

A Phone That Cures Your Flu: Generating Imaginary Gadgets in
Fictions with Planning and Analogies

Boyang Li and Mark O. Riedl
 School of Interactive Computing, Georgia Institute of Technology

{boyangli, riedl}@gatech.edu

Abstract
Most computational story generation systems lack the
ability to generate new types of imaginary objects that play
functional roles in stories, such as lightsabers in Star Wars.
We present an algorithm that generates such imaginary
objects, which we call gadgets, in order to extend the
ontological expressivity of existing, planning-based story
generation systems. The behavior of a gadget is represented
as a plan including typical events that happen when the
gadget is used. Our algorithm creates gadgets by
extrapolating and merging one or more commonly known
objects in order to achieve a narrative goal provided by an
existing story generator. We extend partial-order planning to
establish open conditions based on analogies between
concepts related respectively to common objects and the
gadget. We show the algorithm is capable of generating
gadgets created by human.

Introduction
Since early days of Artificial Intelligence (AI), one of the
goals has been to procedurally simulate the human ability
of storytelling. Many story generation systems (Meehan
1981; Lebowitz 1985; Turner 1992; Pérez y Pérez and
Sharples 2001; Cavazza, Charles, and Mead 2002; Riedl
and Young 2010; Gervás et al. 2005) begin with a
predefined world configuration. Such configurations
include unchangeable facts about the fictional world such
as what objects exist, how they relate to each other and
what events can happen. With the initial world
configuration, story generators build stories, the execution
of which transform and evolve the world. As most story
generators accept the initial world as a given rather than
construct their own, they are limited in their creativity and
expressivity. Some story generators can create characters
and objects either before the story (Lebowitz 1984) or

Copyright © 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

when stories need them (Dehn 1981; Riedl and Young
2006; Swartjes and Theune 2009; Ware and Young 2010).
These systems are still limited in their ability to construct
the world because they can only initiate new instances of
known types of objects; they cannot create new types of
objects.

In contrast, creative literary works produced by human
often feature objects never envisioned before, such as
lightsabers in Star Wars and the magic mirror in Snow
White. These objects possess special powers to achieve the
impossible or the improbable due to futuristic technologies
or magic. They facilitate and sometimes dictate story
development. In fact, the gadget story is proposed as one of
the four subgenres of science fiction (Malmgren 1991).
The ability to create such objects, which we call gadgets,
can relax the reliance on human-constructed fictional
worlds of AI story generators and greatly improve their
expressivity.

We present a computational approach for creating new
types of magical and science fiction objects by
extrapolating and combining existing object types. The
approach described here augments the creativity of plan-
based story generators such as that by Riedl and Young
(2006). We empower a traditional story planner with the
ability to plan with analogies. We incrementally modify
behaviors of known objects based on a consistent set of
analogies with backward chaining and combine behaviors
of multiple objects to create a new behavior. The process
results in a new gadget that can cause desired changes in
the fictional world that are impossible or improbable to
achieve by other means.

Background and Related Work
Cognitive research on narrative comprehension suggests
that a story can be modeled as a sequence of interrelated
events that transform a fictional world. In the mental

41

AAAI Technical Report WS-11-18

models of readers, narratives are segmented into discrete
event structures (Zacks, Speer, and Reynolds 2009).
Furthermore, people can perceive events of different
granularities organized in hierarchies where a large event
can include several small events (Zacks and Tversky
2001). Causality and temporality between events are
important constituents of mental models of narratives,
directly affecting comprehension (cf. Zacks, Speer, and
Reynolds 2009; Zwann, Magliano, and Graesser 1995).
Causal relationships between events allow readers to make
inference about narratives and missing causal links may
hinder comprehension (Trabasso and van den Broek 1985).
 An AI formalism that corresponds to such a mental
model and captures a sequence of events as well as
temporal and causal relationships between them is a
partial-order plan. In story generation, a plan may be used
to imitate mental models of stories and make inferences
about readers’ perception of stories (Young 1999). This
leads to the development of story planners (Lebowitz 1985;
Riedl and Young 2010; Porteous and Cavazza 2009; Li and
Riedl 2010). Story planners require both an initial state and
the outcome to be completely specified before a story can
be made. The initial state describes the world before the
story happens, and the goal situation describes changes the
story caused when it ends. The planning algorithm
generates a plan as a feasible path linking the beginning
and the end of the story. Traditional story planners,
however, have limited expressivity because they have to
accept both a given beginning and a given outcome.

