
A Discrete Event Calculus Implementation of the OCC Theory of Emotion

Margaret Sarlej and Malcolm Ryan
Department of Computer Science and Engineering

University of New South Wales
Sydney, NSW, Australia

msarlej@cse.unsw.edu.au, malcolmr@cse.unsw.edu.au

Abstract

Characters are a critical part of storytelling and emotion is
a vital part of character. Readers generally credit characters
with human emotions, and it is these emotions which bring
meaning to stories. To computationally construct interesting
and meaningful stories we need a model of emotion which al-
lows us to predict characters’ reactions to events in the world.
There are many different psychological theories of emotion;
the most popular to date for computational applications is the
OCC theory. This paper describes a Discrete Event Calculus
implementation of the OCC Theory of Emotion. To evaluate
our system, we apply it to a selection of Aesop’s fables, and
compare the output to the emotions readers expect in the same
situations based on a survey.

Introduction

The most basic elements of storytelling are setting, plot,
and character. All three provide significant challenges for
computational story understanding and generation even in
the simplest of stories (Ryan, Hannah, and Lobb 2007). In
many stories, these elements combine to convey a moral or
message. Morals were central to why storytelling first de-
veloped, as a method of communication (Ryan 1991). We
believe morals can be represented using the patterns of emo-
tion experienced by characters in a story. Shaheed and Cun-
ningham (2008) also identify a relationship between emo-
tions and morals, but with a focus on designing agents. Our
eventual goal is to develop a system able to generate stories
that express a specified moral; the first step to this end is
building a framework to model emotion.

Realistically modelling emotion involves a deep under-
standing of human psychology. There have been many the-
ories of emotion (or affect) proposed over the years (Izard
1977; Plutchik 1980; Russell 1980; Frijda 1986; Lazarus
1991), but few are amenable to computational modelling
due to a general informality of the psychological descrip-
tions. One important exception is the OCC Theory of Emo-
tion (Ortony, Clore, and Collins 1988), which was specifi-
cally designed to be computationally modelled, and hence
provides a suitable foundation for our work.

Most of the previous work based on the OCC theory
has focussed on developing emotional agents (Elliott 1992;
Reilly 1996; Gratch and Marsella 2004). In the context of
narrative, this translates to characters that react appropri-

ately to circumstances based on emotions they experience;
i.e. a character-centric approach. We take a plot-centric ap-
proach; our system models characters’ emotions as events
occur, but does not use them for decision-making on the part
of the characters. Rather, the aim is to specify a pattern of
emotions and have the system generate sequences of events
which would cause the characters to experience those emo-
tions. This is similar to how a human author might manipu-
late characters’ emotions through particular plot choices.

OCC Theory of Emotion

The OCC theory (Ortony, Clore, and Collins 1988) divides
emotions into three main categories: event-based emotions,
agent-based emotions and object-based emotions. There is
also a group of compound emotions.

Event-based emotions Event-based emotions are experi-
enced as a result of the consequences of events, either for
the self or for another agent. Those directed towards the
self include Joy, Distress, Satisfaction, Fears-Confirmed,
Relief and Disappointment. Those directed towards others
include Happy-For, Pity, Gloating and Resentment.

Agent-based emotions Agent-based emotions are felt to-
wards an agent (possibly the self) with respect to some
action. Pride and Shame are directed towards the self, Ad-
miration and Reproach towards other agents.

Object-based emotions Object-based emotions are those
directed towards objects (agents or inanimate objects).
The two emotions in this category are Love and Hate.

Compound emotions While most emotions fit into one of
the above categories, there are four compound emotions
which are simultaneously event- and agent-based. These
emotions are felt towards an agent with respect to the con-
sequences of an event. Gratification and Remorse are di-
rected towards the self; Gratitude and Anger are directed
towards other agents.

Adam, Herzig and Longin (2009) provide a logical for-
malisation of the OCC theory using modal logic. They han-
dle 20 of the 22 emotions described by the OCC theory, ex-
cluding only the object-based emotions of Love and Hate.
We use some of their ideas in our implementation, in partic-
ular with regards to representing event-based emotions.

57

AAAI Technical Report WS-11-18

The Event Calculus

We base our implementation on the Discrete form of the
Event Calculus (Mueller 2006). The Event Calculus was de-
veloped to handle problems involving commonsense reason-
ing about events and their effects. People rely on this in their
daily lives, and naturally expect what happens in a story to
be consistent with common sense. If we specify a range of
conditions on a story (e.g. which emotions must be gener-
ated), commonsense reasoning can be used to fill in the miss-
ing information (i.e. which events could have taken place).

