
Knowledge Guided Development of Videogames ∗

David Llansó, Marco A. Gómez-Martín, Pedro P. Gómez-Martín, Pedro A. González-Calero
Dep. Ingeniería del Software e Inteligencia Artificial

Universidad Complutense de Madrid, Spain
{llanso,marcoa,pedrop,pedro}@fdi.ucm.es

Abstract

Due to the changing nature of videogames, the component-
based architecture is the design of choice for managing game
entities instead of the traditional static class hierarchies. A
component-based architecture lets programmers edit entities
as collections of components, which provide the entity with
new functionalities. Such architecture promotes flexibility
but makes the code more difficult to understand because enti-
ties are built at runtime by linking components.
In this paper we present a semi-automatic process for mov-
ing from a class hierarchy to a component-based architecture.
Through the application of Formal Concept Analysis we pro-
pose a novel technique for automatically identifying candi-
date distributions of responsibilities among components.

Introduction
Game development may involve many months of work by a
large team of people from different disciplines, resulting in
large and complex software systems. To make things worse,
game design is a hard design domain (Thomas and Carroll
1978) with the very ill-defined goal of “being fun”, which
causes that game requirements change throughout the de-
velopment of a game as designers try new ideas. From a
software engineering point of view, the module responsible
for the management of the game entities should be carefully
implemented since it is the most affected module by those
continuous changes, and therefore it must be flexible enough
to be adapted to unexpected changes in the specification.

Traditionally, the code layer responsible of the manage-
ment of the game entities took the form of an inheritance
hierarchy of C++ classes. These classes represent the hier-
archy of entities and procedures that, in some sense, may
be viewed as the actions that these entities were able to
perform. In the last few years, however, the component-
based software architecture is the design of choice for
managing entities in modern video games (Garcés 2006;
West 2006). Instead of having entities of a concrete class,
which define their exact behaviour, each entity is just a com-
ponent container where every functionality, skill or ability
that the entity has is implemented by a component.

∗Supported by the Spanish Ministry of Science and Education
(TIN2009-13692-C03-03)
Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Such architecture promotes flexibility, reusability and ex-
tensibility but makes the code more difficult to understand,
since now the behaviour of a given entity is built at run-time
by linking components. However, this may be confusing for
programmers due to the loss of the class hierarchy where
the entity distribution is seen at a glance. At the same time,
compilers will lose important datatype information, decreas-
ing the amount of errors detected at compile time.

We have been developing Rosette (Llansó et al. 2011), a
visual authoring tool that eases the design of the game do-
main. Rosette allows experts to define entities on a hier-
archical structure, and translates it into a component-based
model.This facilitates the game design work since the en-
tity distribution can be seen at a glance. Our tool also cre-
ates a knowledge-rich representation of the game domain
using OWL (Web Ontology Language1). This fully-fledged
domain model will have a positive impact during different
phases of the development process, bringing the ability to
use reasoning engines for several tasks that go from check-
ing inconsistencies in domain models to creating better AIs
that reason over this annotated knowledge. Finally, generat-
ing code assets from the modelled game domain, Rosette is
based on a Ontology Driven Architecture methodology (Tet-
low et al. 2006) that enables validation and automated con-
sistency checking (Zhu and Jin 2005).

In this paper we concentrate on the non-trivial process
of going from an entity hierarchy specified in Rosette to
an the entity functionality distribution implemented in a
component-based design. We apply a novel technique that
identifies the best candidate component distribution between
entities using Formal Concept Analysis (FCA) (Ganter and
Wille 1997), a mathematical method for data analysis.

The rest of the paper runs as follows. The next sec-
tion describes both the component-based architecture for
videogames, and FCA. The main contribution of the paper
evolves in the two following sections which explain how to
use Rosette for generating a conceptual hierarchy, the pro-
cess of applying FCA to the conceptual hierarchy and how
to generate a candidate distribution of components. The last
section presents related work and concludes the paper.

