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Abstract 
This paper presents a framework that facilitates communica-
tion between a planning system (“planner”) and a plan exe-
cution system (“executor”) to enable them to run concur-
rently, with the main emphasis on meeting the real-time re-
quirements of the application domain. While the framework 
is applicable to general-purpose planning, its features are 
optimized for the requirements of automated story planning 
for games—with emphasis on monitoring player-triggered 
events and handling on-time (re-)generation of story assets 
such as characters, maps and scenarios. This framework 
subsumes the traditional interleaved planning-and-execution 
paradigm used in embedded continual planning systems and 
generalizes it to a non-embedded context, making the 
framework ideal for use with contemporary game architec-
tures (e.g., multithreaded game engines, or games with sub-
systems communicating over a network). 

Introduction   
Real-time generation of dynamic computer-game experi-
ences is a complex endeavor; as such, A.I. planning is an 
attractive option for generating such experiences while 
minimizing complexity. An ever-growing number of 
games (Orkin 2006; Champandard, Verweij, and Straatman 
2009) use continual planning techniques to contend with 
real-time issues—techniques that are also used in other 
real-world applications ranging from control of single-
agent autonomous systems (Chien et al. 1999; McGann et 
al. 2009) to large-scale multi-agent operations planning 
(Myers 1998). The basic principle of continual planning is 
to interleave the creation of plans with the execution of 
such plans in order to deal with uncertainty in the real 
world in a timely manner, with the uncertain events deter-
mined via observation (desJardins et al. 1999). Real-time 
continual planning imposes the additional constraint of 
having the plan’s goals attained within a pre-established 
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response-time deadline (Laplante 2004). Failure of the 
planning system to meet a deadline has negative conse-
quences ranging from a mere decrease in effectiveness 
(e.g., the realism of a game character’s behavior may de-
crease) to catastrophic failure (e.g., a mistimed weapon 
firing may result in real-world property damage). 
 While some recent systems, particularly the T-REX 
planner (McGann et al. 2009), explicitly handle the prob-
lem of meeting real-time deadlines in domain-independent 
continual planning, these systems are restricted to domains 
that permit the planner to be embedded within the executor 
of the plan, allowing strict, controlled interleaving of the 
planning and execution phases. Such “integrated planners” 
are not suitable for some problems; an example is the au-
tomated story planning problem, a generalization of previ-
ous attempts for A.I. planning within games (Nareyek et al. 
2009). This study goes down to the level of the human 
brain’s reward system to determine the story’s elements, 
i.e., by detecting player motivations and giving appropriate 
rewards (as well as cues to further increase motivation to 
achieve said rewards), all at exact times. For this problem,
the main planning system is separated from the game en-
gine (see Figure 1) in order to achieve application inde-
pendence and general applicability with many game types. 
 Ideally, a general planning system should be applicable 
to all kinds of domains, including the automated story 
planning domain. Embedded planner architectures (with 

Figure 1. Real-time concurrent planning and execution in action
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strictly-interleaving planning and execution phases) are ill-
fitted for domains with separate planning and execution 
subsystems; thus, a better approach for a general real-time 
planning system is a concurrent architecture where the 
planner and executor can run independently, communi-
cating only as necessary. However, a concurrent architec-
ture exacerbates latency problems that were either non-
existent or trivial in the embedded approach. These prob-
lems may interfere with the real-time attainment of plan-
ning deadlines, e.g., when a player exits the current game 
map, the next map may not be shown to the player on time 
due to latency in the receipt of the map-exit signal, or la-
tency in sending the details of the next map; either way, 
disrupting the story’s continuity. Thus, this necessitates 
plan execution and monitoring algorithms that can specifi-
cally deal with these latency problems. 
 In this paper, a general framework is proposed to ad-
dress this problem of real-time concurrent planning and 
execution. This framework consists of the architecture
encapsulating the communication aspects between the 
planner and the executor to allow the two subsystems to 
run independently, and the interface guidelines and algo-
rithms for how the planner and the executor subsystems 
communicate through this architecture. 
 In addition, real-world domains typically have specific 
real-time requirements from the framework—the automat-
ed story planning domain, for instance, requires real-time 
support for dealing with player actions and background 
generation of story assets such as maps and characters. 
Thus, the framework supports planning extensions to han-
dle such domain requirements in a general manner. This 
paper briefly discusses two such extensions—rule monitor-
ing to deal with external events with a level of non-
determinism (e.g., if certain actions expected to be done by 
the player do not occur) and object anchoring to deal with 
connecting planner-conceived objects to actual objects and 
reconnecting them to different objects if needed (e.g., cre-
ating a castle map during initial deliberation, then subse-
quently replacing it with a village map if it is later deemed 
to be a better experience for the player). 
 The rest of the paper is structured as follows: The next 
section reviews existing work in interleaved planning and 
execution systems, focusing on how real-time aspects are 
typically handled (and how previous methods are lacking). 
This is followed by a case study, the Automated Story 
Planning domain, which requires a concurrent model of 
planning and execution in place of the interleaved model. 
Next, the real-time concurrent planning and execution 
framework, as well as the two extensions (rule monitoring 
and object anchoring), are presented and discussed. The 
paper concludes with a preliminary evaluation of the on-
going implementation work and a list of future work. 