The Event Calculus is based on events and fluents. An
event is something that happens at a particular point in time.
Events can affect the values of fluents. A fluent is a property
of the world, which can be true or false at any particular
timepoint. To resolve the frame problem, fluents follow the
commonsense law of inertia; i.e. their truth value remains
the same unless affected by an event. Mueller describes two
forms of the Event Calculus: Continuous and Discrete. The
difference is in their treatment of time; the Discrete Event
Calculus only allows integer time values, treating time as a
sequence of discrete steps. For storytelling, we see no need
to handle continuous time. Our only requirement is to be
able to identify the order in which events happen, which can
be achieved just as effectively using discrete time-steps.

The Discrete Event Calculus Reasoner

Mueller provides an implementation of the Discrete Event
Calculus, the Discrete Event Calculus Reasoner, or decrea-
soner (Mueller 2008), which we have used to construct our
system. It provides a syntax based on the Event Calculus
which can be used to specify various rules and conditions
to form a domain description. This domain description is
translated by decreasoner into a satisfiability (SAT) problem,
which is then run through a standard SAT solver.

The Discrete Event Calculus Reasoner can perform both
deduction (determining the resulting situation based on an
initial situation and a sequence of events) and abduction (de-
termining a sequence of events based on an initial situation
and a final situation). The output of the program is a set of
models which are consistent with all axioms and facts pro-
vided in the domain description. Ultimately we intend to use
decreasoner’s abductive capabilities to generate sequences
of events that comply with a range of conditions on charac-
ter emotions. However, in this study we only aim to evalu-
ate our preliminary emotion model, and thus use deduction
to generate character emotions resulting from sequences of
events based on Aesop’s fables (Aesop 1998).

Modelling Emotions using the Discrete Event

Calculus Reasoner

Our implementation is a simplified version of the OCC the-
ory. We exclude the prospect-based emotions Satisfaction,
Fears-Confirmed, Relief and Disappointment. This removes
the need to consider characters’ expectations, thereby reduc-
ing the information we need to model. We recognise this is
a significant limitation, and intend to extend the system to
cater for this category of emotions. We have also chosen not
to model the intensity variables identified by Ortony, Clore

and Collins (1988). To keep the system simple (as appropri-
ate to dealing with fables, which are some of the simplest of
stories) we deal with absolutes rather than degrees of emo-
tion. We do believe, however, that incorporating these vari-
ables will be required to model stories in which the interac-
tions between characters’ emotions are more complex.

Assumptions

1. Similarly to Adam, Herzig and Longin (2009) we assume
actions are carried out with intent. This allows agents to
attribute blame for things that happen, facilitating emo-
tions such as Gratitude and Anger. We do not model ac-
cidents or events with no instigator, though this will un-
doubtedly be necessary for any realistic application.

2. We treat emotions as momentary rather than persistent.
Consider an agent a who experiences Joy as a result of
some event e1, but is not emotionally affected by some
other event e2. If e1 occurs at time=0, agent a would feel
Joy at time=1. If event e2 then takes place at time=1, a
will not feel any emotion at time=2, because the Joy from
e1 will not persist past time=1. This is in line with Adam,
Herzig and Longin’s assertion that “an affective state hav-
ing a long duration is not so much emotion as mood.” The
exception is the object-based emotions, which persist un-
til an event changes them (see Like and Dislike).

3. We assume all agents in the location where an event oc-
curs have perfect knowledge of the event and, more im-
portantly, share the same emotional interpretation of the
event. That is, all agents agree on which emotions a par-
ticular agent would feel in response to a particular event.

4. We permit only one action to occur at any given time-
point. This avoids the need for encoding restrictions about
whether agents can be involved in two actions simultane-
ously, and is also in line with the way simple stories are
structured, i.e. events occur in sequence.

Events and their Consequences

The most obvious approach to representing events would be
to define each as an instance of decreasoner’s event sort. The
disadvantage is that this would require the emotional effects
of each event to be defined separately. This is unnecessary
duplication; many different events can have the same emo-
tional effects on the agents involved. Instead, we define an
eventname sort. This is passed as a parameter to DoAction-
Single and DoActionDouble, which are of the event sort and
apply to single-agent and double-agent actions respectively:
DoActionSingle(eventname,agent)
DoActionDouble(eventname,agent1,agent2)

To group events according to the emotions they incite, we
define emotion classes. For single-agent events (i.e. events
that involve and/or affect only a single agent), there are only
three possible classes, summarised in Table 1. For events in-
volving (or affecting) two agents, there are nine such classes,
summarised in Table 2. This could be extended to three
agents (27 emotion classes) or more, with the number of
emotion classes determined by the permutations of the three
possibilities Joy, Distress and None.