1http://www.w3.org/TR/owl-features/

8

AAAI Technical Report WS-11-19

 Entity

 - _name
 - _position
 - _orientation
 + setPosition()
 + setOrientation()

 Speaker

 - _soundfile

 + playSound()
 + stopSound()

 RealEntity

 - _physicclass
 - _graphicmodel
 - _physicmodel
 - _scale
 + applyForce()
 + setAnimation()
 + stopAnimation()

 Trigger

 - _physicclass
 - _physicmodel
 - _scale
 + applyForce()
 + touched()

 Persona

 - _soundfile
 - _health
 + playSound()
 + stopSound()
 + hurt()

 ResourceBearer

 - _aiscript
 - _speed
 + steeringTo()
 + goToEntity()
 + goToPosition()

 Player

 - _speed

 + walk()
 + stopWalk()
 + turn()

 Door

 - _isOpen

 + open()
 + close()

 BreakableDoor

 - _health

 + hurt()

Figure 1: An entity hierarchy

Background
Component-Based Architecture
Virtually all implementation alternatives for the game logic
architecture manage the state of the game through a set of
entities: self-contained pieces of logic that can perform dif-
ferent tasks (Bilas 2002). Common entity examples are en-
emies, players’ avatars or interactive items. Not so obvi-
ous entities are pure logic elements like camera sequences,
waypoint markers, or triggers that control plot points in the
story. The module implementing and managing the entities
in a game is at the core of the game engine and, due to its
size and complexity, is responsible for a good part of the
game development effort.

Combining such a software size and complexity with the
moving nature of the system specification as determined by
an evolving game design, we face the need for a highly
flexible and extensible software architecture. The straight-
forward approach of organizing entities in class hierarchies
soon proved too rigid and hard to maintain. Avoiding the use
of multiple-inheritance, the resulting design tends to gener-
ate base classes with too many operations, which typically
are not meaningful to some of its subclasses. For example,
the base class of Half-Life had 87 methods and 20 public at-
tributes while Sims ended up with more than 100 methods.

Still within the object-oriented paradigm, but aggressively
embracing dynamic object composition instead of static
class hierarchies, the component-based software architec-
ture is the design of choice for managing entities in mod-
ern video games (Garcés 2006; West 2006). Instead of hav-
ing entities of a concrete class, which define their exact
behaviour, now each entity is just a component container
where, every functionality, skill or ability that the entity has,
is implemented by a component.

In order to understand the rationale of a component-based
architecture, we can see how a class hierarchy (Figure 1),
inspired in the Javy 2 game (Gómez-Martín et al. 2007), can

 PlayerControllerComp

 - _speed

 - walk()
 - stopWalk()
 - turn()

 PhysicsComp

 - _physicsmodel
 - _physicsclass
 - _scale
 - setPosition()
 - setOrientation()
 - ApplyForce()

 HealthComp

 - _health

 - hurt()

 GraphicsComp

 - _graphicmodel
 - _scale
 - setPosition()
 - setOrientation()
 - setAnimation()
 - stopAnimation()

 Entity

 - _name
 - _position
 - _orientation
 - _components
 + setPosition()
 + setOrientation()
 + update()
 + emmitMessage()

 TriggerComp

 - touched()

 DoorComp

 - _isOpen

 - open()
 - close()

 AIComp

 - _aiscript

 IComponent

 - _entity
 - _messages
 + update()
 + handleMessage()

 SpeakerComp

 - _soundfile

 - setPosition()
 - setOrientation()
 - playSound()
 - stopSound()

 GoToComp

 - goToEntity()
 - goToPosition()

 SteeringToComp

 - _speed

 - steeringTo()

Figure 2: A component-based architecture

be transformed into a single Entity class with a list of com-
ponents as shown in Figure 2. Notice how methods from
classes in the hierarchy of entities now become methods
in components. For example, the walk functionality moves
from the Player class to the PlayerControllerComp compo-
nent.

From the entity point of view, every component that be-
longs to it is just an IComponent. So, component meth-
ods such as walk() cannot be externally invoked. For
that purpose, the component-based architecture incorpo-
rates a version of the Command design pattern, which
transform method invocation into objects that are passed
around (Gamma et al. 1995). These objects are usually
called messages. Therefore, the walk() method is only in-
voked when a walk message is processed by the PlayerCon-
trollerComp component.

As entities are now just a list of components, the concrete
components that constitute them are specified in an external
file that is processed in execution time, making the game
entities data-driven.

Formal Concept Analysis
Formal Concept Analysis (FCA) is a mathematical method
for data analysis, knowledge representation and information
management. It was proposed by Rudolf Wille (Wille 1982)
and during the last decades it has been used in numerous ap-
plications in different domains, like Psychology, Medicine,
Linguistics and Computer Science among others.

