
A Real-Time Concurrent Planning and Execution Framework for
Automated Story Planning for Games

Eric Cesar E. Vidal, Jr. and Alexander Nareyek
NUS Games Lab

Interactive and Digital Media Institute, National University of Singapore
21 Heng Mui Keng Terrace, Level 2, Singapore 119613

ericvidal@nus.edu.sg, elean@nus.edu.sg

Abstract
This paper presents a framework that facilitates communica-
tion between a planning system (“planner”) and a plan exe-
cution system (“executor”) to enable them to run concur-
rently, with the main emphasis on meeting the real-time re-
quirements of the application domain. While the framework
is applicable to general-purpose planning, its features are
optimized for the requirements of automated story planning
for games—with emphasis on monitoring player-triggered
events and handling on-time (re-)generation of story assets
such as characters, maps and scenarios. This framework
subsumes the traditional interleaved planning-and-execution
paradigm used in embedded continual planning systems and
generalizes it to a non-embedded context, making the
framework ideal for use with contemporary game architec-
tures (e.g., multithreaded game engines, or games with sub-
systems communicating over a network).

Introduction
Real-time generation of dynamic computer-game experi-
ences is a complex endeavor; as such, A.I. planning is an
attractive option for generating such experiences while
minimizing complexity. An ever-growing number of
games (Orkin 2006; Champandard, Verweij, and Straatman
2009) use continual planning techniques to contend with
real-time issues—techniques that are also used in other
real-world applications ranging from control of single-
agent autonomous systems (Chien et al. 1999; McGann et
al. 2009) to large-scale multi-agent operations planning
(Myers 1998). The basic principle of continual planning is
to interleave the creation of plans with the execution of
such plans in order to deal with uncertainty in the real
world in a timely manner, with the uncertain events deter-
mined via observation (desJardins et al. 1999). Real-time
continual planning imposes the additional constraint of
having the plan’s goals attained within a pre-established

Copyright © 2011, Association for the Advancement of Artificial Intelli-
gence (www.aaai.org). All rights reserved.

response-time deadline (Laplante 2004). Failure of the
planning system to meet a deadline has negative conse-
quences ranging from a mere decrease in effectiveness
(e.g., the realism of a game character’s behavior may de-
crease) to catastrophic failure (e.g., a mistimed weapon
firing may result in real-world property damage).
 While some recent systems, particularly the T-REX
planner (McGann et al. 2009), explicitly handle the prob-
lem of meeting real-time deadlines in domain-independent
continual planning, these systems are restricted to domains
that permit the planner to be embedded within the executor
of the plan, allowing strict, controlled interleaving of the
planning and execution phases. Such “integrated planners”
are not suitable for some problems; an example is the au-
tomated story planning problem, a generalization of previ-
ous attempts for A.I. planning within games (Nareyek et al.
2009). This study goes down to the level of the human
brain’s reward system to determine the story’s elements,
i.e., by detecting player motivations and giving appropriate
rewards (as well as cues to further increase motivation to
achieve said rewards), all at exact times. For this problem,
the main planning system is separated from the game en-
gine (see Figure 1) in order to achieve application inde-
pendence and general applicability with many game types.
 Ideally, a general planning system should be applicable
to all kinds of domains, including the automated story
planning domain. Embedded planner architectures (with

Figure 1. Real-time concurrent planning and execution in action

98

AAAI Technical Report WS-11-18

strictly-interleaving planning and execution phases) are ill-
fitted for domains with separate planning and execution
subsystems; thus, a better approach for a general real-time
planning system is a concurrent architecture where the
planner and executor can run independently, communi-
cating only as necessary. However, a concurrent architec-
ture exacerbates latency problems that were either non-
existent or trivial in the embedded approach. These prob-
lems may interfere with the real-time attainment of plan-
ning deadlines, e.g., when a player exits the current game
map, the next map may not be shown to the player on time
due to latency in the receipt of the map-exit signal, or la-
tency in sending the details of the next map; either way,
disrupting the story’s continuity. Thus, this necessitates
plan execution and monitoring algorithms that can specifi-
cally deal with these latency problems.
 In this paper, a general framework is proposed to ad-
dress this problem of real-time concurrent planning and
execution. This framework consists of the architecture
encapsulating the communication aspects between the
planner and the executor to allow the two subsystems to
run independently, and the interface guidelines and algo-
rithms for how the planner and the executor subsystems
communicate through this architecture.
 In addition, real-world domains typically have specific
real-time requirements from the framework—the automat-
ed story planning domain, for instance, requires real-time
support for dealing with player actions and background
generation of story assets such as maps and characters.
Thus, the framework supports planning extensions to han-
dle such domain requirements in a general manner. This
paper briefly discusses two such extensions—rule monitor-
ing to deal with external events with a level of non-
determinism (e.g., if certain actions expected to be done by
the player do not occur) and object anchoring to deal with
connecting planner-conceived objects to actual objects and
reconnecting them to different objects if needed (e.g., cre-
ating a castle map during initial deliberation, then subse-
quently replacing it with a village map if it is later deemed
to be a better experience for the player).
 The rest of the paper is structured as follows: The next
section reviews existing work in interleaved planning and
execution systems, focusing on how real-time aspects are
typically handled (and how previous methods are lacking).
This is followed by a case study, the Automated Story
Planning domain, which requires a concurrent model of
planning and execution in place of the interleaved model.
Next, the real-time concurrent planning and execution
framework, as well as the two extensions (rule monitoring
and object anchoring), are presented and discussed. The
paper concludes with a preliminary evaluation of the on-
going implementation work and a list of future work.