58

Figure 1 Initiation conditions for Joy and Distress based on an event of emotion class JD
[agent1,agent2,time,consequence]

Initiates(JD(agent1,agent2,consequence),Joy(agent1,consequence),time).
[agent1,agent2,time,consequence]

Initiates(JD(agent1,agent2,consequence),Distress(agent2,consequence),time).

Emotion Class Effect on Agent
J Joy
D Distress
N None

Table 1: Emotion classes for single-agent events

Emotion Class Agent 1 Agent 2
JJ Joy Joy
JD Joy Distress
DJ Distress Joy
DD Distress Distress
JN Joy None
NJ None Joy
DN Distress None
ND None Distress
NN None None

Table 2: Emotion classes for double-agent events

We limit our current implementation to at most two agents
involved in a single event. This is sufficient for dealing with
fables, as individual events generally do not involve more
than two characters directly. Some fables refer to groups of
characters, for example the villagers in Aesop’s Fable 318
(Aesop 1998); in these instances, the group can be defined as
a single agent because the emotional effects on all members
of the group are the same.

However, simply allocating events into one of these
classes would limit each event to having a single emotional
effect on any particular agent. Adam, Herzig and Longin
(2009) identify that one of the difficulties in formalising the
OCC theory logically is that a single event can result in both
positive and negative emotions. They suggest focussing on
the “desirability of consequences of events” rather than the
events themselves. We have adopted this approach for han-
dling event-based emotions, and to this end define a con-
sequence sort. Each event can be associated with one or
more consequences, and it is the consequence rather than the
eventname which is allocated to one of the emotion classes
presented in Tables 1 and 2. Events are mapped to one or
more consequences using the IsConsequenceOf fluent:
IsConsequenceOf(consequence,eventname)

Each consequence then needs to be categorised into the ap-
propriate emotion class, which is achieved using fluents such
as:
IsJ(consequence)

...
IsJJ(consequence)
IsJD(consequence)

...

The Basic Emotions

We will refer to those emotions which do not depend on
other emotions as basic emotions. They are modelled in our
system as inertial fluents, and therefore require explicit initi-
ation and termination conditions. We consider Joy, Distress,
Admiration, Reproach, Like and Dislike to be basic emo-
tions.

Joy and Distress Joy and Distress are the simplest emo-
tions, determined solely by the emotion classes of the con-
sequences of events that take place. Initiates and Terminates
predicates are defined to handle these emotions for each
emotion class. Because the same event can have both pos-
itive and negative consequences, Joy and Distress must be
parameterised in terms of the consequence that caused the
emotion:

Joy(agent,consequence)
Distress(agent,consequence)

Figure 1 shows the initiation conditions for Joy and Distress
resulting from a JD consequence.

Admiration and Reproach Admiration and Reproach are
also treated inertially, based on a simple principle. If an
agent carries out an action which benefits another agent (i.e.
causes them Joy), this action is admired by other agents; if
an agent causes another agent Distress, this incites reproach
from other agents. Because these emotions are directed to-
wards an event (not its consequences), they do not require a
consequence parameter:

Admiration(agent1,agent2)
Reproach(agent1,agent2)

The difficulty is that Joy and Distress, which determine
Admiration and Reproach, result from consequences of
events. This is particularly problematic when a single event
has both positive and negative consequences. Our solution is
to define the following predicates:

HasAdmirationPotential(eventname)
HasReproachPotential(eventname)

In simple terms, if an action has a consequence which causes
Joy for another agent, the action has admiration potential; if
an action has a consequence which causes Distress for an-
other agent, it has reproach potential. On this basis we define
non-inertial fluents IsAdmirable and IsReproachable. IsAd-
mirable holds as long as an action has admiration potential
but not reproach potential, and vice versa for IsReproach-
able. These predicates are then used as conditions to initiate
Admiration and Reproach respectively. Figure 2 shows the
decreasoner rules corresponding to Admiration.

59

Figure 2 Definition of IsAdmirable and initiation condition for Admiration
[time,eventname]

HoldsAt(HasAdmirationPotential(eventname),time) &
!HoldsAt(HasReproachPotential(eventname),time) <-> HoldsAt(IsAdmirable(eventname),time).

[agent1,agent2,agent3,time,eventname]
HoldsAt(Colocated(agent1,agent3),time) & agent1 != agent3 &
HoldsAt(IsAdmirable(eventname),time)

-> Initiates(DoActionDouble(eventname,agent1,agent2),Admiration(agent3,agent1),time).