Background 
Although there is previous research on concurrent planning 
and execution, particularly for robotics-based domains 
such as (Simmons 1992) and (Miura and Shirai 1998), the 

focus of these work is on achieving better performance 
over sequential planning and execution, and not necessarily 
on meeting the explicit real-time deadlines of a problem. 
With this in mind, the first subsection focuses on reviewing 
continual planning systems that explicitly handle execution 
of actions in real-time. The second subsection tackles the 
related problem of execution monitoring for these systems, 
again identifying the real-time aspects of the problem. 

Real-time Execution in Continual Planners 
Few continual planning systems actually consider the real-
time aspect of planning problems explicitly. For example, 
the planning system in the game F.E.A.R. (Orkin 2006) is 
considerably simplified by omitting timings from the do-
main specification of actions, leaving the animation system 
to handle timing details; this system can therefore meet 
only soft real-time deadlines (i.e., missing a deadline is not 
a system-breaking concern); it cannot plan for an action to 
be executed at an exact given time. Façade (Mateas and 
Stern 2003), on the other hand, explicitly encodes exact 
timings for such actions (such as “nod head for 1sec” or 
“wait for player reaction for 2secs”), but uses an even more 
simplified paradigm that is more reactive than deliberative,
i.e., it only does temporal scheduling of those actions with-
in a single story “beat”; the goals of the beat and the op-
tions for succeeding beats are predetermined, not planned. 

More general planning techniques are available in the 
CASPER planner used in embedded spacecraft systems 
(Chien et al. 1999), which consider durative actions and an 
anytime approach to planning via the use of local search 
and iterative repair. Particularly, the approach entails the 
use of anytime conflict-resolution methods which ensure 
that a valid partial plan is returned given a time constraint 
for deliberation, e.g., “steer the vehicle out of the asteroid’s 
path within one second”, while also ensuring the success of 
the long-term plan, e.g., “take photos of all observable as-
teroids”. However, no consideration is given to ensuring 
the timely execution of the planned actions, i.e., there is no 
regard for latency in dispatching actions from the system 
that planned the action to the system that executes it. 

The T-REX system used by the MBARI Autonomous 
Underwater Vehicles (McGann et al. 2009) considers this 
action dispatch latency. T-REX is a multi-layered system 
of self-contained planning subsystems (dubbed ‘teleo-
reactors’), each with a deliberation latency (how long can a 
reactor deliberate for one task) and planning horizon (how 
long is that reactor active). The lowest-level reactor, 
dubbed the ‘executive’, essentially performs the execution 
of primitive plan actions. T-REX, unlike previous systems, 
makes explicit real-time guarantees in action execution: an 
action to be dispatched between two reactors will execute 
on time as long as it is dispatched within the time window 
bounded by the deliberation latency and the planning hori-
zon of the reactor executing the action; actions should not 
be planned outside of this time window. 

However, the method works around timing difficulties 
between reactors by assuming a common real-time clock 
shared across the entire system to synchronize action dis-
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patching. This effectively assumes an embedded system
approach, where the subsystem that is planning an action is 
in the same physical system as the subsystem that is exe-
cuting the action. Consequently, the synchronization dis-
cussion in (McGann et al. 2009) does not account for inter-
system transmission latency, i.e., how long an action takes 
to be transferred from one system to another if the two 
systems are independently-running and message transmis-
sion is not instantaneous. 