Background
Although there is previous research on concurrent planning
and execution, particularly for robotics-based domains
such as (Simmons 1992) and (Miura and Shirai 1998), the

focus of these work is on achieving better performance
over sequential planning and execution, and not necessarily
on meeting the explicit real-time deadlines of a problem.
With this in mind, the first subsection focuses on reviewing
continual planning systems that explicitly handle execution
of actions in real-time. The second subsection tackles the
related problem of execution monitoring for these systems,
again identifying the real-time aspects of the problem.

Real-time Execution in Continual Planners
Few continual planning systems actually consider the real-
time aspect of planning problems explicitly. For example,
the planning system in the game F.E.A.R. (Orkin 2006) is
considerably simplified by omitting timings from the do-
main specification of actions, leaving the animation system
to handle timing details; this system can therefore meet
only soft real-time deadlines (i.e., missing a deadline is not
a system-breaking concern); it cannot plan for an action to
be executed at an exact given time. Façade (Mateas and
Stern 2003), on the other hand, explicitly encodes exact
timings for such actions (such as “nod head for 1sec” or
“wait for player reaction for 2secs”), but uses an even more
simplified paradigm that is more reactive than deliberative,
i.e., it only does temporal scheduling of those actions with-
in a single story “beat”; the goals of the beat and the op-
tions for succeeding beats are predetermined, not planned.

More general planning techniques are available in the
CASPER planner used in embedded spacecraft systems
(Chien et al. 1999), which consider durative actions and an
anytime approach to planning via the use of local search
and iterative repair. Particularly, the approach entails the
use of anytime conflict-resolution methods which ensure
that a valid partial plan is returned given a time constraint
for deliberation, e.g., “steer the vehicle out of the asteroid’s
path within one second”, while also ensuring the success of
the long-term plan, e.g., “take photos of all observable as-
teroids”. However, no consideration is given to ensuring
the timely execution of the planned actions, i.e., there is no
regard for latency in dispatching actions from the system
that planned the action to the system that executes it.

The T-REX system used by the MBARI Autonomous
Underwater Vehicles (McGann et al. 2009) considers this
action dispatch latency. T-REX is a multi-layered system
of self-contained planning subsystems (dubbed ‘teleo-
reactors’), each with a deliberation latency (how long can a
reactor deliberate for one task) and planning horizon (how
long is that reactor active). The lowest-level reactor,
dubbed the ‘executive’, essentially performs the execution
of primitive plan actions. T-REX, unlike previous systems,
makes explicit real-time guarantees in action execution: an
action to be dispatched between two reactors will execute
on time as long as it is dispatched within the time window
bounded by the deliberation latency and the planning hori-
zon of the reactor executing the action; actions should not
be planned outside of this time window.

However, the method works around timing difficulties
between reactors by assuming a common real-time clock
shared across the entire system to synchronize action dis-

99

patching. This effectively assumes an embedded system
approach, where the subsystem that is planning an action is
in the same physical system as the subsystem that is exe-
cuting the action. Consequently, the synchronization dis-
cussion in (McGann et al. 2009) does not account for inter-
system transmission latency, i.e., how long an action takes
to be transferred from one system to another if the two
systems are independently-running and message transmis-
sion is not instantaneous.