Figure 3 Like and Dislike
[agent1,agent2,time,eventname] HoldsAt(IsAdmirable(eventname),time)

-> Initiates(DoActionDouble(eventname,agent1,agent2),Like(agent2,agent1),time).
[agent1,agent2,time,eventname] HoldsAt(IsAdmirable(eventname),time)

-> Terminates(DoActionDouble(eventname,agent1,agent2),Dislike(agent2,agent1),time).

This approach is, of course, limited. A complete imple-
mentation should provide a more flexible notion of ‘stan-
dards,’ similar to the social ‘norms’ described by Dami-
ano (2002). Standards should also be able to vary between
agents, to reflect the way that in real life the same action can
be considered admirable by one person but reproachable by
another, depending on their individual concept of morality.

Like and Dislike Like and Dislike are the predicates we
define as equivalent to the OCC object-based emotions Love
and Hate:

Like(agent,object)
Dislike(agent,object)

Objects can, and in our system invariably do, include other
agents, because we deal with the emotional layer only. We
treat object-based emotions differently from the other cate-
gories in that we allow them to persist until an event explic-
itly changes them. This is because of the role they play in
determining other emotions. For example, consider agents
a1 and a2. If a1 experiences Distress due to some event, one
would expect a2 to feel Pity for a1, except if a2 dislikes a1,
in which case they would experience Gloating.

In the first version of our system, we implemented Like
and Dislike as fixed based on their value at time=0. This is
analogous to a strong friendship or enmity, which won’t be
swayed by basic events. We later modified this to allow Like
and Dislike to vary based on events that take place using
a simple definition; an admirable event initiates Like while
a reproachable event initiates Dislike. Figure 3 shows the
condition for initiating Like (and hence terminating Dislike).

Agent Beliefs

To effectively represent those emotions which depend on
other characters’ emotions we also need to model beliefs.
To see why, consider the fortunes-of-others emotion Happy-
For. For an agent a1 to feel Happy-For some other agent a2,
a1 must believe a2 is feeling Joy; otherwise the Happy-For
emotion doesn’t make sense.

A way around this without modelling beliefs explicitly
would be to assume all agents have perfect knowledge of
other agents’ emotions. This would allow a1 to feel Happy-
For a2 based on a2 feeling Joy, without any need for a1 to

have a belief about a2’s Joy. However, this is less flexible
and also less realistic; in reality, people often make assump-
tions about what others are feeling, but these assumptions
are not always correct. Incorrect assumptions about others’
emotions can lead to interesting story patterns, and thus we
have built the mechanisms to handle this into our model.

For each emotion, we define a secondary fluent which rep-
resents other agents’ beliefs. For example, the normal fluent
which models Joy is:
Joy(agent,consequence)

The corresponding belief fluent is:
BJoy(agent1,agent2,consequence)

In our current system, the belief fluents mirror the values
of the normal emotion fluents because of our assumption
that agents share the same emotional interpretation of events
(refer to Assumptions). To keep computational complexity
to a minimum, we limit beliefs to one level. An agent can
have beliefs about another agent’s emotions, but cannot have
beliefs about other agents’ beliefs. A limitation of this ap-
proach is that we cannot represent beliefs about some of
the complex emotions, because that would require a second
meta-level of belief.

Complex Emotions

Complex emotions are those that depend on other emotions.
We model them as non-inertial fluents, which allows them
to vary freely according to the values of those emotions they
depend on. There are ten complex emotions in our model:
Happy-For, Pity, Gloating, Resentment, Pride, Shame, Grat-
ification, Remorse, Gratitude and Anger.

Happy-For, Pity, Gloating, Resentment The fortunes-
of-others emotions are directed towards other agents, with
respect to some consequence:

HappyFor(agent1,agent2,consequence)
Pity(agent1,agent2,consequence)

Gloating(agent1,agent2,consequence)
Resentment(agent1,agent2,consequence)

Each of these emotions depends on two factors: a Like or
Dislike value, and a belief about another agent’s Joy or
Distress. In our implementation an agent must like another

60

Figure 4 The fortunes-of-others emotions: Happy-For, Pity, Gloating and Resentment
[agent1,agent2,time,consequence]

HoldsAt(Like(agent1,agent2),time) & HoldsAt(BJoy(agent1,agent2,consequence),time)
<-> HoldsAt(HappyFor(agent1,agent2,consequence),time).