FCA is applied to any collection of items (or formal ob-
jects according to FCA nomenclature) described by means
of the set of properties (or formal attributes) they have.
When FCA is applied over a set of objects, data is structured
and grouped into formal abstractions called formal concepts.
These formal concepts can be seen as a set of objects that
share a common set of attributes. Therefore, the result of
the application of FCA over a collection of items provides
an internal view of the conceptual structure and allows find-
ing patterns, regularities and exceptions among them. More-
over, formal concepts may be sorted using the subconcept-
superconcept relationship, with the set of objects of subcon-

9

cepts being a subset of the ones of superconcepts, and recip-
rocally, the set of attributes of subconcepts being a superset
of the ones of superconcepts.

The items and attributes are given to the FCA in form of
a formal context. A formal context is defined as a triple
〈G,M, I〉 where G is the set of objects, M the set of at-
tributes, and I ⊆ GxM is a binary (incidence) relation ex-
pressing which attributes describe each object (or which ob-
jects are described using an attribute), i.e., (g,m) ∈ I if the
object g carries the attribute m, or m is a descriptor of the
object g. When the sets are finite, the context can be speci-
fied by means of a cross-table, where rows represent objects
and columns attributes. A given cell is marked when the
object of that row has the attribute of the column.

We can define a concept by enumerating the set of objects
that belong to that concept (its extent) or listing the attributes
shared by all those objects (its intent). Formally, we define
the prime operator that when applied to a set of objects A ⊆
G returns the attributes that are common to all of them:

A′ = {m ∈M | (∀g ∈ A)(g,m) ∈ I}
and when applied over a set of attributes, B ⊆ M , its

result is the set of objects that have those attributes:

B′ = {g ∈ G | (∀m ∈ B)(g,m) ∈ I}
With this definition, we may now define the formal con-

cept: a pair (A,B) where A ⊆ G and B ⊆ M , is said to
be a formal concept of the context 〈G,M, I〉 if A′ = B and
B′ = A. A and B are called the extent and the intent of the
formal concept, respectively.

The set of all the formal concepts of a context 〈G,M, I〉
is denoted by β(G,M, I) and it is the output of the FCA.
The most important structure on β(G,M, I) is given by the
subconcept - superconcept order relation denoted by ≤ and
defined as follows (A1, B1) ≤ (A2, B2) where A1, A2,
B1 and B2 are formal concepts and A1 ⊆ A2 (which is
equivalent to B2 ⊆ B1 see (Ganter and Wille 1997)). This
relationship takes the form of a concept lattice. Nodes of the
lattice represent formal concepts and the lines linking them
symbolize their subconcept-superconcept relationship.

A concept lattice may be drawn for further analysis by
humans (Figure 4). This representation uses the so called
reduced intents and reduced extents. The reduced extent of
a formal concept is the set of objects that belong to the ex-
tent and do not belong to any subconcept. On the other hand,
the reduced intent comprises attributes of the intent that do
not belong to any superconcept. In that sense to retrieve the
extension of a formal concept one needs to trace all paths
which lead down from the node to the bottom concept to col-
lect the formal objects of every formal concept in the path.
By contrast, tracing all concepts up to the top concept and
collecting their reduced intension gives its intension.

Methodology for Obtaining the Lattice
In order to alleviate the handicaps of the component-based
architecture, we let experts define a conceptual entity hier-
archy through a visual interface (Figure 3). This is similar
to define a UML class diagram: entities will be placed into

set
Pos

itio
n

set
Anim

ati
on

tou
ch

ed

_p
hy

sic
scl

ass

_a
isc

rip
t

. . .

Entity . . .
Trigger . . .
Persona . . .

ResourceBearer . . .

Table 1: Partial formal context of the game domain

the hierarchy and will be populated with attributes and func-
tionalities.

Before applying FCA, the first step is to automatically ex-
tract the information of the entities from the entity hierarchy
modelled by the experts and express it in terms of a for-
mal context. This formal context 〈G,M, I〉 is built in such
a way that G contains every entity type (such as Persona)
and M will have every attribute and functionality (_aiscript
or setPosition). Finally, I is the binary (incidence) relation
I ⊆ GxM , expressing which attributes of M describe each
object ofG or which objects are described using an attribute.

Recovering our running example, Table 1 shows a partial
view of the formal context in a cross-table. It shows the fea-
tures of entity types at a glance. For example, the Persona
entity type has the setPosition and the setAnimation func-
tionalities and the _physicsclass attribute among others, as
also shown in Figure 1.