Real-time Monitoring in Continual Planners
Another aspect of continual planning systems is the use of 
sensors to monitor data about unknowns in the world into 
the planner (i.e., external events, or data that can only be 
partially observed at any given time), in order for the con-
tinual planner to adapt to unpredictable changes in its 
world. Some story systems that accomplish real-time plan 
execution, e.g., Darshak (Jhala and Young 2010) and the 
Merchant of Venice system (Porteous et al. 2011), only 
have limited sensing support (e.g., only for things such as 
the current position/point-of-view of the player) and are 
unconcerned about other events, e.g., player actions. 
 CASPER (Chien et al. 1999) and T-REX (McGann et al. 
2009) support sensors more extensively (e.g., vehicle posi-
tion and orientation, object identification, fuel consumption 
etc.), but typically assume that these sensors continuously 
and passively feed data into the deliberating system. How-
ever, continuous passive monitoring may be costly (e.g., 
the act of sensing may use more battery power in a robot, 
or too many sensor inputs may overwhelm the planner in 
terms of attention), and in some cases impossible (e.g., the 
robot cannot know what is behind a door unless, for exam-
ple, the said robot opens the door). 

Planning systems in other real-time games work around
the problem of excessive continuous monitoring by either 
restricting the planning representation of the game world 
into a small state array which can be easily sensed and up-
dated (Orkin 2006), or using a daemon architecture to filter
world state for use by a planner (Champandard, Verweij, 
and Straatman 2009). These are not general solutions,
however, and inevitably a planner that needs to manage 
huge amounts of partially-observable information will need 
to use active monitoring techniques, where the deliberating 
system specifically requests for observations as needed via 
sensing actions. Such active sensing can be used for multi-
ple purposes, e.g., to test for the availability of information 
needed for decision making or to track expectations after 
an action has been executed (Myers 1998). 

Unfortunately, sensing actions are subject to the same la-
tency issues as other actions, and therefore can affect the 
timeliness of system reaction towards newly sensed infor-
mation. An example to ground this is the following scenar-
io: If a game interleaves planning with monitoring of, say, 
player clicks, the game A.I. can only react to a player click 
on the next planning cycle. Note that in games it is fairly 
common to have a planning cycle rate that is slower than 
actual game rate, e.g., 5Hz planning rate and ~60Hz game 
rate (Champandard, Verweij, and Straatman 2009). If the 

game’s planner wishes to accurately predict the time of the 
next player action (e.g., to synchronize A.I. character be-
havior with the player’s), the planner should be aware that
a “current” click actually happened in the past and must 
account for the delay accordingly. Although previous real-
time planners account for such delays at least in the passive 
sensing case, e.g., T-REX has a mechanism to dispatch 
state variable observations from the executing reactor back 
to the planning reactor, inserting them at their proper times 
in the past (Py, Rajan, and McGann 2010), these previous 
systems do not account for separated planning and execu-
tion subsystems, where sensing actions must be planned 
and thus incur inter-system transmission latency (i.e., plan-
ning reaction after the dispatch of a sensing action is fur-
ther delayed by the round-trip latency of the connection 
between the planner and executor). 

Case Study: Automated Story Planning 
Most of the aforementioned real-time planning systems use 
embedded architectures that strictly interleave planning 
and execution, but as described earlier, this design is ill-
fitting for systems where the planner and executor are in-
dependent. Such a case is described in this section. 

The Automated Story Planning for Games project 
(Nareyek et al. 2009) is an on-going research project in-
tending to provide computer-generated stories in real-time. 
The basic goal of the system is to optimize the entertain-
ment experience of a player. The player’s motivation is 
represented as a numeric value that changes over time (see 
top half of Figure 2), and cue and reward actions are exe-
cuted at the exact moments to create a build-up or decrease 
of motivation, respectively (see bottom half of Figure 2).
The resulting “motivation curve” is optimized to follow a 
pattern of crests and troughs (representing episodic points 
in the story), with the highest peak and lowest dip (the ul-
timate reward) near the end of the game, all in all translat-
ing to a good entertainment experience.

