarty 2003;
Reeves and Wright 1995), meaning in our case that our sys-
tem behaviour comes as a result of potentially complex in-
teractions between its various goals as they are pursued. For
instance, there exists a relationship between the goal to cre-
ate buildings that produce a particular unit, and the goals
to produce the particular units that come from that build-
ing. These relationships are not explicitly represented in our
learning system, and cannot be specifically and directly ex-
ploited or reasoned about. This problem is not as evident in
simpler systems implementing motivation frameworks, due
to the smaller number of goals and ease of arbitration, but as
the quantity of goals increases this problem becomes more
evident. A main question raised by this work then is how
learning in the way we have described might be aided by
semantic information that can be used to describe and ex-
ploit goal relationships, and how those relationships should
be represented. Systems armed with relatively large goal sets
perhaps must be equipped with mechanisms to analyse why
a particular solution might perform poorly, thus allowing for
the focus of learning resources on improving particular areas
of a strategy, while holding other parts of a strategy static.

We also assumed our AI to be competent at every strat-
egy it can produce through the stochastic learning process,
but we see that is not the case due to the prior competences
encoded in the system – specifically micro-management tac-
tics. It is unsurprising then that it evolves strategies that
best exploit these prior competences. To be more success-
ful, the AI must not only learn high-level strategy, but also

91



micro-level unit control tactics (Shantia, Begue, and Wiering
2011). Due to the complexity of the problem, and extensive
solution space, this is significantly more expensive. In more
general terms, the expected benefit from completing a task
(i.e. implementing a certain strategy in our case) might also
require some method of describing how well an agent’s de-
sign or capabilities might be suited to perform that task.

Our general comment on these matters is this – successful
learning of high-level strategy must be informed and com-
plemented by introspective knowledge of a system’s own
architecture and competences. The ways this might be ac-
complished remain an open question, but such internal rep-
resentations should be given the same degree of importance
and careful treatment as representations of operating domain
dynamics.

Conclusion
We presented a motivational architecture that supports the
ability to filter and manage a set of goals in order to support
autonomy in an AI system. We then showed how learning
can be utilised to solve the specific problem of prioritisa-
tion between individual goals. Applying these techniques to
an AI capable of playing the real-time strategy game Star-
craft allowed us to produce a database of learned strate-
gies, allowing the system to out-perform a separate version
reliant on hard-coded knowledge. Our work reveals that a
more detailed and careful treatment of what knowledge a
system possesses – both in terms of relationships between
its goals, as well as its own prior competences – is key to
taking our approach forward. In short, we believe that a sys-
tem must know about how it functions itself in order to best
learn about how its environment functions.

References
Buro, M., and Furtak, T. 2003. Rts games as test-bed for
real-time ai research. Proceedings of the 7th joint conference
on information sciences.
Chan, K.; Aydin, M.; and Fogarty, T. 2003. An epistasis
measure based on the analysis of variance for the real-coded
representation in genetic algorithms. In Evolutionary Com-
putation, 2003. CEC ’03. The 2003 Congress on, volume 1,
297 – 304 Vol.1.
Chop, N. E., and Calvert, D. 2005. The chopper genetic
algorithm a variable population ga. In Proceedings of Artifi-
cial Neuronal Networks in Engineering 2005.
Coddington, A., and Luck, M. 2003. A motivation-based
planning and execution framework. International Journal
on Artificial Intelligence Tools. 13:5–20.
Coddington, A. 2007. Integrating motivations with plan-
ning. In Proceedings of the 6th international joint confer-
ence on Autonomous agents and multiagent systems, AA-
MAS ’07, 127:1–127:3. ACM.
Grand, S.; Cliff, D.; and Malhotra, A. 1997. Creatures: ar-
tificial life autonomous software agents for home entertain-
ment. In Proceedings of the first international conference on
Autonomous agents, AGENTS ’97, 22–29. New York, NY,
USA: ACM.

Hanheide, M.; Hawes, N.; Wyatt, J.; Gobelbecker, M.; Bren-
ner, M.; Sjoo, K.; Aydemir, A.; Jensfelt, P.; Zender, H.; and
Kruijff, G.-J. M. 2010. A framework for goal generation
and management. In In Proceedings of the AAAI Workshop
on Goal-Directed Autonomy.
Hawes, N. 2011. A survey of motivation frameworks for
intelligent systems. Artificial Intelligence 175:1020–1036.
Hsieh, J.-L., and Sun, C.-T. 2008. Building a player
strategy model by analyzing replays of real-time strategy
games. In Neural Networks, 2008. IJCNN 2008. (IEEE
World Congress on Computational Intelligence). IEEE In-
ternational Joint Conference on, 3106 –3111.
Janikow, C. Z. 1993. A knowledge-intensive genetic algo-
rithm for supervised learning. Mach. Learn. 13:189–228.
Johnson, J., and Louis, S. 2004. Case-initialized genetic
algorithms for knowledge extraction and incorporation. In:
Knowledge incorporation in evolutionary computation 57–
80.
Lewis, J. M.; Trinh, P.; and Kirsh, D. 2011. A corpus anal-
ysis of strategy video game play in starcraft: Brood war. In
Proceedings of the 33rd Annual Conference of the Cognitive
Science Society, 687–692.
Louis, S., and McDonnell, J. 2004. Learning with case-
injected genetic algorithms. Evolutionary Computation,
IEEE Transactions on 8(4):316 – 328.
Molineaux, M.; Klenk, M.; and Aha, D. 2010. Goal-driven
autonomy in a navy strategy simulation. In AAAI ’10.
Nourbakhsh, I. R.; Bobenage, J.; Grange, S.; Lutz, R.;
Meyer, R.; and Soto, A. 1999. An affective mobile robot
educator with a full-time job. Artificial Intelligence 114:95–
124.
Reeves, C. R., and Wright, C. C. 1995. Epistasis in ge-
netic algorithms: An experimental design perspective. In
Proceedings of the 6th International Conference on Genetic
Algorithms, 217–224. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc.
Scheutz, M. 2004. Useful roles of emotions in artificial
agents: A case study from artificial life. In AAAI’04, 42–48.
Shantia, A.; Begue, E.; and Wiering, M. 2011. Connection-
ist reinforcement learning for intelligent unit micro manage-
ment in starcraft. In International Joint Conference on Neu-
ral Networks.
Sloman, A.; Hogg, D.; Humphreys, G.; Partridge, D.; Ram-
say, A.; and Beaudoin, L. 1993. A study of motive process-
ing and attention. In Prospects for Artificial Intelligence,
229–238. IOS Press.
Stoytche, A., and Arkin:, R. C. 2004. Incorporating motiva-
tion in a hybrid robot architecture. In Journal Of Advanced
Computational Intelligence and Intelligent Informatics, vol-
ume 8, 269–274.
Weber, B.; Mateas, M.; and Jhala, A. 2010. Applying goal-
driven autonomy to starcraft. In Artificial Intelligence and
Interactive Digital Entertainment.

92




