
Simulating Mechanics to Study Emergence in Games

Joris Dormans
Amsterdam University of Applied Sciences

Duivendrechtsekade 36-38
1096 AH, Amsterdam, the Netherlands

Abstract

This paper presents the latest version of the Machi-
nations framework. This framework uses diagrams to
represent the flow of tangible and abstract resources
through a game. This flow represents the mechanics that
make up a game’s interbal economy and has a large
impact on the emergent gameplay of most simulation
games, strategy games and board games. This paper
shows how Machinations diagrams can be used simu-
late and balance games before they are built.

Games that display dynamic, emergent behavior are hard to
design. One of the biggest challenges is that the mechan-
ics of these games require a delicate balance. Developers
must rely on frequent game testing to test for this balance.
This requires much time, but also a functional prototype of
the game. This paper looks into simulating games in early
stages of development, before prototypes are built, in order
to design dynamic but balanced game mechanics effectively
and efficiently. To this end it utilizes the most recent version
of the Machinations framework for representing game me-
chanics. The Machinations tool has been extended to simu-
late dynamic games and to collect data from a multitude of
simulated play session. In the second section of the paper,
the tool is put to the test by simulating and balancing the
game SimWar, which has been described by Will Wright,
but never was built.

The Machinations Framework
The Machinations framework formalizes a particular view
on games as rule-based, dynamic systems. It focuses on
game mechanics and the relation of these mechanics and
the dynamic gameplay that emerges from them. It is based
on the theoretical notion that structural features of game
mechanics are for a large part responsible for the dynamic
gameplay of the game as a whole. Game mechanics and
their structural features are not immediately visible in most
games. Some mechanics might be close to a game’s surface,
but many are obscured by the game’s system. Only a de-
tailed study of a game’s mechanics can shed a light on the
game’s structure. Unfortunately, the models that are used to
represent game mechanics, such as representations in code,

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

finite state diagrams or Petri nets, are complex and not really
accessible for non-programmers. What is more, these are
ill-suited to represent games at a sufficient level of abstrac-
tion, on which structural features, such as feedback loops,
become immediately apparent. To this end, the Machina-
tions framework includes a diagrammatic language: Machi-
nations diagrams which are designed to represent game me-
chanics in a way that is accessible, yet retains the same struc-
tural features and dynamic behavior of the game it repre-
sents. Earlier versions of the framework were presented else-
where (Dormans 2008; 2009). The version presented here
uses the same core elements as the previous version, al-
though there have been minor changes and improvements.
The main difference is a change in the resource connections
which now can have only one label, where it could have two
before (see below). In addition, support for artificial players,
charts representing game state over time and collecting data
from many simulated sessions are new additions.

The theoretical vision that drives the Machinations frame-
work is that gameplay is ultimately determined by the flow
of tangible and abstract resources through the game sys-
tem. Machinations diagrams represent these flows and fore-
ground the feedback structures that might exist within the
game system. It is these feedback structures that for a large
part determine the dynamic behavior of games (Hunicke,
LeBlanc, and Zubek 2004; Salen and Zimmerman 2004).
This is consistent with findings in the science of complex-
ity that studies dynamic and emergent behavior in a wide
variety of complex systems (Wolfram 2002; Fromm 2005).

Machinations diagrams have an exact and consistent syn-
tax. This means that the diagrams can be interpreted by a
computer, in fact, the Machinations software tool imple-
ments diagrams. In other words, they are interactive and
dynamic, just like the games they are modeling, and can
be executed in a similar way. It allows dynamic models
of games to be designed and tested quickly and efficiently.
The tool also allows the designer to quickly gather quantita-
tive data from simulated play sessions. Unfortunately this
property of the software tool does not translate to paper;
the interactive tool, and the examples discussed in this pa-
per, can be found on the Machinations web page: http:
//www.jorisdormans.nl/machinations.

2

AAAI Technical Report WS-11-19



Figure 1: Elements of Machinations diagrams and example
constructions.