Cue and reward actions are actually game content pieces 
(e.g., an animation depicting the princess kissing the play-
er, or an animation of townsfolk celebrating the player’s 
success against a terrorizing monster) which are authored 
in the usual way by game developers; the main difference 
between this and other game story generation methods is 
that these content pieces are automatically planned over 
time using a goal-based planner (with the goal specified as 
“generate an optimal player motivation curve over the en-

Figure 2. Player motivation curve vis-à-vis planned actions
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tire run of the game”), instead of having the game designer 
dictate if (and when) an animation will be played. To actu-
ally show these cues or rewards, however, certain precon-
ditions must be met, such as “there has to be a princess in 
the game first” or “there has to be a castle where the prin-
cess lives” (asset generation), or “there needs to be a com-
petition quest that the princess will be witnessing, so that 
the player is motivated to impress the princess” (scene 
generation). These ancillary actions also need to be 
planned along with the planning of cues or rewards. 

The Automated Story Planning system can be character-
ized as a firm (as opposed to soft) real-time system. The
exact timing of the inflections in the motivation curve are 
essential to the player experience model—the player’s mo-
tivation is severely affected with incorrect timing of re-
wards (e.g., if the romance motivation is important to the 
player and the player receives the kiss from the princess 
too early, there would actually be no motivation to see the 
game to the end even if there are other rewards coming).
Furthermore, a delay or unintended advance in the execu-
tion of any of these actions will change the projected moti-
vation curve in the future, and it may not be possible to 
correct the motivation curve at a later point, i.e., failures 
may propagate and future goals might not be attained at all. 

In terms of architecture (see Figure 3), the planning sys-
tem of the game (called the experience manager) is intend-
ed to be a general system where potentially any game en-
gine (in the figure, called the scene manager) can be con-
nected. The reasons for separating the planning system 
from the game engine into concurrently-running modules 
are as follows:  
� With a separate planner and game engine architec-

ture, an execution module can be built into any
stock game engine to receive and execute partial 
plans from the experience manager, making the 
planner (and domain) design impervious to game-
specific details such as engine/language platform. 

� Individual cue or reward actions may be in the form 
of complex scripts executed within the game engine 
(e.g., a game ‘conversation’ can be broken down in-
to a series of dialog boxes presented in sequence, or 
two game characters interacting with each other 
may require many atomic animation actions playing 
concurrently). Forcing an interleaved planning and 
execution architecture on such a game engine great-
ly complicates implementation for these kinds of 
systems with already many concurrent tasks execut-
ing, many of which are tasks that are external to the 
main story plan (e.g., animation, GUI or physics 
systems within the engine). 

� A concurrent architecture also greatly simplifies de-
bugging, because the experience manager can, for 
example, be run in a physically separate system 
(e.g., with the two systems connected via TCP 
sockets) and the planner’s run can be traced and an-
alyzed separately from the game engine’s other de-
bugging output. 

The architecture proposed here is not unlike other plan-
ning-based story generation architectures such as 
MIMESIS (Young et al. 2004), where a partial-ordered 
planner is paired with an external game engine (for proof 
of concept, the Unreal engine was used). However, in 
MIMESIS, planning is done only partially online, with 
real-time uncertainties in the world handled via specialized 
contingent-planning-like constructs (either by intervention,
with the game preventing the player from doing unwanted 
actions, or accommodation, with the plan containing condi-
tional constructs to adapt to the player’s plan-breaking ac-
tions; full re-planning is triggered when neither of these are 
possible). In the Automated Story Planning project’s case, 
the story planner is fully on-line; the story planner is meant 
to automatically adapt to player preferences (e.g., if the 
system detects that the player’s preference tends towards 
blonde women, a princess asset with blonde hair can be 
generated) or in-game player actions (e.g., if the player 
tends to interact with the village girl more instead of the 
princess, the future cues and rewards are adjusted or even 
completely replaced in the background to reflect a change 
in love interest), all in real-time as the planning system 
tries to optimize the player motivation curve. The real-time 
aspect of this problem, coupled with the architectural com-
plexity of separating the planner and the plan executor, 
presents an interesting challenge that is resolved by the 
proposed framework (discussed in the next section).