Real-time Monitoring in Continual Planners
Another aspect of continual planning systems is the use of
sensors to monitor data about unknowns in the world into
the planner (i.e., external events, or data that can only be
partially observed at any given time), in order for the con-
tinual planner to adapt to unpredictable changes in its
world. Some story systems that accomplish real-time plan
execution, e.g., Darshak (Jhala and Young 2010) and the
Merchant of Venice system (Porteous et al. 2011), only
have limited sensing support (e.g., only for things such as
the current position/point-of-view of the player) and are
unconcerned about other events, e.g., player actions.
 CASPER (Chien et al. 1999) and T-REX (McGann et al.
2009) support sensors more extensively (e.g., vehicle posi-
tion and orientation, object identification, fuel consumption
etc.), but typically assume that these sensors continuously
and passively feed data into the deliberating system. How-
ever, continuous passive monitoring may be costly (e.g.,
the act of sensing may use more battery power in a robot,
or too many sensor inputs may overwhelm the planner in
terms of attention), and in some cases impossible (e.g., the
robot cannot know what is behind a door unless, for exam-
ple, the said robot opens the door).

Planning systems in other real-time games work around
the problem of excessive continuous monitoring by either
restricting the planning representation of the game world
into a small state array which can be easily sensed and up-
dated (Orkin 2006), or using a daemon architecture to filter
world state for use by a planner (Champandard, Verweij,
and Straatman 2009). These are not general solutions,
however, and inevitably a planner that needs to manage
huge amounts of partially-observable information will need
to use active monitoring techniques, where the deliberating
system specifically requests for observations as needed via
sensing actions. Such active sensing can be used for multi-
ple purposes, e.g., to test for the availability of information
needed for decision making or to track expectations after
an action has been executed (Myers 1998).

Unfortunately, sensing actions are subject to the same la-
tency issues as other actions, and therefore can affect the
timeliness of system reaction towards newly sensed infor-
mation. An example to ground this is the following scenar-
io: If a game interleaves planning with monitoring of, say,
player clicks, the game A.I. can only react to a player click
on the next planning cycle. Note that in games it is fairly
common to have a planning cycle rate that is slower than
actual game rate, e.g., 5Hz planning rate and ~60Hz game
rate (Champandard, Verweij, and Straatman 2009). If the

game’s planner wishes to accurately predict the time of the
next player action (e.g., to synchronize A.I. character be-
havior with the player’s), the planner should be aware that
a “current” click actually happened in the past and must
account for the delay accordingly. Although previous real-
time planners account for such delays at least in the passive
sensing case, e.g., T-REX has a mechanism to dispatch
state variable observations from the executing reactor back
to the planning reactor, inserting them at their proper times
in the past (Py, Rajan, and McGann 2010), these previous
systems do not account for separated planning and execu-
tion subsystems, where sensing actions must be planned
and thus incur inter-system transmission latency (i.e., plan-
ning reaction after the dispatch of a sensing action is fur-
ther delayed by the round-trip latency of the connection
between the planner and executor).

Case Study: Automated Story Planning
Most of the aforementioned real-time planning systems use
embedded architectures that strictly interleave planning
and execution, but as described earlier, this design is ill-
fitting for systems where the planner and executor are in-
dependent. Such a case is described in this section.

The Automated Story Planning for Games project
(Nareyek et al. 2009) is an on-going research project in-
tending to provide computer-generated stories in real-time.
The basic goal of the system is to optimize the entertain-
ment experience of a player. The player’s motivation is
represented as a numeric value that changes over time (see
top half of Figure 2), and cue and reward actions are exe-
cuted at the exact moments to create a build-up or decrease
of motivation, respectively (see bottom half of Figure 2).
The resulting “motivation curve” is optimized to follow a
pattern of crests and troughs (representing episodic points
in the story), with the highest peak and lowest dip (the ul-
timate reward) near the end of the game, all in all translat-
ing to a good entertainment experience.

Cue and reward actions are actually game content pieces
(e.g., an animation depicting the princess kissing the play-
er, or an animation of townsfolk celebrating the player’s
success against a terrorizing monster) which are authored
in the usual way by game developers; the main difference
between this and other game story generation methods is
that these content pieces are automatically planned over
time using a goal-based planner (with the goal specified as
“generate an optimal player motivation curve over the en-

Figure 2. Player motivation curve vis-à-vis planned actions

100

tire run of the game”), instead of having the game designer
dictate if (and when) an animation will be played. To actu-
ally show these cues or rewards, however, certain precon-
ditions must be met, such as “there has to be a princess in
the game first” or “there has to be a castle where the prin-
cess lives” (asset generation), or “there needs to be a com-
petition quest that the princess will be witnessing, so that
the player is motivated to impress the princess” (scene
generation). These ancillary actions also need to be
planned along with the planning of cues or rewards.

The Automated Story Planning system can be character-
ized as a firm (as opposed to soft) real-time system. The
exact timing of the inflections in the motivation curve are
essential to the player experience model—the player’s mo-
tivation is severely affected with incorrect timing of re-
wards (e.g., if the romance motivation is important to the
player and the player receives the kiss from the princess
too early, there would actually be no motivation to see the
game to the end even if there are other rewards coming).
Furthermore, a delay or unintended advance in the execu-
tion of any of these actions will change the projected moti-
vation curve in the future, and it may not be possible to
correct the motivation curve at a later point, i.e., failures
may propagate and future goals might not be attained at all.