Resource Flow
The Machinations framework utilizes the idea of ‘internal
economy’ (Adams and Rollings 2007) to model activity, in-
teraction and communication between game parts within the
game system. A game’s economic system is dominated by
the flow of resources. In games resources can be anything:
from money and property in Monopoly, via ammo and health
in a first person shooter game, to experience points and
equipment in a role-playing game. Even more abstract as-
pects of games, such as player skill level and strategic posi-
tion can be modeled through the use of resources. A game’s
internal economy consists of these resources as well as the
entities or actions that cause them to be produced, consumed
and exchanged. In the case of Risk, territories, armies and
cards are the main resources, the players’ option to build
will produce more armies, while with an attack the player
risks armies to gain territories and cards. This makes build-
ing and attacking important actions that affect the economic
state of the game.

Figure 1 contains the basic elements found in Machina-
tions diagrams and some example constructions. The flow of
resources is dictated by resource connections. These are rep-
resented as arrows that connect different elements in a dia-
gram. Resource connections can have a label that determines
the flow rate. Many labels are numbers, but the Machinations
framework also uses simple expressions or icons to represent
flow rates based on randomness, skill or other uncertain fac-
tors outside the game mechanics. When the label is omitted
the flow rate of a resource connection is considered to be
one.

The most basic elements connected by resource connec-
tions are pools. These are represented as an open circle. A
pools collects resources that flow into it. Pools can be used
to represent any collection of resources in a game. The re-
sources themselves are represented as small circles. Differ-
ent colors can be used to denote different types of resources.
When there are more than twenty-five resources on a sin-
gle pool, the resources are represented as a single number
indicating their total.

Machinations diagrams are close to Petri nets. In a Machi-
nations diagram resources can move from element to ele-
ment, just like tokens in a Petri net move between places.
The state of a Machinations diagram is determined by
the distribution of resources over the entire diagram. This
also means that Machinations diagrams are time-based. Re-
sources can actually flow from one element to another over
time. The time step at which the diagrams operate is arbi-
trary. In the online implementation the time step defaults to
one second, which means that elements are checked and ac-
tivated once every second. This value can easily adjusted.

Elements in a Machinations diagram can be interactive.
Interactive elements are depicted with a double outline and
represent player actions. In the online version of the Machi-
nations tool a user can click an interactive element to fire it.
A firing pool, for example, will try to pull resources through
its inputs. The number of resources pulled is determined by
the rate of the individual input resource connection.

Communication of State
An important difference between Machinations diagrams
and Petri nets is that in a Machinations diagram the distribu-
tion of resources represent the current state of a game, and
this distribution can alter the subsequent flow or (de)activate
nodes. These relations are indicated by state connections,
which are represented as dotted arrows (see figure 1) with
labels. State connections indicate how the state of a pool,
the number of resources on it, affects other elements in the
diagram.

There are two special instances of state connections: trig-
gers and activators. Triggers are state connections with a star
(‘*’) as its label. An element that has an outgoing trigger,
will activate the elements that trigger leads to when it is sat-
isfied: when it received the number of resources along all of
its inputs as indicated by their respective flow rates.

An activator is a state connection that has a condition as
its label. This condition can be written down as a simple
expression (for example ‘==0’, ‘<3’, ‘>=4’ or ‘!=2’) or a
range of values (for example ‘3-6’) if the state of the el-
ements where the activator originates meets this condition
then the element where the activator ends can fire, otherwise
it is inhibited.

Controlling Resource Flow
Pools are not the only possible elements in a Machinations
diagram. Gates are another type of element. In contrast to a
pool a gate does not collect resources, instead it immediately
redistributes them. Gates are represented as diamond shapes
and can have multiple outputs. Instead of a flow rate each
output will either have a probability or a condition specified

3



by the output’s label. The first type of outputs are referred
to as probable outputs while the other are referred to as con-
ditional outputs. All outputs of a single gate must be of the
same type: when one output is probable, all are considered
to be probable and when one output is conditional, all are
considered to be conditional.

Probabilities can be represented as percentages (for ex-
ample ‘20%’) or weights indicated by single numbers (for
example ‘1’ or ‘3’). In the first case a resource flowing into
a gate will have a probability equal to the percentage indi-
cated by each output, the sum of these probabilities should
not add up to more than 100 percent. If the total is less than
100 percent there is a chance that the resource will not be
sent along any output and is destroyed. In the latter case the
chance that a resource will flow through a particular output
is equal to the weight of that output divided by the sum of
the weights of all outputs of the gate.