The application of FCA over such a formal context
gives us a set of formal concepts and their relationships,
β(G,M, I). Figure 4 shows a hierarchical structure of for-
mal concepts ordered by the subconcept-superconcept rela-
tionship and for every formal concept it indicates its reduced
intent and extent. Starting from the lattice (Figure 4) and
with the goal of extrapolating the formal concepts to a pro-
gramming abstraction, a naïve approach is to generate a hi-
erarchy of classes with multiple inheritance. Unfortunately,
the result is a class hierarchy that makes an extensive use of
multiple inheritance, which is often considered as undesir-
able due to its complexity.

From Entities to Components
Although the approach of converting formal concepts into
classes has been successfully used by others (Hesse and
Tilley 2005; Godin and Valtchev 2005), it is not valid in our
context. This approach is based on the analysis of the ex-
tents of the formal concepts. Our approach is the opposite;
instead of focusing on the objects (reduced extents of the
formal concepts), we set the foundations of the technique in
the attributes (reduced intents). After all, our final goal is to
remove inheritance and to identify common entity features in
order to create independent classes (components).

The novel technique implemented in Rosette has two
phases. The first one is an automatic process that presents
a candidate set of components to the expert. In the second
phase we provide the expert with some mechanisms in case

10

Figure 3: Rosette, the game entity editor

he/she wants to alter somehow the generated component dis-
tribution.

Inferring Components from the Lattice
When automatically inferring a component-based architec-
ture, the first approach is to create an Entity base class, with
no attributes but a list of components, and propose the set
of components needed for the actual game by analysing the
formal lattice. However we can benefit from it also when
building the generic entity. If the top concept (>) has a non-
empty intent, their attributes and functionalities are, by def-
inition, found in every entity type and, therefore, it makes
sense to have them in the Entity base class. This means that
the generic entity class may have some general attributes and
may be able to carry out some functionality (_name attribute
or setPosition action in our example of Figure 4).

After that we can proceed with the analysis of the formal
concepts. The idea is based on the fact that when a formal
concept has a non-empty reduced intent this means that the
concept contributes with some attributes and/or functionality
that has not appeared so far (when traversing the lattice top
to bottom). The immediate result is that the reduced extent
of objects differs, from the objects in the superconcepts, in
those properties. So, the attributes and functionalities in the
reduced intent of every of these formal concepts should be
consider to build a component. At the same time, Rosette
states that all the instances of the entities in the extent of the
formal concept will include the new created component.

Summarizing, in Figure 4, the reduced intent of the formal
concept number 1 would represent the generic Entity whilst
reduced intent of the formal concepts 2, 3, 4, 5, 7, 8, 9, 11
and 12 would represent the components of the architecture.
For example, when analysing the formal concept labelled
11, our technique will extract a new component contain-

ing the features turn, stopWalk and walk, and will annotate
that all entities (generic instances) of the concept Player will
need to include this component. The Player will also con-
tain other components extracted from the formal concepts
above it: 2, 3, 5, 7 and 9.

Before the candidate component-based system is pre-
sented to the expert, the components are automatically
named. Component names are created by concatenating
each attribute name of the component or, when no one is
available, by concatenating all the message names that the
component is able to carry out. Thus, the resultant candi-
date distribution of components proposed by Rosette for the
Figure 1 is the one shown in Figure 5, where components
have been renamed for legibility.

Expert Tuning
The automatic process detailed above ends up with a collec-
tion of components with autogenerated names and the Entity
base class that shares some common functionality. This re-
sult is presented to developers, who may edit it using up to
four different operators:

1. Rename: proposed components are automatically named
according to their attributes. The first operator users may
perform is to rename them in order to clarify its purpose.

2. Split: in some cases, two functionalities not related to
each other may end up in the same component due to the
entity type definitions (FCA will group two functional-
ities when both of them appear together in every entity
type created in the formal hierarchy). In that case, Rosette
gives developers the chance of splitting them in two dif-
ferent components. The expert will then decide which
features remain in the original component and which ones
are moved to the new one (which is manually named).

11

Figure 4: Concept lattice

3. Move features: this is the opposite operator. Sometimes
some features lie in different components but the expert
considers that they must belong to the same component.
In this context, features of one component (some elements
of the reduced intent) can be transferred to a different
component. In the lattice, this means that some attributes
are moved from a node to another one. When this move-
ment goes up-down (for example from node 9 to node 10),
Rosette will detect the possible inconsistency (entities ex-
tracted from node 11 would end with missed features) and
warns the user to clone the feature also in the component
generated from node 11.