AI storytellers by Dehn (1981), Lebowitz (1984) and
Riedl & Young (2006) are capable of creating some
aspects of their own fictional worlds. Dehn (1981) models
a storyteller as an autonomous agent that deliberately
places objects and characters in the fictional world to
achieve author goals as the story develops. Lebowitz
(1984) constructs the cast of characters for fictional world
before story generation takes place. Riedl & Young (2006)
extend story planning with the ability to accept or deny
certain facts in the initial state, such as existence of an
object (thus creating an object), an attribute of an existing
object, or a relation between two existing objects. This
approach is further elaborated upon by Swartjes and
Theune (2009) and Ware and Young (2010). However, in
these systems, types of objects and characters dynamically
created must be known. These types specify object
behaviors, so type information must be known in advance
so that created objects and characters behave correctly.

In this paper, we empower story generators with the
ability to create new types of objects previously unknown
in service of a story being created by a story generator.
Thus, our system is more creative than those systems
reviewed above. Ryan (1991) proposes that readers re-
construct the fictional world while reading. Initially they
assume unmentioned aspects of the fictional world as

minimally departing from reality. Learning about the
fictional world bit by bit through the story can be thought
of as a search for possible worlds the story could be set in.
In this light, our procedure is tantamount to re-configuring
the possible world of the story. We create gadgets as
minimal departures of common objects so that readers’
knowledge of common objects can help them understand
the gadget and accept it easily.

Partial-Order Story Planning
Following plan-based story generators, we model a story as
a partial-order plan. A partial-order plan consists of
actions as well as temporal and causal links between
actions. Actions encode preconditions, which must be true
for the event to occur, and effects, which become true once
the event completes. Preconditions and effects are first-
order logic predicates stating facts, such as contain(box,�
candy). The type of the predicate is contain, and box and
candy are objects it takes as arguments. A causal link,
denoted as a1 �c a2, indicate that an effect of event a1
establish a precondition c necessary for event a2. Causal
links act as protected intervals during which the truth of
predicate c in the world must be maintained. Temporal
links indicate ordering constraints between events. Both
events and predicates can be parameterized with symbolic
references to objects of known types. For example, an
Move(?o,�?l1,�?l2) event, taking one object ?o and two
locations ?l1,�?l2 as arguments, has the effect that the
object is moved from one location to another.
 Before planning, an initial world state and a desired goal
situation are specified as two sets of predicates. All
predicates in the goal situation and all preconditions of
events in the plan must be established. Otherwise, they are
called open conditions. An action library contains all un-
parameterized action templates. During story planning,
actions are drawn from the library, given appropriate
arguments, and inserted into the plan. A causal link can
extend from the initial state or from an effect of an action
to establish an open condition. A planning algorithm is a
refinement search that gradually adds events, causal links
and temporal links to produce a sound plan – one that does
not contain open conditions and guarantees to reach the
goal situation from the initial state. See Weld (1994) for
more details on partial-order planning.

Gadget Generation
We formulate the gadget generation problem as follows:
find a new type of object which, when used by a character
in the story, causes the desired change in world state. We
should be able to describe the object, or gadget, in
sufficient details that it can be accepted and believed by