In terms of architecture (see Figure 3), the planning sys-
tem of the game (called the experience manager) is intend-
ed to be a general system where potentially any game en-
gine (in the figure, called the scene manager) can be con-
nected. The reasons for separating the planning system
from the game engine into concurrently-running modules
are as follows:
� With a separate planner and game engine architec-

ture, an execution module can be built into any
stock game engine to receive and execute partial
plans from the experience manager, making the
planner (and domain) design impervious to game-
specific details such as engine/language platform.

� Individual cue or reward actions may be in the form
of complex scripts executed within the game engine
(e.g., a game ‘conversation’ can be broken down in-
to a series of dialog boxes presented in sequence, or
two game characters interacting with each other
may require many atomic animation actions playing
concurrently). Forcing an interleaved planning and
execution architecture on such a game engine great-
ly complicates implementation for these kinds of
systems with already many concurrent tasks execut-
ing, many of which are tasks that are external to the
main story plan (e.g., animation, GUI or physics
systems within the engine).

� A concurrent architecture also greatly simplifies de-
bugging, because the experience manager can, for
example, be run in a physically separate system
(e.g., with the two systems connected via TCP
sockets) and the planner’s run can be traced and an-
alyzed separately from the game engine’s other de-
bugging output.

The architecture proposed here is not unlike other plan-
ning-based story generation architectures such as
MIMESIS (Young et al. 2004), where a partial-ordered
planner is paired with an external game engine (for proof
of concept, the Unreal engine was used). However, in
MIMESIS, planning is done only partially online, with
real-time uncertainties in the world handled via specialized
contingent-planning-like constructs (either by intervention,
with the game preventing the player from doing unwanted
actions, or accommodation, with the plan containing condi-
tional constructs to adapt to the player’s plan-breaking ac-
tions; full re-planning is triggered when neither of these are
possible). In the Automated Story Planning project’s case,
the story planner is fully on-line; the story planner is meant
to automatically adapt to player preferences (e.g., if the
system detects that the player’s preference tends towards
blonde women, a princess asset with blonde hair can be
generated) or in-game player actions (e.g., if the player
tends to interact with the village girl more instead of the
princess, the future cues and rewards are adjusted or even
completely replaced in the background to reflect a change
in love interest), all in real-time as the planning system
tries to optimize the player motivation curve. The real-time
aspect of this problem, coupled with the architectural com-
plexity of separating the planner and the plan executor,
presents an interesting challenge that is resolved by the
proposed framework (discussed in the next section).

General Framework Design
The proposed real-time concurrent planning and execution
framework assumes two existing modules: an anytime lo-
cal-search planner module capable of producing partial
grounded plans within a fixed time interval (e.g., 0.2 se-
conds), and an executor module capable of executing indi-
vidual plan actions and reporting monitored sensor values.
 For the anytime local-search planner module, we assume
the planning model used in the Crackpot planning system
(Vidal and Nareyek 2010; Kumar and Nareyek 2011), a
descendant of the EXCALIBUR planning system (Nareyek
2001) that is similar in strategy to CASPER (Chien et al.
1999). A complete discussion of the planning model is
found in the aforementioned references, but is briefly ex-
plained here using an example domain where a person
needs to eat an apple that is not in his hand (see Figure 4):
Plan actions (such as EatApple) consist of conditions on
object attributes for the action to successfully execute
(e.g., apple.position must be “inHand” at time t, where t is
the start time of the action), contributions to attributes
when the action is executed (e.g., person.hunger decreases
over the duration of the action), and action tasks which