[agent1,agent2,time,consequence]
!HoldsAt(Dislike(agent1,agent2),time) & HoldsAt(BDistress(agent1,agent2,consequence),time)

<-> HoldsAt(Pity(agent1,agent2,consequence),time).
[agent1,agent2,time,consequence]

HoldsAt(Dislike(agent1,agent2),time) & HoldsAt(BDistress(agent1,agent2,consequence),time)
<-> HoldsAt(Gloating(agent1,agent2,consequence),time).

[agent1,agent2,time,consequence]
HoldsAt(Dislike(agent1,agent2),time) & HoldsAt(BJoy(agent1,agent2,consequence),time)

<-> HoldsAt(Resentment(agent1,agent2,consequence),time).

Figure 5 Pride
[agent1,agent2,time]

HoldsAt(BAdmiration(agent1,agent2,agent1),time) & !HoldsAt(Dislike(agent1,agent2),time)
-> HoldsAt(Pride(agent1),time).

[agent1,time] {agent2} HoldsAt(Pride(agent1),time) ->
HoldsAt(BAdmiration(agent1,agent2,agent1),time) & !HoldsAt(Dislike(agent1,agent2),time).

Figure 6 Gratification and Remorse
[agent,time,consequence] HoldsAt(Pride(agent),time) &

HoldsAt(Joy(agent,consequence),time) <-> HoldsAt(Gratification(agent,consequence),time).
[agent,time,consequence] HoldsAt(Shame(agent),time) &

HoldsAt(Distress(agent,consequence),time) <-> HoldsAt(Remorse(agent,consequence),time).

agent to feel Happy-For them; however, the only condition
for Pity is that they don’t dislike the other agent. Both Gloat-
ing and Resentment require that an agent dislike the other
agent; the only difference is whether they believe the other
agent to be experiencing Joy or Distress. Figure 4 shows the
conditions for each of these emotions.

Pride and Shame Pride and Shame are self-directed emo-
tions in response to an event, not its consequences. Because
we only allow one event to take place at any given timepoint,
we only need to parameterise these emotion predicates with
the agent involved; the event to which it relates can be in-
ferred as that which took place in the most recent timepoint.

Pride(agent)
Shame(agent)

Britt and Heise (2000) summarise Scheff’s (1990) defini-
tions of pride and shame as follows:

... shame occurs when one feels negatively evaluated
by self or others, while pride is evident when one feels
positively evaluated by self or others.

This is in line with Stage 3 of Kohlberg’s theory of moral
development (Kohlberg 1958), where individuals determine
right and wrong based on the approval or disapproval of oth-
ers. In our model, an agent feels Pride if they believe another
agent feels Admiration towards them (provided they do not
dislike this other agent). Similarly, an agent feels Shame if
they believe another agent (whom they don’t dislike) feels
Reproach towards them. The conditions for Pride are shown
in Figure 5; Shame is identical with respect to BReproach.

Gratification and Remorse Pride and Shame, in turn, are
used to trigger the compound emotions Gratification and Re-
morse:

Gratification(agent,consequence)
Remorse(agent,consequence)

If an agent feels Pride with respect to their own action, and
experiences Joy as a result of one of that action’s conse-
quences, they feel Gratification. Conversely, if an agent feels
Shame about one of their own actions, and experiences Dis-
tress from one of its consequences, the agent feels Remorse.
This is shown in Figure 6.

Gratitude and Anger Compound emotions such as Grat-
itude and Anger are directed towards another agent’s action
with respect to its outcomes:

Gratitude(agent1,agent2,consequence)
Anger(agent1,agent2,consequence)

If agent a1 feels Admiration about agent a2’s action and ex-
periences Joy from one of its consequences, a1 feels Grat-
itude towards a2. On the other hand, if a1 feels Reproach
about a2’s action and experiences Distress from one of its
consequences, a1 feels Anger towards a2. The rules for these
emotions are shown in Figure 7.

Location

Our current model reasons only about the emotional level of
events, and therefore does not consider physical constraints
on actions. The only exception to this is location. For an
event involving two agents to take place, both agents must be

61

Figure 7 Gratitude and Anger

[agent1,agent2,time,consequence]
HoldsAt(Admiration(agent1,agent2),time) & HoldsAt(Joy(agent1,consequence),time)

<-> HoldsAt(Gratitude(agent1,agent2,consequence),time).
[agent1,agent2,time,consequence]

HoldsAt(Reproach(agent1,agent2),time) & HoldsAt(Distress(agent1,consequence),time)
<-> HoldsAt(Anger(agent1,agent2,consequence),time).

in the same location. Similarly, for an agent to feel emotions
towards another agent following an event (whether involved
in the event or not), they must be aware the event took place.
Our assumption that all agents in the location where an event
happens are aware of the event requires us to model each
agent’s location:
Located(agent,location)

To simplify the conditions we also define a non-inertial flu-
ent, Colocated, which holds if Located holds for two differ-
ent agents with the same location:
Colocated(agent1,agent2)

Initial State Information and Conditions

In order for the program to work, certain information needs
to be provided in the domain description:

• The list of available agents, locations, eventnames and
consequences.