4. Add features: some times features must be copied from
one component to another one when FCA detects rela-
tionships that will not be valid in the long run. In our
example, the dependency between node 3 and 4 indicates
that all entities with a graphic model (4, GraphicsComp)
will have physics (3, PhysicsComp), something valid in
the initial hierarchy but that is likely to change afterwards.
With the initial distribution, all graphical entities will have
an _scale thanks to the PhysicsComp, but experts could
envision that this should be a native feature of the Graph-
icsComp too. This operator let them add those “missing”
features in order to avoid dependencies.

Comparing the set of components automatically inferred
by Rosette (Figure 5) with the real distribution of compo-
nents in the Javy 2 game (Figure 2) we realize that they are
quite similar. The example presented in the paper only con-
tains a portion of the total number of entity types in the game
but, in our experiments, with more entity types the number
of real and proposed components is more alike. In the case
that the expert wanted to modify the proposed component ar-

 PlayerControllerComp

 - walk()
 - stopWalk()
 - turn()

 PhysicsComp

 - _physicsmodel
 - _physicsclass
 - _scale

 - ApplyForce()

 HealthComp

 - _health

 - hurt()

 GraphicsComp

 - _graphicmodel

 - setAnimation()
 - stopAnimation()

 Entity

 - _name
 - _position
 - _orientation
 - _components
 + setPosition()
 + setOrientation()
 + update()
 + emmitMessage()

 TriggerComp

 - touched()

 DoorComp

 - _isOpen

 - open()
 - close()

 AIAndMovementComp

 - _aiscript

 - goToEntity()
 - goToPosition()
 - steeringTo()

 IComponent

 - _entity
 - _messages
 + update()
 + handleMessage()

 SpeakerComp

 - _soundfile

 - playSound()
 - stopSound()

 SpeedAttComp

 - _speed

Figure 5: The candidate components proposed by Rosette

chitecture, he has the means to do it although the proposed
component distribution is a totally functional one.

With the purpose of demonstrating how the expert would
use the previous operators to transform the proposed set of
components, we apply some modifications to the automat-
ically proposed architecture (Figure 5) that turn it into the
real classes of Javy 2 (Figure 2).

First of all, the SpeedAttComp has the _speed attribute
but no functionalities. In designing terms this is accept-
able, but rarely has sense from the implementation point
of view. Speed is used separately by PlayerController-
Comp and AIAndMovementComp to adjust the movement,
so we will apply the MOVE FEATURES operator moving (and
cloning) the _speed feature to both components, and remov-
ing SpeedAttComp completely. This operator is coherent
with the lattice (Figure 4): we are moving the intent of the
node labelled 9 to both subconcepts (11 and 12).

Then, the SPLIT operator is applied over the AIAndMove-
mentComp component twice. In the real implementation the
AIAndMovementComp is divided in three components whilst
in the Rosette suggestion resides in the same component. In
the first application of the SPLIT operator, the goToEntity
and the goToPosition actions are moved to a new component,
which is named GoToComp. The second application results
in the new SteeringToComp component with the steeringTo
action and the _speed attribute. The original component is
renamed as AIComp by the RENAME operator and keeps the
_aiscript attribute.

Finally, although the Entity class has received some
generic features (from the top concept, >), they are espe-
cially important in other components. Instead of just use
those features from the entity, programmers would prefer
to maintain them also in those other components. For this
reason, we have to apply the ADD FEATURES operator over
the GraphicsComp, PhysicsComp and SpeakerComp com-
ponents in order to add the setPosition and the setOrienta-
tion functionalities to them.

12

When the expert feedback is ended, the entity descrip-
tion should be stored. Rosette stores the inferred description
in the same fully-fledged OWL domain model that contains
the conceptual entity hierarchy, enriching this way the se-
mantic knowledge of the game. This kind of domain is our
solution to store not only the definitions of the entities but
also extra semantic knowledge about entities, components,
messages (actions to carry out) and attributes. This means
that, at semantic level, the domain is thoroughly described
knowing which components belong to every entity type but
also which messages and attributes describe every compo-
nent. In typical approaches this knowledge remained hidden
in the code. This knowledge is then used to check errors in
the domain and in future steps of the game development (as
creating AIs that reason over the domain).

Related Work and Conclusions
Regarding related work, we can mention other applica-
tions of FCA to software engineering. The work described
in (Hesse and Tilley 2005) focuses on the use of FCA during
the early phases of software development. They propose a
method for finding or deriving class candidates from a given
use case description. Also closely related is the work de-
scribed in (Godin and Valtchev 2005), where they propose
a general framework for applying FCA to obtain a class hi-
erarchy in different points of the software life-cycle: design
from scratch using a set of class specifications, refactoring
from the observation of the actual use of the classes in ap-
plications, and hierarchy evolution by incrementally adding
new classes. The main difference with the approach pre-
sented here is that they try to build a class hierarchy while
we intend to distribute functionality among sibling compo-
nents, which solve the problem with multiple inheritance in
FCA lattices.