42

readers. Many gadgets in fictions are imaginary, but
readers usually understand and accept them easily. To
promote readers' suspension of disbelief, we adhere to two
principles. First, the gadget's behavior is similar to objects
readers already understand, so knowledge about the old
can be brought to understand the new, as suggested by the
minimal departure principle (Ryan 1991). A lightsaber, for
example, is similar to a sword, so readers understand it is
used to slash, pierce or perform other functions of a sword.
Second, the gadget caters to biological traits and limits of
humans. For example, a person should not have to walk on
water in order to use a gadget unless she or he already
possesses that ability; although humans in the fictional
world may possess special abilities, modifying human
behaviors to suit a particular gadget is outside the scope of
gadget generation. Thus, in order to keep the believability
of gadgets, our system use common objects as prototypes
for gadgets and prefers to minimize modifications to
prototypes. Our algorithm creates a new object type
through a combination of analogical mapping of elements
from the prototype to the gadget and planning to fill in
additional details. During the modification, we prevent
gadgets from requiring unnatural human behaviors.
 This paper focuses on generating step-by-step behaviors
for gadgets. We represent the behavior of an object as a
partial-order plan called a usage frame. A usage frame
describes the sequence of events expected to happen during
a typical use of the object, including how people operate it
and how it affects the world. A usage frame can take
different arguments, as an object can be used by different
people in different occasions. A usage frame is
summarized into a single event of the object being used
inside the story plan, forming an event hierarchy. Such a
hierarchy supports flexible description of gadgets in
different media. That is, a narrative text may simply
mention the gadget is used, but a movie or comic may
show each step of its usage.
 An example usage frame of a toy phone, made of two
cups attached by a string, is shown in Figure 1. The goal
state of the frame and some causal links are omitted for
clarity. Boxes denote events in the frame. To differentiate
from events in the story plan, we refer to events in usage
frames as actions. Thick arrows denote causal links, and
dashed arrows denote temporal links. In other words, the
frame describes the situation when two people each pick
up one cup of the toy phone and one speaks into a cup. The
phone transmits the voice so it is heard at the other end.
Dotted arrows in the frame denote closure events. Closure
events restore the world to a normal or routine state after
other events change it. They are not necessary for a
gadget's intended purpose, but they complete the frame and
may improve coherence of the story. Here, the events
where people release the two cups of the toy phone are
closure events, which "close" the events where the cups are

picked up. Those two events prevent people from holding
on to the phone after using it.

The narrative generation process is initiated by a partial-
order story generator, which supplies narrative goals that
the gadget should accomplish. After that, a common object
is identified as a prototype. The usage frame of the
prototype is modified incrementally based on necessary
analogies to become the usage frame of the gadget. The
algorithm attempts to preserve the structure of the
prototype while ensuring the presence of causally
necessary actions. As part of an iterative process, the
system may determine if usage frames of more than one
common object should be combined. For example, if an
open condition requires the gadget to fly, the algorithm can
retrieve an airplane as a second prototype and transplant its
flying operation onto the gadget.

We should note that both the appearance and the
behavior are necessary to describe a gadget; the more
detailed its description, the more vivid and believable the
gadget becomes. Further, when presentational aspects of
storytelling come into play, one needs to be able to
describe or show how the gadget is used in a way that is
suitable for the media used (text, computer games, comics,
cinematography, etc.). However, presentation of the gadget
appearance in the story is beyond the scope of the paper.

Narrative Goals of Gadgets
As a partial-order planning story generator iteratively
establishes open conditions, it may invoke gadget
generation when a gadget is deemed the best option to
achieve an open condition p in the story, which becomes
the narrative goal of the gadget. There are three reasons to
generate a gadget to achieve a goal. First, the goal may be
impossible or too difficult to achieve without assistance of
a gadget (e.g. stopping the rain). Second, the goal may
require unpleasant actions or significant time commitments

Frame argument/types:
 p1, p2 : People virus : Flu Virus,
 cup1, cup2 : Paper Cup phone : Toy Phone Gadget

Figure 1. The usage frame of a normal toy phone.

43

from the protagonist, such as housework, that the character
in question generally wants to avoid. The third reason is
the lack of reliable means to achieve the goal, such as
winning a lottery. Admittedly, a story planner can make
any events happen no matter how unlikely. However, a
story character in constant pursuit of unlikely events
appears irrational. The believability of the story is further
damaged if such a character always appears successful.
Here, a gadget which makes the improbable happen can
believably justify this outcome and rescue the story.
 In this paper, we assume one or more narrative goals are
given by a story generation system and focus on
subsequent gadget generation. Once the gadget usage
frame is complete, we summarize it to form a single "use-
gadget" event and insert the event into the story in order to
establish the narrative goal.

Retrieving a Prototype Object
We use a knowledge base of existing objects that are
known a priori. Usage frames of these objects are manually
authored, stored and indexed by predicates they are
typically employed to achieve. When gadget generation is
initiated to achieve a narrative goal p, the system searches
for tools that achieve a predicate analogous to p. Saunders
and Gero (2004) propose that an artifact is usually
considered the most creative when it is neither too similar
nor too dissimilar to what we already know. Following
that, an object with optimally moderate similarity is
attempted first, and becomes the prototype of the new
gadget. The algorithm may backtrack and try a different
tool if the first trial fails.