An output is conditional when its label represents an ex-
pression (such as ‘>3’ or ‘=0’ or ‘3-5’), then all conditions
are checked every time a resource arrives at the gate and
one resource is sent along every output which condition is
met. This might lead to duplication of resources, or, when
no condition is met, to the destruction of the resource.

Four Economic Functions
In their discussion of a game’s internal economy repre-
sented by the flow of resources, Adams and Rollings iden-
tify four basic economic functions: sources, drains, convert-
ers and traders (Adams and Rollings 2007). Sources cre-
ate resources, drains destroy resources. Converters replace
one type of resource for another, while traders allow the ex-
change of resources between players or game elements. In
theory, a pool or combination of pools and gates can fulfill
all these functions, but for clarity it makes sense to introduce
special elements to represent sources, drains, converters and
traders.

Sources are elements that produce resources. In Risk, the
building action is a source: it produces armies. Likewise
passing ‘Go’ in Monopoly also is a source: it generates
money. Some sources are automatic, while other sources
need to be activated, either by the actions of the player or
some other occurrence in the game. The rate at which a
source produces resources is a fundamental property of a
source. Adams and Rollings distinguish between ‘limited’
and ‘unlimited’ sources (Adams and Rollings 2007). A lim-
ited source can be easily represented by a pool without in-
puts that starts with a number of resource on it. To represent
unlimited sources, the Machinations framework includes a
special source element represented as a triangle pointing up-
wards.

Drains are elements that consume resources. In an ad-
venture game where you can cross hot lava at the cost of
loss of health points, the lava acts as a drain. Like sources,
drains can be automatic, activated by player actions or other
events in the game. And, they have different types of rates
too: some drains consume resources at a steady rate while
others consume resources at random rates or intervals. The
Machinations framework includes a special drain element
represented as a triangle pointing downwards.

Converters convert one resource into another. In a shooter
game, killing enemies might invoke a converter. In this case
ammunition is used in an attempt to kill, which in turn, when
the enemy is put down, might be converted in new ammu-
nition or health packs dropped by the enemy. Converters act
exactly as a drain that triggers a source, consuming one re-
source to produce another. As with sources and drains, con-
verters can have different types of rates to consume and pro-
duce resources. The Machinations framework represents a
converter as a vertical line over a triangle pointing to the
right.

Traders are elements that cause resources to change own-
ership: two players could use a trader to exchange resources.
The board game Settlers of Catan is built around a trading
mechanism allowing players to trade the five types of re-
source cards among each other against exchange rates they
establish among themselves. A player that has many of tim-
ber cards, might for example decide to exchange three tim-
ber cards for two wool cards of another player. Compared
to converters, traders are relatively rare; most of the time,
the behavior of a trader is implemented as a converter. For
example, depending on the implementation, the merchants
in many computer role-playing games where players can
barter for goods and equipment are converters not traders.
The Machinations framework represents a trader as a verti-
cal line over two triangles pointing left and right.

Automated Machinations Diagrams
The online Machinations tool allows users to draw Machi-
nations diagrams and also run diagrams. While running, the
resources in a diagram flow from element to element and
flow rates change according to their distribution. In a run-
ning diagram nodes have one of three activation modes:

1. Automatic nodes fire once every time step. They are
marked with a star.

2. Interactive elements fire when clicked by the user. They
have a double outline.

3. Passive elements do not fire at all, unless they are acti-
vated by a trigger.

The automated version of the diagrams also introduces
three new elements: end conditions, charts, and artificial
players. End conditions specify when a diagram has reached
an end state. Usually such a state is reached when a spec-
ified number of resources is collected or when a particular
resource is completely drained. End conditions need to be
activated through an activator. End conditions can be used
to set goals or build simple timers to limit the game’s length.
Diagrams that have end conditions are suited to ‘quick run’:
instead of displaying the dynamic behavior as it develops
over time, the tool runs the game to its completion immedi-
ately. Diagrams can also be quick run several times in suc-
cession, in this case the tool will keep track of which end
condition was reached how many times.

