

Tactical Multi-Unit Pathplanning with GCLS

Alexander Nareyek and Aditya Kristanto Goenawan
Department of Electrical & Computer Engineering. National University of Singapore, Singapore 117576

alex@ai-center.com, aditya.kristanto@gmail.com

Abstract
In this paper, we are considering advanced pathplanning
problems that feature finding paths for multiple units subject
to rich path constraints. Examples of richer constraints are
the following of other units or to stay out of sight of a spe-
cific unit. Little attention has so far been given to richer
pathplanning problem where the objective is more than
reaching a specific destination from a starting point such
that the path length is minimized. Richer pathplanning prob-
lems occur in many complex real-world scenarios, ranging
from computer games to military movement planning. In
this paper, a novel way to formally specify such problems
and a new local-search strategy to solve such problems are
proposed and demonstrated by a prototype implementation.
Among the design goals are real-time computability as well
as extendibility for new constraints and search heuristics.

 Introduction
Pathplanning problems are encountered in various fields,
such as robotics, military simulations and electronic gam-
ing. Occasionally, the pathplanning problems encountered
in those fields are not as simple as trying to find the short-
est path to a specific location, but involve richer pathplan-
ning constraints. For example, in the electronic gaming
field, a computer-guided character/unit A might need to
avoid another computer-guided unit B while maneuvering
to area X. Or, a group of three units A, B and C might need
to trap another unit D (not allowing the unit to move with-
out colliding) within a specific time window. The paths of
the units are often dependent on the other units’ paths here.
 Common pathplanning algorithms, such as A* (Hart,
Nilsson, and Raphael 1968) and its variants, such as D*
(Silver 2006), or Particle Swarm Optimization (Mohamed
et al. 2010), and Ant Colony Optimization (Eghbali and
Sharbafi 2010), cannot be used to tackle such richer path-
planning problems. These algorithms are specialized for a
single-unit pathplanning that optimize a path for a specific
start and destination location. The richer pathplanning

Copyright © 2011, Association for the Advancement of Artificial Intelli-
gence (www.aaai.org). All rights reserved.

problems discussed in this paper involve multiple units and
complex constraints restricting potential paths, might not
even specify a specific start and destination location for a
unit, and don’t necessarily have a path minimization goal.
In fact, in the general case, TMPPs are undecidable be-
cause of the arbitrary length of a path for a unit and costs
that might be independent of the path length.
 Such more complex pathplanning problems, subsequent-
ly called Tactical Multi-Unit Pathplanning (TMPP) prob-
lems, were first tackled by (Wang, Malik, and Nareyek
2009), who utilized a backtracking-based approach mixed
with A*. A* requires continuously increasing costs toward
the goal, and only a subset of scenarios was thus tackled.
In addition, their specifications and methods are neither
easily extendable nor particularly real-time focused. In this
paper, a special focus is on an extendable specification
format and real-time/anytime methods for solving TMPP
problems, based on the concept of using global constraints
for local search (GCLS) (Nareyek 2001).

Problem Specification Format
The specification format described in this section tries to
strike the balance between extendibility and complexity.
The specification format does not incorporate domain-
specific knowledge, thus making it generally usable across
many domains and algorithms.
 On a high conceptual level, a TMPP problem is a gen-
eral search problem, and its specification can be divided in-
to:

� Options: Options refer to a set of specifications that
define/unfold the search space, e.g., the units in-
volved, location vertices and connecting edges,
and the abilities that a unit can perform.

� Constraints: Constraints refer to a set of specifica-
tions that cut the search space size down and need
to be fulfilled. For example, to specify a unit’s
movement start and destination, along with colli-
sion avoidance requirements, location constraints
and a collision constraint can be defined. Apart

176

Proceedings of the Seventh AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment

from specifications that need to be fulfilled, a
constraint can also express preferences among
feasible solutions (for optimization), like a mini-
mal path length for a unit.

 Loosely following paradigms like constraint program-
ming, this specification format is very variable and allows
to easily vary problem specifications. For new application
domains, the expressiveness can also easily be extended by
adding new constraint types etc. to the specification lan-
guage.
 To make the definition of options and constraints above
more compact, we also use tags to refer to a set of specifi-
cation objects. For example, constraints can be applied in
bulk by grouping the units and vertices together by using
group and area tags respectively.
 In the following, we will discuss some basics for op-
tions, constraints, and solutions for TMPP problems. A
formal specification format is not given, as the require-
ments for such a language might depend very much on the
target platform and application (though a concrete specifi-
cation format would be a relatively straight-forward task).
This paper focuses on the principles and is not meant to
suggest a particular implementation.