General Framework Design 
The proposed real-time concurrent planning and execution 
framework assumes two existing modules: an anytime lo-
cal-search planner module capable of producing partial 
grounded plans within a fixed time interval (e.g., 0.2 se-
conds), and an executor module capable of executing indi-
vidual plan actions and reporting monitored sensor values. 
 For the anytime local-search planner module, we assume 
the planning model used in the Crackpot planning system 
(Vidal and Nareyek 2010; Kumar and Nareyek 2011), a 
descendant of the EXCALIBUR planning system (Nareyek 
2001) that is similar in strategy to CASPER (Chien et al. 
1999). A complete discussion of the planning model is 
found in the aforementioned references, but is briefly ex-
plained here using an example domain where a person 
needs to eat an apple that is not in his hand (see Figure 4): 
Plan actions (such as EatApple) consist of conditions on 
object attributes for the action to successfully execute 
(e.g., apple.position must be “inHand” at time t, where t is 
the start time of the action), contributions to attributes 
when the action is executed (e.g., person.hunger decreases 
over the duration of the action), and action tasks which 

Figure 3. Automated Story Planning architecture
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take up resource on object actuators to actually perform or 
actuate the actions (e.g., person.hands is used for the dura-
tion of the action). Not shown in the figure are read-ins
from attribute values at certain time points to determine 
action variables (e.g., the action’s duration may come from 
the size of the apple). A current plan is iteratively repaired 
by determining costs in a plan and selecting one of these 
costs for repair per planning iteration; these costs are either 
unmet goals on attributes’ value projections over time 
(e.g., “person.hunger must be 0 at time 500”), unmet con-
ditions (e.g., if apple.position is “onTable” at the start of 
the EatApple action), overlaps on actuator usage (e.g., 
person.hands cannot be used for taking an apple and eat-
ing it at the exact same time) or inconsistent structural con-
straints within an action (e.g., the action task’s duration 
should be the same as the contribution’s duration; in 
Crackpot, such constraints are supported via action-
component relations). Cost repairs are selected using heu-
ristics built into the planner, which may involve spawning 
new actions, moving actions, changing action parameters, 
or spawning new objects (e,g,, TakeApple is added to fix 
the cost introduced by EatApple’s condition). After a 
number of repair iterations, a portion of the plan is sent to 
the executor while the planner resolves other costs.
 The real-time planning and execution framework itself 
has a base architecture (see Figure 5) to facilitate commu-
nication between the planner and executor modules. The 
framework provides interface wrappers local to each mod-
ule such that the underlying messaging protocol is hidden 
under a layer of abstraction. This concurrent design per-
mits a wide variety of implementations, e.g., via sockets or 
message queues provided by the operating system. (In fact, 
an embedded system implementation with interleaved calls 
to the planner and executor is still possible; in that case, 
communication between planner and executor is trivialized 
and is assumed to have zero latency.)
 The planner side’s processing logic works in a sequen-
tial manner—the planner and the planner-interface mod-
ules actually interleave in processing. This design allows a 
regular interleaving-aware continual planner to work with 
the architecture with only minor modification—the intent 
is for the planner-interface to mimic the behavior of a plan 
executor that the planner can directly talk to. On the other 
hand, the executor and executor-interface may operate in a 
concurrent manner, with the commands and queries made 
by the executor-interface not required to occur in lock-step 
with the regular processing of the executor. 

 For the purposes of discussion, data transferred between 
the two modules are referred to as messages. To illustrate 
the intended interface between the two modules, a typical 
action dispatch goes through the following control flow,
illustrated in Figure 5 and formalized in the algorithms 
shown in Figure 6 and Figure 7: 

1. Each time a planner creates or deletes an action 
task, the planner sends a command to the planner-
interface to add/remove the task from the planner-
interface’s tracking list.

2. The planner-interface, at the end of a planning cy-
cle (e.g., after every 0.2 secs), queries the planner 
about the action tasks in its list for execution in-
formation (“what time should action task � start 
executing?”; “are the conditions of �’s action cur-
rently met?”).  