Figure 3. Automated Story Planning architecture

101

take up resource on object actuators to actually perform or
actuate the actions (e.g., person.hands is used for the dura-
tion of the action). Not shown in the figure are read-ins
from attribute values at certain time points to determine
action variables (e.g., the action’s duration may come from
the size of the apple). A current plan is iteratively repaired
by determining costs in a plan and selecting one of these
costs for repair per planning iteration; these costs are either
unmet goals on attributes’ value projections over time
(e.g., “person.hunger must be 0 at time 500”), unmet con-
ditions (e.g., if apple.position is “onTable” at the start of
the EatApple action), overlaps on actuator usage (e.g.,
person.hands cannot be used for taking an apple and eat-
ing it at the exact same time) or inconsistent structural con-
straints within an action (e.g., the action task’s duration
should be the same as the contribution’s duration; in
Crackpot, such constraints are supported via action-
component relations). Cost repairs are selected using heu-
ristics built into the planner, which may involve spawning
new actions, moving actions, changing action parameters,
or spawning new objects (e,g,, TakeApple is added to fix
the cost introduced by EatApple’s condition). After a
number of repair iterations, a portion of the plan is sent to
the executor while the planner resolves other costs.
 The real-time planning and execution framework itself
has a base architecture (see Figure 5) to facilitate commu-
nication between the planner and executor modules. The
framework provides interface wrappers local to each mod-
ule such that the underlying messaging protocol is hidden
under a layer of abstraction. This concurrent design per-
mits a wide variety of implementations, e.g., via sockets or
message queues provided by the operating system. (In fact,
an embedded system implementation with interleaved calls
to the planner and executor is still possible; in that case,
communication between planner and executor is trivialized
and is assumed to have zero latency.)
 The planner side’s processing logic works in a sequen-
tial manner—the planner and the planner-interface mod-
ules actually interleave in processing. This design allows a
regular interleaving-aware continual planner to work with
the architecture with only minor modification—the intent
is for the planner-interface to mimic the behavior of a plan
executor that the planner can directly talk to. On the other
hand, the executor and executor-interface may operate in a
concurrent manner, with the commands and queries made
by the executor-interface not required to occur in lock-step
with the regular processing of the executor.

 For the purposes of discussion, data transferred between
the two modules are referred to as messages. To illustrate
the intended interface between the two modules, a typical
action dispatch goes through the following control flow,
illustrated in Figure 5 and formalized in the algorithms
shown in Figure 6 and Figure 7:

1. Each time a planner creates or deletes an action
task, the planner sends a command to the planner-
interface to add/remove the task from the planner-
interface’s tracking list.

2. The planner-interface, at the end of a planning cy-
cle (e.g., after every 0.2 secs), queries the planner
about the action tasks in its list for execution in-
formation (“what time should action task � start
executing?”; “are the conditions of �’s action cur-
rently met?”).

3. For action tasks whose start time is close to current
time (this “critical time window” is discussed in the
next subsection) and whose conditions are met, the
planner-interface sends a message to the executor-
interface containing the execution details of the ac-
tion task. Note that this also entails locking of the
action task before sending, i.e., the planner-
interface tells the planner that �’s parameters may
no longer be changed.

4. The executor-interface receives the message and
translates it into a local command understood by
the executor. A message is sent such that it is typi-
cally received ahead of time (due to uncertainty in
message arrival time), so the commands are placed
in a waiting list within the executor-interface (im-
plementation-wise, this should be sorted according
to time for efficiency), and the command is actually
executed at the exact time for execution.

5. The executor-interface queries the status of all exe-
cuting action tasks (e.g., whether the task has exe-
cuted at all, or in the case of sensing actions, when-
ever sensor data is available).

6. If any status updates are available for an action
task, the executor-interface transmits these updates
back to the planner-interface via messages.

7. The planner-interface receives the incoming mes-
sage(s) and then feeds the data back into the plan-
ner (e.g., “� is currently executing”). In the case of
a sensing action task, the sensor values in the mes-
sage are fed into the relevant attributes/variables as
observations (e.g., “player.location=village @ time
[236, 336)” or “�.action.duration+=10”). These
observations override any projected information al-
ready stored in the attributes, allowing the planner
to re-project attributes and re-plan accordingly.

Figure 4. Crackpot plan representation

Figure 5. Architectural design of the framework

102

Note that active monitoring is the primary method of
sensing used in the framework; all sensing is done via ac-
tion tasks. An exception is the sensing of current time,
which is assumed internal to the executor (for discussion,
an execution time unit is referred to as a tick) and is fed
continuously to the planner, eliminating request overheads.
Continuous subscription to a particular sensor (which may
be used for, say, intensive monitoring of the position of an
in-game character that is important to the current scene)
may be made by modeling the subscription as a long-
running action task which returns sensor values at regular
intervals.

Timing Control
The critical time window and other timing variables men-
tioned in the algorithms bear some discussion. The frame-
work assumes that action tasks are sent ahead of time to
combat the effects of various latencies. These latencies are
formalized via these timing control variables:

1. Planning window (�� – the worst case number of
ticks an executor will progress during a full plan-
ning cycle (which may be composed of thousands
of local-search iterations). For example, for a 60Hz
executor, ��= 12 yields an effective planning win-
dow of 200ms.

2. Execution update window (�� – the interval be-
tween the executor’s current-time updates in num-
ber of ticks. Note that if this is set equal to the
planning window �, this will not guarantee that the
planner will get 1 time update at every planning it-
eration, owing to uncertainty in the arrival of cur-
rent time updates. Thus, this value should be set
lower, e.g., if �=12, � may be set to 6 (i.e., 100ms).