Options
Options are further divided into world, edge and unit op-
tions.
World Options
Pathplanning can be done for very different map represen-
tations, e.g., the world can be a grid world or a continuous
world, a 2D world or a 3D world. Depending on the world
configuration, more parameters, such as width/length grid
dimensions can be specified.
 World options also include the specification of a time
representation, e.g., discrete time versus continuous time,
and potential additional global parameters like a start time
and end time for the paths.
Edge Options
The common representation of movement possibilities is a
graph with location vertices and either uni- or bi-
directional connection edges. The usage of a graph repre-
sentation allows the world type to be abstracted from the
world options, i.e., a 2D-grid and 3D-continuous world
both use the same vertex representation. We vary this ap-
proach slightly, where single locations are represented as a
set of vertices and directed edges. We require that every
unit is traveling on an edge at all times, and this can for ex-
ample be used for waiting or other non-movement-related
activities, and to unify collision checks by being concerned
with edges only.
 Edge options define the existence of vertices and edges.
We only call them ‘edge options’ to emphasize the domi-

nant role of edges. Additional properties can be set for ver-
tices and edges, indicating accessibility for specific units,
times of accessibility, terrain types, or other information
that affects path generation.
Unit Options
Unit options define the existence of units and their proper-
ties. Properties are features that are used by constraints to
create and check paths, e.g., defining that a unit can move,
stop, see, taunt and attack, or that a unit has a minimum
speed of 0.0 and maximum speed of 5.0.
 As a side note, properties do not need to specify single
values but can be more complex objects, e.g., also adding
edge and time information to a vision property to specify
that a villager can only see during daytime and near light
sources during nighttime.
Tags
Vertices, edges and units can also be tagged to belong to
location or unit groups, such as City or Street, or Farmers
or Guards. Groups can be used in definitions in the same
way as single vertices, edges and units. This tagging is use-
ful to compress the specifications because many properties
and constraints often apply to similar object sets.

Constraints
A pathplanning application will support a set of constraint
types, such as a Collision constraint or a Following con-
straint. A problem specification includes instances of these
types, initialized with constraint-specific parameters like
units, vertices and edges. For example, a Following con-
straint instance can be created to affect unit A and unit B
for a time range of (0,25).
 A constraint type may only support particular world op-
tions, and not be able to read/understand all property speci-
fications of units, vertices and edges. While the support of
all specified world options is required, a constraint may be
used even if it’s not able to process all property specifica-
tions. This means that only the existence of units, vertices,
edges, the time representation, and an edge assignment for
all units spanning the solution duration and observing pos-
sible edge connections, serve as hard-coded/structural limi-
tations to possible solution exploration. All other con-
straints (like observing speed limits) need to be explicitly
added as constraint instances.
 A constraint instance may post – potentially multiple –
satisfaction and optimization values. Satisfaction values
express how much the core constraint is away from being
fulfilled, i.e., how far the current unit paths are from being
executable. For example, a Collision constraint may post
the cumulative collision durations for the current paths of
all units as costs. Optimization values express the quality
of the current unit paths, i.e., the paths might be executable
from the constraint’s point of view, but there may still be

177

room for improvement. For example, the Collision con-
straint may post the minimal distance between all units as
an optimization value to create buffer zones in case of dy-
namic changes of the situation.
 We call all of the optimization and satisfaction values
‘costs’ in the following, where the goal is to bring satisfac-
tion values to 0, and to maximize optimization values.
There can be multiple satisfaction and optimization costs
per constraint (for example in case of multi-objective op-
timization), and each available cost value of a constraint
type needs to be associated with a unique cost type identi-
fier (like COLLISIONC-MINDISTANCE).
 As a side note, there may be constraints like PathLength,
but in most application areas, this might actually not be
very useful. Constraints like RealisticPath or ConserveEn-
ergy might be much more appropriate.

Solutions
A potential solution includes, for each unit, a sequence of
connected edges spanning the complete time horizon to be
planned for. Edges in these sequences may be enhanced
with properties, e.g., to indicate movement parameters or

activities to be executed by a unit.
 In addition to these edge sequences for the units, a po-
tential solution also includes the cost information of all
constraint instances. If all satisfaction costs are 0, a poten-
tial solution is also a solution.

Solving Strategy
TMPPs can – like other search problems – be tackled with
a variety of search methodologies. Its complexity is in the
worst case undecidable if time is unrestricted, or if time is
continuous and there is no minimum of edge movement
times and no maximum of property enhancements for edg-
es. However, such a discussion is purely academic and of
no practical relevance. In practice, we are interested in
goals like the best possible solution given some time limit,
or even the best possible potential solution in case a solu-
tion cannot be constructed.
 The two dominant search approaches are refinement
search and local search. In refinement search, a solution is
stepwise constructed (e.g., movement by movement toward
full paths), and backtracking utilized if search gets into a

Fig. 1. The overall search process.