Charts can be used to plot the state of pools into a graph.
Pools and graphs are connected using state connections, but
to avoid visual clutter the tool represents these connections
as two small arrows, one leading out of the pool and one

4



leading into the graph. The color of these arrows corre-
sponds with the color of the lines in the graph. The data
collected by these graphs can be exported as simple comma
separated values to be analyzed further by other tools.

Artificial players allow the use of the Machinations tool
to simulate players interacting with the diagram. This intro-
duces the possibility of automated multiple tests runs. The
implementation of artificial players is rudimentary, but ef-
fective. Basically the artificial player has a list of options to
activate a specified element and either goes through these
options in sequence, or works down the list testing a speci-
fied probability for each option until it finds one element to
activate. These options might be affected by the state of a
pool. For example, the artificial player script for a diagram
that contains one pool labeled ‘upgrades’ and two other ele-
ments labeled ‘invest’ and ‘run’ might read:

invest = 100 - upgrades * 30
run = 100

Automated Machinations diagrams offer the opportunity
to collect data on the behavior of a game system before
the game is built. It allows designers to test typical play-
ing strategies. The artificial players do not have very ad-
vanced artificial intelligence, but they can still easily be pro-
grammed to follow certain strategies, and will happily do so
over thousands of runs. As will become clear in the discus-
sion of SimWar, this can be a valuable tool in identifying
dominant strategies and testing the balance in a game. Ar-
tifical players can be activated and deactivated individually,
allowing the user to define different artificial players set up
to represent and experiment with different strategies within
a single diagram.

Case study: SimWar
The Machinations framework can be used to study existing
games and support the design of new games. To illustrate the
use of the framework I choose to discuss a game of some
renown within the design community, yet has never been
built:SimWar. SimWar was presented during the Game De-
velopers Conference in 2003 by game designer Will Wright,
who is well-known for his published simulation games: Sim-
City, The Sims, etc (Wright 2003). SimWar is a hypothetical,
minimalistic war game that features only three units: facto-
ries, defensive units, and offensive units. These units can be
built by spending an unspecified resource that is produced by
factories. The more factories a player has the more resources
come available to build new units. Only offensive units can
move around the map. When an offensive unit meets an en-
emy defensive unit there is a fifty percent chance that one de-
stroys the other and vice versa. Figure 2 is a visual summary
of the game and includes the respective building costs of
the three units. During his presentation Will Wright argued
that this minimal real-time strategy game still presents the
player with some interesting choices, and displays dynamic
behavior that is not unlike the behavior found in other games
within the same genre. Most notably Wrights argued that
a ‘rock-paper-scissors’ mechanism affects the three units:
building factories trumps building defenses, building de-
fenses trumps building offensive units, whereas building of-

Figure 2: SimWar summary, after (Wright 2003)

Figure 3: The production mechanism of SimWar.

fensive units trumps building factories. Wright describes a
short-term versus long-term trade-off and a high-risk/high-
reward strategy that recalls the ‘rush’ and ‘turtle’ strategies
found in many real-time strategies.

Modeling SimWar
Building up a model SimWar using Machinations diagrams,
is best done in few steps. Starting with the production mech-
anism, a pool is used to represent a player’s resources. The
pool is filled by a source, the production rate is initially zero,
but is increased by 0.25 for every factory the player builds.
Factories are build by clicking the interactive converter la-
bels ‘BuyF’. Figure 3 contains this diagram. The structure
creates a positive feedback loop: the more factories a player
builds the quicker resources are produced which in turn can
be use to build even more factories. This particular feed-
back is very common in games; the mechanics in figure 3
constitute a recurrent pattern called a dynamic engine (Dor-
mans 2009). Notice, that this structure requires players to
start with at least 5 resources or 1 factory otherwise they can
never start producing.