3. For action tasks whose start time is close to current 
time (this “critical time window” is discussed in the 
next subsection) and whose conditions are met, the 
planner-interface sends a message to the executor-
interface containing the execution details of the ac-
tion task. Note that this also entails locking of the 
action task before sending, i.e., the planner-
interface tells the planner that �’s parameters may 
no longer be changed. 

4. The executor-interface receives the message and 
translates it into a local command understood by 
the executor. A message is sent such that it is typi-
cally received ahead of time (due to uncertainty in 
message arrival time), so the commands are placed 
in a waiting list within the executor-interface (im-
plementation-wise, this should be sorted according 
to time for efficiency), and the command is actually 
executed at the exact time for execution. 

5. The executor-interface queries the status of all exe-
cuting action tasks (e.g., whether the task has exe-
cuted at all, or in the case of sensing actions, when-
ever sensor data is available). 

6. If any status updates are available for an action 
task, the executor-interface transmits these updates 
back to the planner-interface via messages. 

7. The planner-interface receives the incoming mes-
sage(s) and then feeds the data back into the plan-
ner (e.g., “� is currently executing”). In the case of 
a sensing action task, the sensor values in the mes-
sage are fed into the relevant attributes/variables as 
observations (e.g., “player.location=village @ time 
[236, 336)” or “�.action.duration+=10”). These 
observations override any projected information al-
ready stored in the attributes, allowing the planner 
to re-project attributes and re-plan accordingly. 

Figure 4. Crackpot plan representation

Figure 5. Architectural design of the framework
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Note that active monitoring is the primary method of 
sensing used in the framework; all sensing is done via ac-
tion tasks. An exception is the sensing of current time,
which is assumed internal to the executor (for discussion,  
an execution time unit is referred to as a tick) and is fed 
continuously to the planner, eliminating request overheads.
Continuous subscription to a particular sensor (which may 
be used for, say, intensive monitoring of the position of an 
in-game character that is important to the current scene)
may be made by modeling the subscription as a long-
running action task which returns sensor values at regular 
intervals. 

Timing Control 
The critical time window and other timing variables men-
tioned in the algorithms bear some discussion. The frame-
work assumes that action tasks are sent ahead of time to 
combat the effects of various latencies. These latencies are 
formalized via these timing control variables: 

1. Planning window (�� – the worst case number of 
ticks an executor will progress during a full plan-
ning cycle (which may be composed of thousands 
of local-search iterations). For example, for a 60Hz 
executor, ��= 12 yields an effective planning win-
dow of 200ms. 

2. Execution update window (�� – the interval be-
tween the executor’s current-time updates in num-
ber of ticks. Note that if this is set equal to the 
planning window �, this will not guarantee that the 
planner will get 1 time update at every planning it-
eration, owing to uncertainty in the arrival of cur-
rent time updates. Thus, this value should be set 
lower, e.g., if �=12, � may be set to 6 (i.e., 100ms). 

3. Message-passing latency (�� – the worst case 
number of ticks before a message is completely 
transmitted from the planner to the executor, or 
vice versa. In an embedded system with tight coop-
erative scheduling of planner and executor (i.e., in-
terleaving), � = 0. If OS-controlled pre-emptive 
scheduling is used, however, this value must be set 
to the timing resolution of the OS’s context switch-
ing. A full analysis of the proper value for this vari-
able requires statistical modeling, e.g., using a 
Poisson arrival model (Laplante 2004). 

Figure 8 is a visual depiction of these timing variables,
illustrating how planning occurs asynchronously with exe-
cution (as opposed to interleaving). In the best case, an 
executor update (e.g., a current time message) will incur a 
delay of � if it arrives exactly on time for the next planning 
iteration (see top half of Figure 8); however, in the worst 
case, the messa ge will be queued until the next planning 
cycle and its processing will be delayed by at most ��	��
(see bottom half of Figure 8). If the planner then requests 
for immediate execution of an action to react to current 
world state (e.g., if the latest observation includes player. 
location = village, and an impending KissPlayer reward 
action requires the princess to be at the same location as 
the player, the planner might insert a MoveCharacter ac-
tion moving the princess to the village), the arrival of the 
command on the executor will be delayed by � in the best 
case (command is executed immediately) and by � + 1 in 
the worst case (command is queued for the next execution 
tick). Since actions are only dispatched at the end of the 
planning cycle, the known current time in the planner side 
would have advanced by at most � from the last reported 
time of the executor. Therefore, planner heuristics to insert 
new actions into the plan must ensure that the start time of 
an action intersects with a critical time window, the mini-
mum of which is given by the following formula: 

criticalmin = 
 + � + 2� + � + 1
where 
�is the last reported current time. Since the planner 
is not able to change the temporal placement of actions 
once it has been dispatched to the executor, dispatching of 
an action far ahead into the future must be deferred to al-
low re-planning for contingent events. This means that the 