178

dead-end. In local search, a fully grounded potential solu-
tion is iteratively changed toward the best solution (e.g.,
changing a unit’s path a bit such that there are fewer colli-
sions). A discussion of the pros and cons of both approach-
es is beyond this paper (e.g., see (Nareyek 2001) for a dis-
cussion), and it is sufficient to say that real-time properties
and the ability to easily incorporate dynamic situation
changes led us to the choice of local search, and more spe-
cifically GCLS (Nareyek 2001). Figure 1 shows the overall
solving process.

Initial Potential Solution Generation
Local search works by making changes to an existing, fully
grounded potential solution. Thus, to get the process start-
ed, we need to generate an initial potential solution.
 It may be straight-forward to generate a random initial
potential solution, but to speed up the search process, it is
useful to already consider some of the constraints in this
process. For example, if the units’ start and end positions
are specified by Location constraints, we can simply run
A* to get the initial paths (which is used in the prototype
system described later).

Constraints as Evaluators and Optimizers
In the GCLS approach, constraints serve as evaluators to
compute costs as well as optimizers to make modifications
to a potential solution in order to optimize it. This follows
the principle that costs should be tackled by the objects that
have the deepest insights about the specific costs and their
causes. Domain-specific knowledge related to the con-
straints’ cost reduction is explicitly encouraged to be inte-
grated.
 Constraints should not re-evaluate their costs in each it-
eration but only if a change potentially affects them. They
should thus subscribe to specific component patterns of the
current solution, and only be called for updates in case
there is a match.
 Constraints can also use additional persistent internal da-
ta structures to more quickly evaluate costs and potential
repairs.
 A main component of a constraint is the improve-
ment/repair heuristics, which suggest a change of the cur-

rent potential solution. For example, a Collision constraint
can contain two different heuristics. The heuristics will try
to repair the paths of the affected units such that collisions
are avoided. One simple way of repair is to make one unit
wait for the other unit to pass before the unit moves on. Al-
ternatively, it can repair the solution by providing an alter-
native path that avoids the collision for a unit involved in
the collision (see Fig. 3). These two heuristics are used for
the Collision constraint in the prototype system described
later.

 To choose between the heuristics, the concept of non-
stationary reinforcement learning (Nareyek 2003) can be
incorporated. This concept chooses a heuristic with a ran-
dom distribution based on the past performance. If heuris-
tic H1 has been performing better than heuristic H2, then
heuristic H1 is more likely to be chosen.
 When a constraint is called for a solution repair, the in-
terface should also include the possibility to specify re-
source restrictions for the computations. This is to make
sure that only a specific amount of time/memory/etc is
used for the computations, which is for example critical for
the real-time responsiveness of the system.

Search-related Meta-Data
Purely relying on the independent repairs of constraints
may not be a good idea because the constraints might be
missing a lot of useful context information indicating
which repairs might hurt or be beneficial for other con-
straints. We thus allow the constraints to attach meta-data
to a specification’s options and a potential solution’s paths.
Meta-data can follow the regular property definition for-
mat, and can be ignored by constraints in case they do not
understand it.
 For example, in the prototype system described later,
constraints can attach cost information to edges that indi-
cate how much additional cost or cost savings will be in-
curred if a specific unit uses the edge within a specific time
interval. This meta-data will attract or repel constraints
from using these edges for their repairs.

Fig. 2. The initial solution generation can for example be
based on A* by using the Location constraints for the units’

start and end locations (if such constraints are existing).

Fig. 3. The solution repair done by the Collision constraint.
Initially unit B’s path is the one indicated with dotted line (see
Fig. 2). After repair, unit B avoids the collision via an alter-

native path.

179

Choosing Costs to Be Improved
For the choice on the global level on which costs should
get repaired, there are many alternatives as well. Depend-
ing on the goals, e.g., finding a possible solution as soon as
possible versus finding the best solution in a given time
versus finding pareto front solutions in multi-objective op-
timization, very different choice patterns might be applied.
Furthermore, the process given in Fig. 1 only considers a
sequential search process, while in the future, highly paral-
lel solution explorations might be applied, e.g., by parallel
repairs with interleaved integration phases and/or multiple
repair evaluations and the choice of the best repair(s) for
actual application. While still in a very preliminary state, a
discussion for a similar approach can be found in (Kumar
and Nareyek 2009).
 From our experience in other domains, it works best to
assign cost items based on cost types to specific cost col-
lections, such as in the simplest case, one cost collection
for satisfaction costs and one for optimization costs. Cost
collections are processed in an absolute order, e.g., optimi-
zation costs are only considered once all satisfaction costs
are repaired. Within a cost collection, cost items are select-
ed relatively according their numeric values. Depending on
the domain, various cost transformations might be useful
for cost items before entering them into a cost collection,
such as a scaling by specific factors. More sophisticated
methods might take diversification/intensification patterns
in search into account instead of choosing always the item
with the highest costs (or a random choice in case of the
optimization cost collection). These specifications should
be passed as part of the option and constraint definitions in
the problem specification.