3. Message-passing latency (�� – the worst case
number of ticks before a message is completely
transmitted from the planner to the executor, or
vice versa. In an embedded system with tight coop-
erative scheduling of planner and executor (i.e., in-
terleaving), � = 0. If OS-controlled pre-emptive
scheduling is used, however, this value must be set
to the timing resolution of the OS’s context switch-
ing. A full analysis of the proper value for this vari-
able requires statistical modeling, e.g., using a
Poisson arrival model (Laplante 2004).

Figure 8 is a visual depiction of these timing variables,
illustrating how planning occurs asynchronously with exe-
cution (as opposed to interleaving). In the best case, an
executor update (e.g., a current time message) will incur a
delay of � if it arrives exactly on time for the next planning
iteration (see top half of Figure 8); however, in the worst
case, the messa ge will be queued until the next planning
cycle and its processing will be delayed by at most ��	��
(see bottom half of Figure 8). If the planner then requests
for immediate execution of an action to react to current
world state (e.g., if the latest observation includes player.
location = village, and an impending KissPlayer reward
action requires the princess to be at the same location as
the player, the planner might insert a MoveCharacter ac-
tion moving the princess to the village), the arrival of the
command on the executor will be delayed by � in the best
case (command is executed immediately) and by � + 1 in
the worst case (command is queued for the next execution
tick). Since actions are only dispatched at the end of the
planning cycle, the known current time in the planner side
would have advanced by at most � from the last reported
time of the executor. Therefore, planner heuristics to insert
new actions into the plan must ensure that the start time of
an action intersects with a critical time window, the mini-
mum of which is given by the following formula:

criticalmin =
 + � + 2� + � + 1
where
�is the last reported current time. Since the planner
is not able to change the temporal placement of actions
once it has been dispatched to the executor, dispatching of
an action far ahead into the future must be deferred to al-
low re-planning for contingent events. This means that the

1.
 = RequestCurrentTime()
2. If
 mod � = 0:

• Send “update time” message to Planner
3. For each “execute action task” message received, extract Ac-

tionTask � and place in waiting list
4. For each ActionTask � in the waiting list:

• If �.startTime =
�
• StartExecution(�)

• If �.startTime <=
�
• If status update is required by �, send the status

(along with any sensor data to be reported) as a “re-
port action task status” message to Planner

• If �.actionStatus = finished, remove action from the
waiting list

5. DoOtherExecutionTasks() // for 1 execution tick

Figure 7. Executor-interface algorithm

Figure 8. Various latencies during concurrent planning and
execution: best case (top) and worst case (bottom)

1. Process the message queue:
• Feed “update time” messages to the planner’s central

time-keeping subsystem
• Feed “report action task status” messages to correspond-

ing ActionTasks (also feeding embedded sensor data into
the corresponding variables/Attributes)

2. DoPlanning() // may add/remove actions in the plan
3. For each ActionTask � in the plan that is currently unlocked:

• If �.startTime [criticalmin, criticalmax] (the critical time
window) and its action’s conditions are met:
• Lock � to prevent further changes
• Send an “execute action task” message (with the

given action �) to Executor

Figure 6. Planner-interface algorithm

103

maximum of the critical window is the start time of next
planning cycle, thus given by the following formula:

criticalmax =
 + � + 2� + 2��

Case Examples of Framework Extensions: Usage
with the Automated Story Planning Domain
Planner extensions are sometimes necessary to handle cer-
tain requirements of planning problems. Discussed here are
two such requirements in the Automated Story Planning
domain and how the general framework is extended to
handle these requirements: monitoring uncertain player
behavior, and handling real-time generation of story assets.
Monitoring the Rules of Player Behavior
Apart from the actions that the planner may enact on the
virtual game world, the game itself may introduce events
that modify the world in response to the changing world
state. Such world dynamics may be modeled via the use of
deterministic rules (Nareyek and Sandholm 2003); a rule is
essentially defined like a plan action but is triggered auto-
matically the moment its conditions are fulfilled (instead of
being decided to be put into the plan), e.g., when a ball is
released in mid-air, a “gravity rule” is always triggered
such that the ball falls to the ground. These rules enable the
planner to reason about future world states, e.g., a comput-
er-generated soccer player may kick the ball at the exact
moment the ball hits the ground.
 However, the existence of a (non-deterministic) player
presents a challenge that needs to be corrected for in real-
time. For example, the planner may determine initially that
the player will have the best experience by giving him a
quest. The domain may encode a rule where if a villager
tells the player of the existence of a precious diamond in
the forest, the player will, as a result, move towards the
forest. This, however, opens two contingent possibilities
apart from the expected outcome: the player may either
delay his/her movement towards the forest, or may not go
to the forest at all (i.e., the planner’s prediction is wrong).
 Thus, the framework is extended with a mechanism for
rule monitoring—rules are outfitted with special rule tasks,
whose purpose is to monitor critical attributes for the ex-
pected changes to the world state (see Figure 9). These rule
tasks are specified with deadlines such that if the expected
attribute change did not happen, either the duration of the
rule is extended, or the rule is invalidated (depending on