Computing Analogies
Analogy is critical in retrieval of the prototype object and
subsequent transformation. We employ Sapper (Veale and
Keane 1994) as the analogy-making engine. All known
object types, predicates, and actions are stored in a pre-
authored semantic network that contains attributes of and
relations between objects. Objects types are considered
analogous if they share attributes or are involved in the
same relations. Analogies between predicates and actions
are recursively supported by analogies or literal matches
between their corresponding arguments. In addition,
semantic roles, such as subject, object, etc., of arguments
in predicates and events are annotated to facilitate
mapping. Furthermore, we utilize the notion of spatial
signatures (Veale and Keane 1992) to capture similarities
between predicates and actions. For instance, climbing a
staircase and advances of career both implies upward
movements, so a metaphor can be created between them.
Figure 2 shows some examples of spatial signatures, which
help to establish analogies between two predicates heard
and infected�by, and two actions Speak�Into and

Cough�Into. The basic idea in transformation is that if two
object types, predicates, or actions are analogous enough
they can stand in place for each other in a creative domain.

Constructing the Usage Frame
The primary function of gadget generation is to construct a
usage frame for an unknown gadget. Extending the partial-
order planning (POP) algorithm (Weld 1994), we propose
new analogy-based methods to establish open conditions in
the gadget usage frame.
 The gadget usage frame starts as an empty plan with an
empty initial state and the narrative goal p being the only
open condition. During planning, an action may be added
to the gadget frame to establish an open condition, and
preconditions of the new action will become new open
conditions. The algorithm continues to add actions and
predicates to the gadget frame in a back-chaining manner
until all open conditions are satisfied. Given an open
condition cg in the gadget frame, there are four methods to
establish it, as shown in Figure 3:
� Insert an action with an effect equal to cg
� Modify the initial state of the usage frame by

inserting cg into the frame’s initial state
� Reuse existing predicates from the initial state or

effects of existing actions
� Assume it is achieved by special "gadget powers”

During each iteration of the search, each of the four
methods is attempted, which may generate one or more
frames in which cg is satisfied. These frames become part
of the search frontier. At each iteration of the algorithm,
the best frame is chosen from the search frontier based on
heuristic values. We backtrack to alternative frames when
we cannot satisfy an open condition using any of these
methods. We next describe how analogical reasoning is
incorporated into planning and each of the four methods.
 As with traditional story planners, the main purpose of
the algorithm is to construct a gadget’s usage frame by
incorporating new content into the frame. A traditional
POP planner inserts actions (see Weld 1994), and the
planner by Riedl and Young (2006) additionally inserts
predicates into the initial state of the plan. Here, we
introduce projection as a new method of inserting content
into a plan to establish open conditions. A projection

Figure 2. Spatial signatures of some predicates (left) and

actions (right)

44

copies an element from the prototype usage frame – either
an action or a predicate in the initial state – and inserts it
into the new gadget usage frame either literally or through
an analogical transformation. A literal projection simply
copies an element over. An analogous projection
transforms the element projected based on analogies
between the two frames. In order to keep the resemblance
between the gadget and the prototype, we prefer literal
projections to analogous projections. When an action or a
predicate is projected, all referenced frame arguments are
also copied over into the gadget frame. Each element can
only be projected once. Following the flow of the
algorithm in Figure 3, we discuss projection of actions,
projection of predicates into the usage frame initial state,
then reuse of elements, and finally special rules.
Projecting and Inserting Actions
Before projecting any actions from the prototype frame to
the gadget frame, we first find correspondence of
conditions between the two frames. We look for a
predicate in the prototype frame that corresponds to the
open condition cg. To do so, we first find within the gadget
frame the action which cg is a precondition of. We call this
action Bg. If an earlier projection has projected an action Bp
in the prototype frame to become action Bg in the gadget
frame, one precondition cp of Bp must have become cg.
This precondition cp of the projected action Bp is the
predicate we look for. If no such projection happened, we
look for a precondition cp of any action in the prototype
frame that is most analogous to cg. If cg is a predicate in the
goal situation, we find the predicate in the prototype goal
situation that is the most analogous to cg.
 Once cp is identified, we look at how it is satisfied in the
prototype frame. If cp is satisfied by an effect of action Ap
in the prototype frame, we then project Ap to the gadget
frame to satisfy cg. However, how exactly Ap is projected is
determined by the relationship between cp and cg. If cp is
identical to cg, we can directly copy Ap into the gadget
frame (shown as A1 in Figure 3). We refer to this as a
literal projection. If cp is not identical but analogous to cg,
there are two possible analogous projections. The first is to
transform Ap by directly changing its constraints and
effects, so that its effect cp will match cg (shown as A2).
We call this operation an analogical transformation, and
will explain the details later. If this fails or is not
applicable, we look in the action library for an action Ag
such that (1) the action Ag is analogous to the action Ap,
and (2) Ag establishes precondition cg (shown as A3). Note
here the analogy is made between two actions. To compare
A2 and A3, method A3 draws an unmodified action from
the event library, whereas A2 modifies a known action to
create a new action depending on the analogy between cp
and cg. Finally, if none of A1, A2 or A3 works, we simply
insert an action satisfying cg from the library (A4). Note