• A mapping of consequences to eventnames, using IsCon-
sequenceOf.

• A mapping of consequences to their emotion classes, us-
ing IsJ, IsD, IsJD, etc.

Information about which fluents hold in the initial state can
also optionally be specified. For example, if no agent is to
be feeling Joy at time=0, this can be specified as follows:
[agent,consequence]

!HoldsAt(Joy(agent,consequence),0).

More general conditions that hold at all timepoints can also
be included. For example, if Jack dislikes Jill at all times
during a story, this can be specified using:
[time]

HoldsAt(Dislike(Jack,Jill),time).

In decreasoner syntax square brackets [] denote the univer-
sal quantifier ∀. So, in the example above, Dislike(Jack,Jill)
holds for all possible values of time. The existential quanti-
fier ∃ is represented using braces { }. If Jack must like Jill at
some time during a story, this would be represented by:
{time}

HoldsAt(Like(Jack,Jill),time).

If the goal is to determine which emotions characters should
experience during a predetermined story, or if the story must
include one or more specific events, the event to take place at
any timepoint can be specified using the Happens predicate.
For example:
Happens(DoActionDouble(Torments,Wasp,

Snake),0).

Evaluation

To evaluate the effectiveness of our model compared to the
emotions people would expect characters to feel in the same
situations, we conducted a short survey based on Aesop’s
fables (Aesop 1998). Participants were provided with six fa-
bles and asked to select which of the OCC emotions they
expected characters to feel after each event. Because emo-
tion words in any language can be ambiguous, participants
were provided with definitions in their list of options.

A total of 25 participants took part in the survey. All par-
ticipants responded to the first fable, 23 responded to the
second and 17 completed the entire survey. We recognise
that such a small sample size won’t yield statistically sig-
nificant results. Nevertheless we believe the responses, par-
ticularly those with a high level of agreement between par-
ticipants, will provide a useful indication of the emotions
readers would expect characters to feel.

We compared the survey results to three versions of our
system:

1. Version 1 treats Like and Dislike as fixed at time=0, and
uses our own assignment of consequences to emotion
classes.

2. Version 2 also treats Like and Dislike as fixed, but this
time consequences are assigned to emotion classes based
on participant responses. For example, if the majority of
participants believed that, as a result of a Wasp tormenting
a Snake, the Wasp would feel Joy and the Snake would
feel Distress, we classified the action as JD. This allows
us to see whether the other emotions are entailed from Joy
and Distress in line with readers’ expectations.

3. Version 3 allows Like and Dislike to vary based on
admirable and reproachable actions. This is significant
because Like and Dislike play a role in determining
the fortunes-of-others emotions. Emotion classes are as-
signed to match participant responses, as in Version 2.

Analysis

To evaluate our system we require a baseline for compari-
son; we define this based on our survey results. We decom-
pose each question into the available emotion options such
that each can be treated as a binary classification; i.e. true if
the emotion was generated in that circumstance, false if not.
In each case, the majority response in the survey is consid-
ered to be the prediction of an ideal classifier, represented
as a binary vector. This is the best possible result given the
noise in the data due to participants’ differing opinions.

In comparing the performance of our system to the base-
line classifier we consider two types of error:

62

Version Error Rates (False Positive / False Negative)
Overall Joy/Distress Like/Dislike Other Emotions

Baseline 4.6% / 4.2% 5.2% / 3.0% 4.5% / 7.0% 4.7% / 4.0%
Version 1 7.4% / 18.4% 1.7% / 12.3% 10.8% / 31.3% 7.9% / 17.3%
Version 2 10.7% / 16.2% 6.4% / 5.1% 10.8% / 31.3% 11.5% / 16.1%
Version 3 10.6% / 12.0% 6.4% / 5.1% 16.5% / 12.8% 11.1% / 14.2%

Table 3: Error rate comparison to baseline classifier

1. False Positives: Instances in which the system predicts an
emotion which was not reported by a user.

2. False Negatives: Instances where the system fails to pre-
dict an emotion predicted by a user.

To calculate the error rates for the ideal classifier, we com-
pare its binary vector to the vector obtained from each par-
ticipant’s survey response, summing the false positives and
false negatives across all events in all fables. This figure is
reported as a percentage of the total number of emotions
possible across all six fables. Error rates for the three ver-
sions of our system were calculated in the same manner.