modeling needs). In essence, these rule tasks function simi-
larly to regular action tasks, and the framework can thus
dispatch and monitor them in the same manner.
Object Anchoring for Asset Generation
It is implausible for some story assets (e.g., a castle) to be
present in the world at one moment and disappear in the
next, or for immovable objects to change position, etc.
While a story generator may introduce objects at any time,
it may not change parameters of these objects as soon as
these parameters are manifested, e.g., if the princess’s hair
is initially blonde, it (usually) cannot be changed when the
player has seen it. However, some parameters should still
be changeable by the planner until they are manifested to
the player (to allow the local-search planner to make on-
time optimizations while earlier parts of the story are still
being presented). This necessitates a two-step process for
generating objects (illustrated in Figure 10):
� Anchoring is the process by which a planner-

conceived object (e.g., a new castle map to satisfy
the requirements of a princess-presentation scene) is
connected to a real-world (virtual) object. In the
case of the story planning domain, an anchoring ac-
tion tells the executor side to create the necessary
assets for this object, along with any requested pa-
rameters (e.g., “create a princess with blonde hair”).
An object may be re-anchored if necessary (e.g., if
the player decides to forego the princess quest in fa-
vor of a save-the-village quest, the castle map may
be re-anchored to a village map).

� Commitment is the process of “experiencing” a
game asset (e.g., the player enters the village map).
As these are player-initiated, commitment should be
encoded in the domain as rules (as mentioned in the
previous subsection), with a condition that the object
needs to be anchored first, plus other triggering con-
ditions, e.g., “player is on the way to the map”. A
committed object cannot be de-anchored, e.g., an al-
ready-experienced map cannot disappear.

 This allows for on-time re-generation of game assets as
story planning goals change. The pattern of anchoring and
commitment is repeated for all so-called “constructible”
objects in the domain (and thus can be auto-generated by a
preprocessor on the domain level). Additional conditions
for construction may also be placed on the anchor action or
commit rule depending on authorial constraints (e.g., “a

Figure 9. Rule tasks for monitoring on-going rules
Figure 10. Anchoring example; arrows pointing out from attribute

projections are conditions, other arrows are contributions/tasks

104

princess can only be constructed if story.princessExists =
false” where story is a non-constructible, pre-existing ob-
ject). For optimization, a special planning heuristic may be
used to minimize expensive re-anchoring actions (i.e.,
there should only be one re-anchoring past current time);
this heuristic, in turn, will use the framework’s critical time
window to decide which re-anchoring tasks to remove.

Preliminary Evaluation
A prototype implementation is built using the Crackpot
planner and a game based on PlayFirst’s Playground SDK
as proof-of-concept of the framework’s applicability to off-
the-shelf multithreaded game engines. Figure 1 shows the
prototype game and planner running concurrently.
 While the game is in an alpha stage and the story plan-
ning domain model is currently in development, the sys-
tem’s capability for real-time planning and execution of
very simple plans is already promising, with single plan
actions executing on-time even with a fast execution tick
rate (60Hz) greatly exceeding planning rate (1Hz) and with
conservative values for the timing control variables (� =
60, � = 12 and � = 1; i.e., 1Hz planning window, 5Hz exe-
cution update window and 16.7ms message passing laten-
cy). Further evaluation of the framework will involve reli-
ability tests using other domains with measurable out-
comes (e.g., real-time variants of logistics or job-shop-
scheduling domains) and analytical modeling of the sys-
tem’s reliability such as in (Chen, Bastani, and Tsao 1995).

Conclusion
The proposed framework realizes concurrent planning and
execution with real-time guarantees for action execution
(assuming proper modeling of latency via implementation-
specified timing control variables). This framework is a
generalization of interleaved planning and execution, al-
lowing real-time planning applications with complex archi-
tectures (e.g., Automated Story Planning) to be developed.
 Future work includes full development of the Automated
Story Planning prototype game, which will likely expose
additional real-time sensing and execution issues, and the
framework may require special heuristics to produce better
plans given real-time constraints. Development of frame-
work extensions for other real-world domains (e.g., action
negotiation between planner and executor, planning-to-
sense, etc.) is also forthcoming. Lastly, the framework,
with some modification, may be further extended to plan-
ning problems utilizing or even spawning multiple execu-
tion clients, e.g., enlist more robots to finish a job faster.