Javy 2, our test-bed educational game was initially devel-
oped using an entity hierarchy (a portion was shown in fig-
ure 1), and afterwards manually converted to a component-
based architecture (Figure 2). When Rosette was available,
we tested it using the original Javy 2 hierarchy, and the ini-
tial component distribution was quite acceptable when com-
pared with the human-made one. We could have saved a
significant amount of time if Rosette had been available at
the time.

Although it is out of the focus of this paper, we are
successfully working in an iterative software design of
videogames using FCA. This methodology will extend the
contribution of this paper by letting experts modify the entity
hierarchy sometimes during the game development, where
Rosette provides new component suggestion retaining every
modification the expert did during the previous steps.

In the long term, our goal is to support the up-front de-
velopment of games with a component-based architecture
where entities are connected to a logical hierarchical view.
Such goal will require to somehow make information flow
not only from logical entities to components but also the
other way around. The initial entity hierarchy is sure to
change once some code has been filled in the generated
place holders or low-level attributes have been added. Al-
though some effort has been done in order to ensure co-

herence (Llansó et al. 2011), we need to improve the code
generation phase to do it reversibly. Rosette needs a way
to preserve hand-made code if the hierarchy is changed and
classes must be regenerated. Even more, operators applied
to the initial component distribution should be automatically
reapplied into the lattice in a coherent way if changes in the
hierarchy allow them. We could thus maintain simultaneous
views of an implementation in both paradigms (hierarchical
an component-based), allowing intuitive edits in whichever
is the most natural representation without losing the ability
to track inconsistencies created in the other view.

References
Bilas, S. 2002. A data-driven game object system. In Game
Developer Conference.
Gamma, E.; Helm, R.; Johnson, R. E.; and Vlissides, J.
1995. Design Patterns: Elements of Reusable Object-
Oriented Software. Massachusetts, USA: Addison Wesley
Professional.
Ganter, B., and Wille, R. 1997. Formal concept analysis.
Mathematical Foundations.
Garcés, S. 2006. AI Game Programming Wisdom III.
Charles River Media. chapter Flexible Object-Composition
Architecture.
Godin, R., and Valtchev, P. 2005. Formal Concept Analy-
sis. Springer Berlin / Heidelberg. chapter Formal Concept
Analysis-Based Class Hierarchy Design in Object-Oriented
Software Development, 304–323.
Gómez-Martín, P. P.; Gómez-Martín, M. A.; González-
Calero, P. A.; and Palmier-Campos, P. 2007. Using
metaphors in game-based education. In chuen Hui, K.; Pan,
Z.; kit Chung, R. C.; Wang, C. C.; Jin, X.; Göbel, S.; and
Li, E. C.-L., eds., Edutainment’07, LNCS 4469, 477–488.
Springer.
Hesse, W., and Tilley, T. A. 2005. Formal Concept Analysis
used for Software Analysis and Modelling, volume 3626 of
LNAI. Springer. 288–303.
Llansó, D.; Gómez-Martín, M. A.; Gómez-Martín, P. P.; and
González-Calero, P. A. 2011. Explicit domain modelling in
video games. In International Conference on the Founda-
tions of Digital Games (FDG). Bordeaux, France: ACM.
Tetlow, P.; Pan, J.; Oberle, D.; Wallace, E.; Uschold, M.;
and Kendall, E. 2006. Ontology driven architectures and
potential uses of the semantic web in software engineering.
W3C, Semantic Web Best Practices and Deployment Work-
ing Group, Draft.
Thomas, J., and Carroll, J. 1978. The psychological study
of design. Design Studies 1(1):5–11.
West, M. 2006. Evolve your hiearchy. Game Developer
13(3):51–54.
Wille, R. 1982. Restructuring Lattice Theory: an approach
based on hierarchies of concepts. Ordered Sets.
Zhu, X., and Jin, Z. 2005. Ontology-based inconsistency
management of software requirements specifications. In Vo-
jtáŝ, P.; Bieliková, M.; Charron-Bost, B.; and Sýkora, O.,
eds., SOFSEM 2005, LNCS 3381. Springer. 340–349.

13