the method A4 does not involve projection and exists in
traditional POP. It is used only as a last resort.
Projecting and Inserting Predicates into Initial State
When the corresponding condition cp in the prototype
frame is established by the initial state, instead of an
action, we can establish a non-goal open condition cg in the
gadget frame in the same way. The second method is used
to insert predicates into the gadget’s initial state to
establish open conditions, provided the inserted predicates
do not conflict with existing ones. Again, we prefer to use
projection to insert predicates into initial states, and prefer
literal projections to analogous projections.
 Our preference distinguishes three different cases with
decreasing priority. We can perform a direct projection,
adding cp directly to the gadget’s initial state, if we find the
predicate cp in the prototype frame identical to cg (shown
as I1). If cp is not identical but analogous to cg, we still
insert cp to the gadget’s initial state (I2), but the operation

The CONSTRUCT-GADGET algorithm takes the prototype frame
Fp, the gadget frame Fg, an action template library, and a
narrative goal p.
1. Add p to the open condition list of the gadget frame Fg.
2. Choose an open condition cg in Fg. Find in Fp the

corresponding predicate cp and the initial state or action
ap that establishes it. Non-deterministically do one of the
following:

� Insert An Action: If ap is an action then insert a new action
ag created by one of the following methods (try from top to
bottom until one succeeds):
A1. If cg= cp then ag =ap.
A2. Analogically transform ap to create a new action ag

with the same type which achieves p.
A3. Find an action ap from the library with a different type

such that ap is analogous to ag and achieves p.
A4. Find an action ap from the library with a different type

such that ap achieves p.
� Revise Initial State: If ap is the initial state of Fp, insert cg

into the initial state of the prototype frame. Find which of
the following is true to compute heuristic value.
I1. cg= cp
I2. cp is analogous to cg.
I3. None of the above.

� Reuse Existing Elements: Solve cg with reuse if:
R1. cg exists in the initial state
R2. cg is an effect of an existing action
R3. An existing action can be analogically transformed to

produce cg without affecting other causal links.
� Use Gadget Power: Remove cg. Consider it as repaired by

high-tech or magical powers of the gadget. Only applies to
limited types of predicates.

3. Establish corresponding causal links as in Weld (1994).
Remove cg from the open condition list of Fg).

4. Pick another open condition from Fg and repeat 2-4 until
Fg contains no more open conditions.

Figure 3. Repair open conditions in gadget frames

45

becomes an analogous projection rather than a literal
projection. If neither applies, we force the insertion of cp
into the initial state as a last resort (I3). The three methods
produce the same initial state, but they generate different
heuristic values for the frame produced.
Reusing Existing Actions and Predicates
The third method reuses an effect of an existing action
(R1) or a predicate from the initial state (R2) to establish
the open condition cg within the gadget frame, as in
traditional POP. We can also analogically transform an
existing action so that it establishes cg, only when doing so
does not break predicates already established (R3).
Gadget Powers
Finally, the “gadget power” method simply removes cg
without resolving it, which is an appeal to magical or high-
tech properties of the gadget itself. For example, the
requirement that direct line of sight can be removed from a
telescope, resulting in a gadget that can see through walls.
Whether this method is used is controlled by rules
capturing the human author's intuition about when this
should be allowed and what gadget powers can
accomplish. We reckon that overusing this method may
remove too many open conditions, break analogy between
gadgets and common objects and damage believability. Its
use may be domain-specific and currently very limited.