1. 
 = RequestCurrentTime()
2. If 
 mod � = 0: 

• Send “update time” message to Planner
3. For each “execute action task” message received, extract Ac-

tionTask � and place in waiting list 
4. For each ActionTask � in the waiting list: 

• If �.startTime = 
�
• StartExecution(�) 

• If �.startTime <= 
�
• If status update is required by �, send the status 

(along with any sensor data to be reported) as a “re-
port action task status” message to Planner

• If �.actionStatus = finished, remove action from the 
waiting list 

5. DoOtherExecutionTasks()  // for 1 execution tick

Figure 7. Executor-interface algorithm

Figure 8. Various latencies during concurrent planning and 
execution: best case (top) and worst case (bottom)

1. Process the message queue:
• Feed “update time” messages to the planner’s central 

time-keeping subsystem 
• Feed “report action task status” messages to correspond-

ing ActionTasks (also feeding embedded sensor data into 
the corresponding variables/Attributes) 

2. DoPlanning()   // may add/remove actions in the plan
3. For each ActionTask � in the plan that is currently unlocked: 

• If �.startTime  [criticalmin, criticalmax] (the critical time 
window) and its action’s conditions are met:
• Lock � to prevent further changes 
• Send an “execute action task” message (with the 

given action �) to Executor

Figure 6. Planner-interface algorithm
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maximum of the critical window is the start time of next 
planning cycle, thus given by the following formula: 

criticalmax = 
 + � + 2� + 2��

Case Examples of Framework Extensions: Usage
with the Automated Story Planning Domain 
Planner extensions are sometimes necessary to handle cer-
tain requirements of planning problems. Discussed here are 
two such requirements in the Automated Story Planning 
domain and how the general framework is extended to 
handle these requirements: monitoring uncertain player 
behavior, and handling real-time generation of story assets. 
Monitoring the Rules of Player Behavior 
Apart from the actions that the planner may enact on the 
virtual game world, the game itself may introduce events 
that modify the world in response to the changing world 
state. Such world dynamics may be modeled via the use of 
deterministic rules (Nareyek and Sandholm 2003); a rule is 
essentially defined like a plan action but is triggered auto-
matically the moment its conditions are fulfilled (instead of 
being decided to be put into the plan), e.g., when a ball is 
released in mid-air, a “gravity rule” is always triggered 
such that the ball falls to the ground. These rules enable the 
planner to reason about future world states, e.g., a comput-
er-generated soccer player may kick the ball at the exact 
moment the ball hits the ground. 
 However, the existence of a (non-deterministic) player 
presents a challenge that needs to be corrected for in real-
time. For example, the planner may determine initially that 
the player will have the best experience by giving him a 
quest. The domain may encode a rule where if a villager 
tells the player of the existence of a precious diamond in 
the forest, the player will, as a result, move towards the 
forest. This, however, opens two contingent possibilities 
apart from the expected outcome: the player may either 
delay his/her movement towards the forest, or may not go 
to the forest at all (i.e., the planner’s prediction is wrong). 
 Thus, the framework is extended with a mechanism for 
rule monitoring—rules are outfitted with special rule tasks,
whose purpose is to monitor critical attributes for the ex-
pected changes to the world state (see Figure 9). These rule
tasks are specified with deadlines such that if the expected 
attribute change did not happen, either the duration of the 
rule is extended, or the rule is invalidated (depending on 