Acknowledgments
This work was supported by the Singapore National Re-
search Foundation’s Interactive Digital Media R&D Pro-
gram under research grant NRF2007IDM-IDM002-051.

References
Champandard, A.; Verweij, T.; and Straatman, R. 2009. Killzone 2
Multiplayer Bots. In Game AI Conference, Paris.
Chen, I.; Bastani, F. B.; and Tsao, T. 1995. On the Reliability of AI
Planning Software in Real-Time Applications. IEEE Transactions on
Knowledge and Data Engineering 7(1): 4-13.
Chien, S.; Knight, R.; Stechert, A.; Sherwood, R.; and Rabideau, G. 1999.
Integrated Planning and Execution for Autonomous Spacecraft. In
Proceedings of the 1999 Aerospace Conference, Pasadena, CA.
desJardins, M. E.; Durfee, E. H.; Ortiz Jr., C. L.; and Wolverton, M. J.
1999. A Survey of Research in Distributed, Continual Planning. AI
Magazine 20(4): 14-22.
Jhala, A., and Young, R. M. 2010. Cinematic Visual Discourse:
Representation, Generation, and Evaluation. IEEE Transactions on
Computational Intelligence and AI in Games 2: 69-81.
Kumar, A., and Nareyek, A. 2011. An Extensible Planning Architecture
for Configurable Rich-World Actions. In AAAI 2011 Workshop on
Generalized Planning, San Francisco, California.
Laplante, P. A. 2004. Real-Time Systems Design and Analysis, 3rd
Edition. Wiley-IEEE Press.
Mateas, M., and Stern, A. 2003. Façade: An Experiment in Building a
Fully-Realized Interactive Drama. In Game Developers Conference, San
Jose, CA.
McGann, C.; Py, F.; Rajan, K.; and Olaya, A. G. 2009. Integrated
Planning and Execution for Robotic Exploration. In International
Workshop on Hybrid Control of Autonomous Systems, IJCAI 2009,
Pasadena, CA.
Miura, J., and Shirai, Y. 1998. Scheduling parallel execution of planning
and action for a mobile robot considering planning cost and vision
uncertainty. In Proceedings of the International Conference on Intelligent
Robots and Systems, Victoria, BC, Canada.
Myers, K. L. 1998. Towards a Framework for Continuous Planning and
Execution. In Proceedings of the AAAI Fall Symposium on Distributed
Continual Planning, AAAI.
Nareyek, A. 2001. Constraint-Based Agents: An Architecture for
Constraint-Based Modeling and Local-Search-Based Reasoning for
Planning and Scheduling in Open and Dynamic Worlds (LNAI 2062).
Springer.
Nareyek, A.; Bostan, B.; Vidal Jr., E. C.; Behpour, S.; Koh, S. M.; Wang,
H.; Malik, O. N.; Siew, Z. X.; Agarwal, A.; Manunethi, S.; and Wong, M.
T. 2009. Automated Storyplanning for Games: Concept Details and
Solution Approaches. Technical report (UNPUBLISHED), NUS Games
Lab, National University of Singapore, Singapore.
Nareyek, A., and Sandholm, T. 2003. Planning in Dynamic Worlds: More
Than External Events. In IJCAI-03 Workshop on Agents and Automated
Reasoning, Acapulco, Mexico.
Orkin, J. 2006. Three States and a Plan: The A.I. of F.E.A.R. In
Proceedings of the Game Developer's Conference (GDC), available at
http://web.media.mit.edu/~jorkin/gdc2006_orkin_jeff_fear.pdf.
Porteous, J.; Teutenberg, J.; Charles, F.; and Cavazza, M. 2011.
Controlling Narrative Time in Interactive Storytelling. In Proceedings of
the 10th International Conference on Autonomous Agents and Multiagent
Systems (AAMAS), Taipei, Taiwan.
Py, F.; Rajan, K.; and McGann, C. 2010. A Systematic Agent Framework
for Situated Autonomous Systems. In 9th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS), Toronto, Canada.
Simmons, R. 1992. Concurrent Planning and Execution for Autonomous
Robots. IEEE Control Systems 12(1): 46-50.
Vidal, E. C., and Nareyek, A. 2010. An XML-based Forward-Compatible
Framework for Planning System Extensions and Domain Problem
Specification. In ICAPS 2010 Workshop on Knowledge Engineering for
Planning and Scheduling, Toronto, Canada.
Young, R. M.; Riedl, M. O.; Branly, M.; Jhala, A.; Martin, R. J.; and
Saretto, C. J. 2004. An architecture for integrating plan-based behavior
generation with interactive game environments. Journal of Game
Development 1.

105