Resources are also used to buy offensive and defensive
units. The mechanics for this are represented by figure 4.
This diagram makes use of color coded resources. The re-
sources produced by the converter labeled ‘BuyD’ are black
while the resources produced by ‘BuyO’ are green as in-
dicated by the color of their respective outputs. This means
that black resources (representing defensive units) and green
resources (representing offensive units) are both gathered
on the ‘Defending’ pool. However, by clicking the ‘Attack’
gate, all green resources are pulled towards the ‘Attacking’
pool.

Figure 5 illustrates how combat between two players is
modeled. Each attacking unit of one player (red on the left)
increases the chance a defending unit of another player (blue
on the right) is destroyed, and vice versa. In addition, attack-
ing units increase the chance a factory is destroyed, but that

5



Figure 4: Offensive and defensive units in SimWar.

Figure 5: Combat in SimWar.

drain is only active when the defending player has no de-
fending units left.

Combining these elements a model can be created for a
two player version of SimWar (see figure 6). One player con-
trols the red and orange elements on the left side of the di-
agram, while the other player controls the blue and green
elements on the right side of the diagram. Both sides are
symmetrical. Note that, in contrast to figure 3, the supply of
resources is ultimately limited (as it is in most RTS games).
This is to prevent the game from potentially dragging on for
ever. If both players run out of resources before they man-
aged to destroy the other, the game ends in a draw.

Simulating SimWar
Figure 7 displays the relative strength of each player as it de-
veloped over time during a simulated session. The strength
was measured by adding five for every factory the player
owns plus one for each offensive and defensive units. The
chart displays what might be called the fingerprint of an in-
teresting match.

Figure 6: A complete Machinations diagram for SimWar.

Figure 7: A chart showing the relative strength of each
player as it developed over time during a simulates session
eventually won by the red player.

This particular session was played by two artificial play-
ers set up to follow what might be called a ‘turtling’ strategy,
favoring factories and defensive units over offensive units.
The script these players followed was:

Attack = Defense*5-30
BuyF = 100-Factories*30
BuyD = 100-Defense*15
BuyO = Factories*20+Resources*2

Another type of artificial player was created by setting up
the script to follow a ‘rushing’ strategy, by building one fac-
tory before directing all resources towards building offensive
units:

Attack = Defense*10-70
BuyF = 200-Factories*100
BuyD = 100-Defense*50
BuyO = 100

The ‘rushing’ strategy proved to be very unsuccessful.
Out of one thousand simulated session, the ‘rushing’ strat-
egy managed to win only twice. Figure 8 plots the strengths
of both players over the session and also indicates when at-
tacks where launched. The ‘rushing’ player (red) builds up
a large attack, but does not recover once its units are lost.
After that attack, it is fairly easy for the ‘turtling’ player
(blue) to defeat red with a series of smaller attacks. Most
published real-time-strategies games are balanced towards
rushing strategies, as these tend to be harder to execute, and
mastered later by players. In order to balance the game a
number of ‘tweaks’ were tested: I increased the costs for
factories and defensive units, and decreased the cost for of-
fensive units and run the simulation one-thousand time for
every modification (see table 1). Surprisingly, increasing the
cost for defensive units seem to have little effect. Even when
a defensive unit costs more than an offensive unit, making it
really poor choice, the turtle strategy remained dominant.
This leads to the conclusion that the balance between rush-
ing and turtling strategy is mostly affected by the balance
between production and offensive units, and little by the bal-
ance between offensive and defensive units.

Discussion
To summarize, the Machinations framework allows design-
ers to model and simulate games in an early stage of devel-
opment. To simulate a game the complexity of the diagrams
to represent it grows quickly. It remains to be determined

6



Figure 8: A chart showing a rushing player (red) against
a turtling player (blue). The orange spikes indicate attacks
waves launched by red, the green spikes indicate attack
waves launched by blue.