modeling needs). In essence, these rule tasks function simi-
larly to regular action tasks, and the framework can thus 
dispatch and monitor them in the same manner. 
Object Anchoring for Asset Generation 
It is implausible for some story assets (e.g., a castle) to be 
present in the world at one moment and disappear in the 
next, or for immovable objects to change position, etc. 
While a story generator may introduce objects at any time, 
it may not change parameters of these objects as soon as 
these parameters are manifested, e.g., if the princess’s hair 
is initially blonde, it (usually) cannot be changed when the 
player has seen it. However, some parameters should still 
be changeable by the planner until they are manifested to 
the player (to allow the local-search planner to make on-
time optimizations while earlier parts of the story are still 
being presented).  This necessitates a two-step process for 
generating objects (illustrated in Figure 10): 
� Anchoring is the process by which a planner-

conceived object (e.g., a new castle map to satisfy 
the requirements of a princess-presentation scene) is 
connected to a real-world (virtual) object. In the 
case of the story planning domain, an anchoring ac-
tion tells the executor side to create the necessary 
assets for this object, along with any requested pa-
rameters (e.g., “create a princess with blonde hair”).
An object may be re-anchored if necessary (e.g., if 
the player decides to forego the princess quest in fa-
vor of a save-the-village quest, the castle map may 
be re-anchored to a village map). 

� Commitment is the process of “experiencing” a 
game asset (e.g., the player enters the village map).
As these are player-initiated, commitment should be 
encoded in the domain as rules (as mentioned in the 
previous subsection), with a condition that the object 
needs to be anchored first, plus other triggering con-
ditions, e.g., “player is on the way to the map”. A
committed object cannot be de-anchored, e.g., an al-
ready-experienced map cannot disappear. 

 This allows for on-time re-generation of game assets as 
story planning goals change. The pattern of anchoring and 
commitment is repeated for all so-called “constructible” 
objects in the domain (and thus can be auto-generated by a 
preprocessor on the domain level). Additional conditions 
for construction may also be placed on the anchor action or 
commit rule depending on authorial constraints (e.g., “a 

Figure 9. Rule tasks for monitoring on-going rules
Figure 10. Anchoring example; arrows pointing out from attribute 

projections are conditions, other arrows are contributions/tasks
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princess can only be constructed if story.princessExists =
false” where story is a non-constructible, pre-existing ob-
ject). For optimization, a special planning heuristic may be 
used to minimize expensive re-anchoring actions (i.e., 
there should only be one re-anchoring past current time); 
this heuristic, in turn, will use the framework’s critical time 
window to decide which re-anchoring tasks to remove. 

Preliminary Evaluation 
A prototype implementation is built using the Crackpot 
planner and a game based on PlayFirst’s Playground SDK
as proof-of-concept of the framework’s applicability to off-
the-shelf multithreaded game engines. Figure 1 shows the 
prototype game and planner running concurrently. 
 While the game is in an alpha stage and the story plan-
ning domain model is currently in development, the sys-
tem’s capability for real-time planning and execution of 
very simple plans is already promising, with single plan 
actions executing on-time even with a fast execution tick 
rate (60Hz) greatly exceeding planning rate (1Hz) and with 
conservative values for the timing control variables (� =
60, � = 12 and � = 1; i.e., 1Hz planning window, 5Hz exe-
cution update window and 16.7ms message passing laten-
cy). Further evaluation of the framework will involve reli-
ability tests using other domains with measurable out-
comes (e.g., real-time variants of logistics or job-shop-
scheduling domains) and analytical modeling of the sys-
tem’s reliability such as in (Chen, Bastani, and Tsao 1995). 

Conclusion 
The proposed framework realizes concurrent planning and 
execution with real-time guarantees for action execution 
(assuming proper modeling of latency via implementation-
specified timing control variables). This framework is a 
generalization of interleaved planning and execution, al-
lowing real-time planning applications with complex archi-
tectures (e.g., Automated Story Planning) to be developed. 
 Future work includes full development of the Automated 
Story Planning prototype game, which will likely expose 
additional real-time sensing and execution issues, and the 
framework may require special heuristics to produce better 
plans given real-time constraints. Development of frame-
work extensions for other real-world domains (e.g., action 
negotiation between planner and executor, planning-to-
sense, etc.) is also forthcoming. Lastly, the framework, 
with some modification, may be further extended to plan-
ning problems utilizing or even spawning multiple execu-
tion clients, e.g., enlist more robots to finish a job faster. 
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