In addition to an overall error rating, we also provide the
error rates for three distinct subgroups of emotions:

1. Joy/Distress: Only Joy and Distress are considered. The
error rates were expected to match between Versions 2
and 3, because the emotion class assignments were iden-
tical in both versions

2. Like/Dislike: Only Like and Dislike are considered. The
error rates were expected to match between Versions 1
and 2, because Like and Dislike were fixed to the same
values in both versions.

3. Other Emotions: All emotions except Joy, Distress, Like
and Dislike. This isolates how changes to the behaviour of
those four emotions affect other more complex emotions.

Results

Table 3 summarises our results. Overall, Version 3 is the
most successful; all but one of its error rates are within 10%
of the minimum error rates set by the baseline classifier.
Comparing Versions 1 and 2, generally the false negative
rate decreases, but the false positive rate increases. The ex-
ception is Like and Dislike, because they are fixed (to the
same values) in both versions. Between Versions 2 and 3 this
is reversed; Like and Dislike vary, while Joy and Distress
remain the same, because the emotion class assignments are
identical between these versions.

The most significant drop in false negatives is between
Versions 2 and 3. Part of this improvement can be attributed
to the correct Like and Dislike values being generated (note
the drop in false negatives between Versions 2 and 3 for
Like/Dislike). However, there is also an improvement for the
other emotions, both in reducing false negatives and, to a
lesser extent, false positives as well. This highlights the im-
portance of Like and Dislike in determining complex emo-
tions; it is likely overall performance could be further im-
proved by correcting their behaviour.

The other point worth noting is that the most significant
increase in false positives appears between Versions 1 and
2. The only difference between them is the Joy and Distress
classifications assigned to the consequences of events; all the
rules and axioms are the same. This seems to indicate that
correctly classifying consequences is critical for producing
the desired emotional effects. However, our survey results
show that many participants disagreed on what the correct
classifications should be, making it impossible for a system
to cater for all interpretations simultaneously. This is a good
illustration of the difficulties that arise in a field as subjec-
tive and ambiguous as emotion; hardly surprising, given that
ambiguity is a poor companion for logic.

We also made a number of observations based on our
comparison of the decreasoner output with the survey re-
sponses, which will need to be considered in future develop-
ments of the system:

• The same consequence can be categorised differently at
different times in the same story. For example, survey par-
ticipants classed losing offspring as DD when the Eagle
eats the Fox’s cubs at the beginning of Fable 3 (Aesop
1998); they are friends, so this would cause Distress for
both. However, the same consequence is classed as JD
when the Fox later eats the eaglets. Readers assume the
relationship between the pair has changed by this point,
and thus the Fox should feel Joy at the Eagle’s Distress.
This explains why the Joy/Distress error rates for Versions
2 and 3 don’t match the baseline classifier, despite emo-
tion classes being matched to survey responses.

• In determining when Like and Dislike should change,
there is an important distinction between an action per-
formed with its consequence intended and an action
where the consequence is not intended. In Fable 3, when
the Eagle’s action causes the eaglets to fall from the tree,
this is a positive outcome for the Fox. However, it should
not make the Fox like the Eagle, since the Eagle didn’t
intend that consequence when she carried out the action.

• When both positive and negative consequences are expe-
rienced, readers still expect characters to feel Anger, a
prerequisite of which is Reproach. The system currently
generates neither Reproach nor Admiration when conse-
quences of the same action result in conflicting emotions.

• Making Pride and Shame dependant on the beliefs of oth-
ers makes it impossible for a character to feel Pride or
Shame when they are alone. Alternative definitions need
to be provided to cater for single-agent actions.

• People seem to consider characters as generally selfish.

63

For example, participants did not expect characters to feel
Happy-For or Pity towards others unless they explicitly
liked them. Our definitions were less stringent, i.e. that
characters would feel these emotions provided they didn’t
dislike the other party.

• Participant responses are not always consistent with the
emotion definitions provided. For example, only 50% of
respondents believed the Eagle would feel Distress about
the Fox no longer being hungry in Fable 3; the rest be-
lieved the Eagle should experience no emotions about this
consequence. However, 88% of respondents indicated the
Eagle should feel Anger about the Fox no longer being
hungry, even though according to the definition provided
it is a prerequisite for Anger that the Eagle feel Distress
about the outcome. This highlights the difficulties caused
by the ambiguity inherent in emotion words, even when
definitions are provided.