Analogical Modification of Actions
In this section we explain the technique used in methods
A2 and R3 to modify actions to achieve new effects based
on analogies. Traditional POP assigns variables for actions
such that their effects become identical to the open
condition to be established. Variables can only take objects
of that type. Constraints on variable types restrict the kind
of predicates that can be satisfied. To make ends meet,
gadget generation allows variables to take objects of
different types than the constraints specified, as long as an
analogy can be established between the old type and the
new type. Suppose we try to make a phone that transmit flu
virus instead of voice. The variable ?voice�in the action
Transmit(?phone,�?person1,�?person2,�?voice) is of
type Voice. An analogy between voice and flu virus will
allow the variable to take an object of type Virus, thereby
allowing the phone to transmit it. This transformation is
justified on the ground that analogous object may stand for
each other in a creative domain.
 We constrain the use of such transformations by
requiring the action must not be performed by human. As
explained before, a believable gadget should not require
inconvenient actions on the user's part. For instance, a
gadget should not require a person to eat a stone, even if an
analogy is established between the stone and a cookie (e.g.
based on their shapes and colors). In addition, when
multiple transformations are performed during the

generation of one gadget frame, all analogies made must be
consistent. A type from a prototype frame can be
considered analogous to only one type in the gadget frame.

Closing and Summarizing the Gadget
When all open conditions in the gadget frame are
established, we add closure actions and summarize the
frame. If a corresponding initiating action has been
projected, the closure action is projected into the gadget
frame with the same projection method. This may create
new flaws in the gadget frame. However, since the
narrative goal will be achieved before the closure actions
take effect, adding closure actions is strictly necessary. If
the cost to repair the new flaws becomes too high, the
algorithm can choose to ignore closure actions.
 The summarization generates a “use gadget” meta-event
from the gadget frame to insert into the story plan. Its
preconditions include all predicates from the gadget
frame’s initial state, and effects are accumulated from the
effects of all actions in the gadget frame. Frame arguments
become parameter variables of the meta-event. The usage
frame is originally built for one particular narrative goal.
The meta-action allows us to use the gadget in the story
plan more than once and with different parameters, such as
different users, to achieve different narrative goals of the
same type.

Example
Our algorithm is tested against gadgets taken from a classic
Japanese manga named Doraemon. Doraemon is a cat-like
robot coming from the future to accompany a primary
school student, Nobita. The repeated theme of the manga
series is Doraemon helping Nobita with daily problems
such as exams and bullies by using high-tech gadgets
indistinguishable from magic. Dream-fulfilling gadgets
that solve intractable problems are the highlights of
Doraemon (Schilling 1993). In this section, we step
through the algorithm to illustrate that our algorithm can
produce a flu-transmitting phone, a gadget from Doraemon
Volume 2 Episode 14, based on a toy phone as its
prototype. To keep the description concise, we assume the
refinement search works non-deterministically, i.e. always
making the correct choices. In reality, it will make
mistakes and backtrack.
 Gadget generation is initiated by the story generator
when the need to transmit flu from person A to person B
arises. In symbolic form, the open conditions to be
established are expressed as infected�by(bully,�virus)�
and not(infected�by(norbita,�virus)). Although it is
possible to achieve both conditions without assistance of
gadgets, it is not desirable in the story; waiting for flu to
cure is unpleasant and may have monetary costs, and there
are usually no reliable ways to infect someone with flu.

46

Hence, the gadget generation is initiated to fulfill the two
open conditions as narrative goals. The gadget usage frame
is created with no actions and the two goals as open
conditions. We retrieve a toy phone from the knowledge
base of known tools as the prototype based on the analogy
between one of its effects heard(p2,� voice) and
infected(bully,� virus). The usage frame of a toy
phone is shown in Figure 1.
 During object retrieval, analogies are established
between two predicates heard(p2,� voice) and
infected�by(bully,� virus), which are in turn
supported by the analogy between the verb heard and
infected�by, as well as the analogy between the types of
corresponding frame arguments and primitives. First, p2
and bully are of the same type, People. Second, the type
of the frame argument voice: Voice and the type of the
primitive virus: Flu�Virus are found to be analogous.
Flu�Virus and Voice are analogous because they share
similar attributes, such as invisible and transient, and play
similar roles in the similar spatial signatures. Finally,
heard and infected�by are analogous with regard to their
spatial signatures, as shown in Figure 2. These analogies
are kept consistent during the generation process. Frame
variable p2 is bound to the primitive bully.
 The refinement search works backwards from the
proposition that initially triggered the gadget generation:
infected�by(bully,� virus). The action achieving a
similar predicate in the phone frame is Hear(p2,�virus).
The actor of this action is a person, so we cannot
analogically transform this action. Instead, we find a
similar action from the library: Infected�By(p2,�virus)�
(method A3), and add it to the gadget frame. The newly
added action brings in a precondition near(p2,�virus).
We notice that an analogy can be built between near(p2,�
virus) and�one of the effects of the Transmit action,
near(p2,�voice), and that this analogy is consistent with
existing analogies. As the actor of Transmit is the toy
phone, an analogical transformation can reconcile the two
predicates, which yields the action Transmit(phone,�p1,�
p2,� virus) (method A2). In other words, this
transformation allows the phone to transmit flu virus based
on the analogy between flu virus and voice.
 We then try to satisfy three preconditions of the
Transmit action in the gadget frame: holding(p1,�cup1),
holding(p2,� cup2), and inside(virus,� cup1). The
first two preconditions are satisfied by directly copying the
two actions Hold(p1,� phone,� cup1) and Hold(p2,�
phone,�cup2) from the phone frame into the gadget frame
using literal projection. In the phone frame, the action
Speak�Into(p1,�cup1,�voice) achieves the precondition
inside(virus,�cup1), which is analogous to the open
condition inside(virus,�cup1)�in the gadget frame. As
its actor is of the type People, we apply method A3 instead
of A2. From the action library, we find an action Cough�

Into, given appropriate arguments, can achieve the effect
inside(virus,�cup1). Method A3 requires an analogy
between Cough�Into and Speak�Into, which is supported
by their spatial signatures (shown in Figure 2), and the
analogy between Flu�Virus and Voice. The action Cough�
Into�is inserted into the gadget frame.
 After that, the refinement search tries to establish the
other narrative goal not(infected�by(norbita,�
virus)). No actions in the prototype frame achieves an
effect analogous enough to this goal. Thus, we add the
action Self�Cure(p1,� virus) into the gadget frame
(method A4). By putting the action in the gadget frame,
rather than the story plan, the power of the gadget can be
considered to reduce the duration of the action and render
it painless. Remaining open conditions are satisfied by
inserting them into the initial state of the gadget frame
(methods I1, I2, and I3).
 Finally, we add closure actions, which are added using
the same projection method as the actions they close. As
the two Hold�By actions are literally projected from the
phone frame, we literally project the two Let�Go actions.
The final gadget frame with frame arguments is shown in
Figure 4. For clarity, some causal links and the goal state
are omitted.
 The usage frame is summarized into a “use-gadget”
event. Predicates in the initial state of gadget frame
become preconditions of the event. Some preconditions
may still be impossible or undesirable to achieve in the
story. Gadget generation can be initiated again to fulfill
those preconditions by retrieving another prototype and
projecting its elements into the old gadget frame to fulfill
these open conditions. Space limitation forbids the
presentation of another example that merges two prototype
objects. However, the differences are minor. Two
analogical constraints apply in merging multiple
prototypes: First, the second prototype object should be
analogous to the first because it is more intuitive to

 Frame argument/types:
 p1, p2 : People virus : Flu Virus,
 cup1, cup2 : Paper Cup phone : Toy Phone Gadget

Figure 4. The usage frame of the flu-transmitting gadget phone

47

combine analogous objects than dissimilar objects. Second,
consistency of analogies requires each object type from
one frame can be considered analogous to only one object
type in another frame.

Discussion and Conclusions
High-tech gadgets and magical artifacts capable of the
impossible appear in many stories by human writers.
However, AI story generators today lack the ability to
create new types of objects. We propose a significant
extension to current story generation systems: the ability to
create new types of objects to serve narrative purposes.
Our system generates the behavior of a gadget by
modifying behaviors of known objects based on a set of
analogies. Our example illustrates that our algorithm, given
sufficient knowledge, can generate gadgets featured in
some high-quality stories produced by human.

For an artifact to be considered creative, Boden (2009)
asserts it must be (a) valuable, useful or entertaining, (b)
significantly different from artifacts known or created
previously, and (c) not easily predicted by consumers of
the artifact. Our algorithm generates gadgets that are
different from any known objects and achieve narrative
goals other objects cannot ordinarily achieve. We believe
the process is creative. Our algorithm combines aspects of
combinational and transformational creativity since it can
(1) combine multiple objects and (2) transform rules of the
fictional world in which the story generator searches for
the best story, thereby expanding the story space that can
be explored by the story generator. Thus, gadget generation
enhances the creativity of story generators and can be seen
as another step towards computers with human-level
narrative intelligence.