Avg. Rush Turtle
Tweak time wins wins Draws
No tweaks 69.79s 2 997 1
Factory cost 6 76.33s 7 993 0
Factory cost 7 88.22s 107 889 4
Factory cost 8 91.86s 312 676 12
Factory cost 9 83.58s 557 426 17
Factory cost 10 68.03s 745 228 27
Offense cost 1.5 65.60s 164 836 0
Offense cost 1.4 54.72s 439 561 0
Offense cost 1.3 45.72s 583 417 0
Offense cost 1.2 32.73s 806 194 0
Defense cost 1.5 70.02s 16 983 1
Defense cost 2.0 74.35s 88 911 1
Defense cost 2.5 74.12s 196 803 1

Table 1: Tweaks to SimWar’s economy and the effects for
“turtling” versus “rushing” strategies.

how easy it is for designers to read the diagrams. However,
use of the diagrams with several groups of technical and
non-technical students indicates that with some practice, the
framework is fairly comprehensible: they were able to get
good results. In addition, research in recurrent design pat-
terns in the game’s internal economy resulted a small set of
patterns that form important building blocks. Understanding
these blocks and seeing the larger patterns constitutes an im-
portant skill for the use of Machinations diagrams. Machi-
nations diagrams are interactive: they can produce play data
even before a prototype is built. The question is how reliable
is this data and how relevant are these results for the further
development of the game?

Obviously, the simulation of SimWar through a Machina-
tions diagram is not quite the same thing is implementing
the game. Machinations diagrams focus on a game’s inter-
nal economy, it does not represent level design or tactical
maneuvering that have an equal impact on the gameplay. Al-
though the number of resources available to a player might
be dictated by level design, and the two locations for offen-
sive units to be in in a way is reminiscent of tactical ma-
neuvering in a real real-time strategy game. As such this
particular technique seems to be more relevant for strategy
games, simulation games and board games, as in these types
of games internal economy plays a more important role than
in certain other types of games.

However, the Machinations framework does foreground
feedback structures that play an important role in the de-
sign process. By making designers aware of these structures
and the effects they have, it might help them to understand
the complexity and dynamic of the game in later stages. It
is naive to assume that the tweaks suggested in this paper
translate to a perfectly balanced game when implemented.
The impact different levels and player skill will have on a
full game must be taken into account. Instead, the real bene-
fits of doing simulating the game at this points are twofold:
1) it will give designers an indication if a system has the po-
tential for creating particular dynamic effects, and 2) it will
give designers some ideas of what values to change in or-
der to tune the system. For example, from the simulation of
SimWar it does appear that the economic system does gen-
erate dynamic gameplay, that allow different types of strate-
gies and without to many obvious choices. In additions, it is
important to establish that the price of the defensive units has
very little impact on the balance between the ‘rushing’ and
‘turtling’ strategies. Designers that are aware that this bal-
ance depends more strongly the balance between the costs
for the factories and the offensive units will be able to tune
the finished game with greater efficiency and accuracy.

In this way the Machinations framework can be used
to shape and experiment with game mechanics effectively.
When a the design goals of a particular game dictate that a
particular dynamic effect is wanted or most be avoided, au-
tomated Machinations diagrams seem a useful tool to help
design the targeted dynamic behavior. At the same time, as
Machinations visualize structures that are otherwise diffi-
cult to grasp and understand, it can help designers to grow
more confident and enhance their skills in designing com-
plex systems. In that way, an automated tool like Machina-
tions, might actually act as a navigational tool to chart rel-
atively unexplored areas of the design space of games that
were previously inaccessible.

References
Adams, E., and Rollings, A. 2007. Fundamentals of Game
Design. Upper Saddle River, NJ: Pearson Education, Inc.
Dormans, J. 2008. Visualizing game mechanics and emer-
gent gameplay. In Proceedings of the Meaningful Play Con-
ference.
Dormans, J. 2009. Machinations: Elemental feedback struc-
tures for game design. In Proceedings of the GAMEON-NA
Conference.
Fromm, J. 2005. Types and forms of emergence.
Hunicke, R.; LeBlanc, M.; and Zubek, R. 2004. Mda: A
formal approach to game design and game research. In Pro-
ceedings of the AAAI-04 Workshop on Challenges, 1–5.
Salen, K., and Zimmerman, E. 2004. Rules of Play: Game
Design Fundamentals. Cambridge, MA: The MIT Press.
Wolfram, S. 2002. A New Kind of Science. Champaign:
Wolfram Media Inc.
Wright, W. 2003. Dynamics for designers. Presentation at
the Game Developers Conference.

7