Future Work

The observations above identify several areas for improve-
ment. It is evident that we need a more flexible model for
consequences, to allow them to have different emotional ef-
fects depending on the context in the story when they oc-
cur, and also to differentiate between intentional and acci-
dental consequences. We also need to reconsider and per-
haps broaden our definitions of Anger and Gratitude as well
as Pride and Shame. In addition there are the obvious ex-
tensions of including the prospect-based emotions (Satisfac-
tion, Fears-Confirmed, Relief and Disappointment) and in-
corporating the OCC intensity variables. Finally, we hope
to build in a way to represent individual concepts of moral-
ity, so that characters can have varying moral standards. This
will allow us to model the difference between ‘good’ charac-
ters and ‘bad’ characters, which is vital to storytelling even
in its simplest form.

After making these improvements, the next stage will be
to develop representations for common morals in terms of
patterns of emotions. Once established, these can be added
to the domain description of our decreasoner implementa-
tion, allowing us to generate stories with specified morals us-
ing abduction. This will bring storytelling systems one step
closer to conveying morals through narrative.

Conclusion

In this paper we presented a Discrete Event Calculus imple-
mentation of a subset of the OCC Theory of Emotion. Our
survey-based evaluation identifies a number of limitations
of our current system, but also shows it can achieve good
results compared to a baseline error measurement computed
from the survey data.

We believe, with some key modifications to resolve the is-
sues identified above, our system could provide a reasonable
approximation of the emotions readers would expect char-
acters to feel in response to events in stories. The biggest
difficulty will be in generating those emotions about which
even people disagree, but that is to be expected in dealing
with a field as subjective as emotion. We don’t expect that

perfect accuracy will be required to generate stories which
effectively convey morals.

References
Aesop. 1998. Aesop: The Complete Fables. Penguin Clas-
sics. London, UK: Penguin Books.
Britt, L., and Heise, D. 2000. From shame to pride in
identity politics. In Stryker, S.; Owens, T. J.; and White,
R. W., eds., Self, Identity, and Social Movements. Minneapo-
lis: University of Minnesota Press. 252–268.
Damiano, R. 2002. The Role of Norms in Intelligent Re-
active Agents. Ph.D. Dissertation, Università degli Studi di
Torino.
Elliott, C. 1992. The Affective Reasoner: A process model of
emotions in a multi-agent system. Ph.D. Dissertation, North-
western University.
Frijda, N. H. 1986. The Emotions. New York: Cambridge
University Press.
Gratch, J., and Marsella, S. 2004. A Domain-independent
Framework for Modeling Emotion. Journal of Cognitive
Systems Research 5(4):269–306.
Izard, C. E. 1977. Human Emotions. New York: Plenum
Press.
Kohlberg, L. 1958. The Development of Modes of Thinking
and Choices in years 10 to 16. Ph.D. Dissertation, Univer-
sity of Chicago.
Lazarus, R. S. 1991. Emotion and Adaptation. New York:
Oxford University Press.
Mueller, E. T. 2006. Commonsense Reasoning. San Fran-
cisco, CA: Morgan Kaufmann Publishers.
Mueller, E. T. 2008. Discrete Event Calculus Reasoner
Documentation. IBM Thomas J. Watson Research Center,
Yorktown Heights, NY.
Ortony, A.; Clore, G. L.; and Collins, A. 1988. The Cogni-
tive Structure of Emotions. Cambridge: Cambridge Univer-
sity Press.
Plutchik, R. 1980. Emotion: A Phsychoevolutionary Synthe-
sis. New York: Harper & Row.
Reilly, W. S. N. 1996. Believable Social and Emotional
Agents. Ph.D. Dissertation, Carnegie Mellon University.
Russell, J. A. 1980. A circumplex model of affect. Journal
of Personality and Social Psychology 39(6):1161–1178.
Ryan, M.; Hannah, N.; and Lobb, J. 2007. The tale of peter
rabbit: a case-study in story-sense reasoning. In Proceedings
of the 4th Australasian Conference on Interactive Entertain-
ment. Melbourne, Australia: RMIT University.
Ryan, K. 1991. The narrative and the moral. The Clearing
House 64(5):316–319.
Scheff, T. J. 1990. Socialization of emotions: pride and
shame as causal agents. In Kemper, T. D., ed., Research
Agendas in the Sociology of Emotions. Albany: State Uni-
versity of New York Press.
Shaheed, J., and Cunningham, J. 2008. Agents making
moral decisions. In Proceedings of the ECAI08 Workshop
on Artificial Intelligence in Games.

64