References
Boden, M. A. 2009. Computer Models of Creativity. AI Magazine
30 (3): 23-34.
Cavazza, M., Charles, F., and Mead, S. J. 2002. Planning
Characters' Behavior in Interactive Storytelling. Journal of
Visualization and Computer Animation 13 (2): 121 - 131.
Dehn, N. 1981. Story Generation after Tale-Spin. In Proceedings
of 7th International Joint Conference on Artificial Intelligence.
Gervás, P., Díaz-agudo, B., Peinado, F., and Hervás, R. 2005.
Story plot generation based on CBR. Knowledge-Based Systems
18 (4-5): 235-242.
Lebowitz, M. 1984. Creating Characters in A Story-Telling
Universe. Poetics 13:171-194.
Lebowitz, M. 1985. Story-telling as Planning and Learning
Poetics 14:483-502.
Li, B., and Riedl, M. O. 2010. An Offline Planning Approach to
Game Plotline Adaptation. In Proceedings of 6th Conference on
Artificial Intelligence for Interactive Digital Entertainment.

Malmgren, C. D. 1991. Worlds Apart: Narratology of Science
Fiction: Indiana University Press.
Meehan, J. 1981. TALE-SPIN. In Inside Computer
Understanding. Hillsdale, NJ: Lawrence Erlbaum Associates.
Pérez y Pérez, R., and Sharples, M. 2001. MEXICA: A Computer
Model of a Cognitive Account of Creative Writing. Journal of
Experimental and Theoretical Artificial Intelligence 13:119-139.
Porteous, P., and Cavazza, M. 2009. Controlling Narrative
Generation with Planning Trajectories: The Role of Constraints.
In Proceedings of 2nd International Conference on Interactive
Digital Storytelling.
Riedl, M. O., and Young, R. M. 2006. Story Planning as
Exploratory Creativity: Techniques for explanding the narrative
search space. Computational Creativity 24 (3):303-323.
Riedl, M. O., and Young, R. M. 2010. Narrative Planning:
Balancing Plot and Character. Journal of Artificial Intelligence
Research (39):217-268.
Ryan, M.-L. 1991. Possible Worlds, Artificial Intelligence, and
Narrative Theory. Bloomington: Indiana University Press.
Saunders, R., and Gero, J. 2004. Curious Agents and Situated
Design Evaluations. AI for Engineering, Design, Analysis, and
Manufacturing 18 (2):153-161.
Schilling, M. 1993. Doraemon: Making dreams come true. Japan
Quarterly 40 (4):405-417.
Swartjes, I. M. T., and Theune, M. 2009. Late commitment:
virtual story characters that can frame their world. Technical
Report TR-CTIT-09-18, Univ. of Twente, the Netherlands.
Trabasso, T., and van den Broek, P. 1985. Causal Thinking and
the Representation of Narrative Events. Journal of Memory and
Language 24 (5):612-630.
Turner, S. R. 1992. Minstrel: A Computer Model of Creativity
and Storytelling: Computer Science Dept., UCLA.
Veale, T., and Keane, M. T. 1992. Conceptual Scaffolding: A
spatially founded meaning representation for metaphor
comprehension. Computational Intelligence 8 (3).
Veale, T., and Keane, M. T. 1994. Metaphor and Memory:
Symbolic and Connectionist. Issues in Metaphor Comprehension.
In European Conference on Artificial Intelligence Workshop on
Neural and Symbolic Integration.
Ware, S. G., and Young, R. M. 2010. Rethinking Traditional
Planning Assumptions to Facilitate Narrative Generation. In AAAI
Fall Symposium on Computational Models of Narrative.
Weld, D. 1994. An Introduction to Least Commitment Planning.
AI Magazine 15 (4):27-61.
Young, R. M. 1999. Notes on the Use of Plan Structures in the
Creation of Interactive Plot. In Proceedings of AAAI Fall
Symposium on Narrative Intelligence.
Zacks, J. M., Speer, N. K., and Reynolds, J. R. 2009.
Segmentation in Reading and Film Comprehension. Journal of
Experimental Psychology: General 138 (2):307-327.
Zacks, J. M., and Tversky, B. 2001. Event structure in perception
and conception. Psychological Bulletin 127:3-21.
Zwann, R. A., Magliano, J. P., and Graesser, A. C. 1995.
Dimensions of Situational Model Construction in Narrative
Comprehension. Journal of Experimental Psychology: General
21 (2):386-397.

48