A Prototype Implementation
As a proof-of-concept, we have implemented a system
with a few basic constraint types (and very simple heuris-
tics): a Location constraint type that requires a unit to be at
a specific time interval on a specific edge, a Collision con-
straint type to prevent units utilizing edges at the same
times, and a Meet constraint type that requires two units to
be within a specific distance from each other over a specif-
ic time interval. The constraints have only satisfaction
costs, i.e., only one cost collection is used, and a test run is
terminated once costs of 0 are reached.
 Some heuristics that were used for repairs were pointed
out in the previous section, but we want to emphasize that
these are surely not the best ones. The purpose of this pa-
per is not to propose specific heuristics but to introduce the
overall framework. The development of efficient con-
straints is a task for many years into the future, and specific
application domains will surely require additional special-
ized constraints to fulfill advanced real-time requirements.

 The system is implemented in Java, has about 5,000
lines of code, and the results below are obtained using a PC
with an Intel i5 750 (2.67 GHz), 4GB DDR3 RAM, and the
Java 6 SE Virtual Machine.
 The results are always taken as the average of 1,000 runs
between the 1,000th and 2,000th runs. After some tests,
these runs are the runs whose runtime has become stable
and negligibly affected by start-up-related processes.
 Because of the limited space, we are providing only a
very limited number of example cases for illustration.

Scaling
In this test, we are varying the number of constraints (same
types) and the underlying maps and unit numbers.

“Normal map” refers to a fully accessible 2d-grid map with
N/S/W/E edges, while “restricted map” refers to a map
with many larger objects with inaccessible grid points.
 The test scenarios are relatively easy, and Fig. 5 shows
mainly linear growth, which is expected because of the in-
creasing necessary cost evaluation updates. For smaller
maps with short paths, this however hardly has an impact
as the evaluations can be very quickly done.

Utilizing Meta-Data
In this section, the impact on utilizing meta-data (attaching
cost information, as previously mentioned) is visualized.
The test case used is a hard scenario with 7 units and 28
constraints. After 50 repair iterations, only very few runs
reach costs of 0.

As visible in Fig. 6, meta-data often has a beneficial ef-
fect, especially for complex/hard scenarios, where not con-
sidering the interaction between constraints often otherwise
has a negative effect on search performance.

Fig. 5. The run time (until cost=0) scaling for different num-

bers of constraint instances on different maps.

180

Neighborhood Size
When looking for potential repairs, a constraint may have
the option to either return a repair quickly, or to spend
more time on exploring alternative repairs until the maxi-
mal iteration time is reached. It may appear as if a more in-
telligent exploration with an evaluation of a larger set of al-
ternatives may generally be beneficial, especially for hard
instances, but Fig. 7 indicates that this certainly does not
hold in general (using a complex/hard scenario). Though
we have to indicate that our test system’s heuristics are rel-
atively simple so far, which means that they might not be
able to utilize the additional time effectively by generating
enough really promising change alternatives.

Conclusion
We have presented a novel approach for the specification
and solving of TMPPs that targets extensibility and real-
time processing. New constraint types can easily be added
to a system in a modular way, and the iterative search ap-
proach allows for interruptible/splittable processing while

maintaining a current best solution. Dynamic changes of
the problem specification (e.g., when the player in a com-
puter game behaves differently than expected, or path exe-
cution of units has different results than expected) can also
easily be integrated without the need for restarting search
from scratch.
 While the implementation of our proof-of-concept sys-
tem leaves certainly a lot of room for improvement, we are
convinced that the overall approach is the way to go for-
ward, related to the general positive properties of the speci-
fication and search methods, and the results we got so far.
 Because of the restricted space, we did not discuss much
related work though; please refer to (Wang, Malik, and
Nareyek 2009) for more discussions on TMPP-related
work.

Acknowledgments
This work was supported by the Singapore National Re-
search Foundation Interactive Digital Media R&D Program
under research grant NRF NRF2007IDM-IDM002-051.

References
Eghbali, M., and Sharbafi, M.A. 2010. Multi agent routing to
multi targets via ant colony. In Proceedings of the 2nd Internation-
al Conference on Computer and Automation Engineering (IC-
CAE 2010), vol.1, 587-591.
Hart, P.E.; Nilsson, N.J.; and Raphael, B. 1968. A formal basis
for the heuristic determination of minimum cost paths. IEEE
Transactions on Systems Science and Cybernetics 4(2), 100-107.
Mohamed, A.Z.; Sang Heon Lee; Aziz, M.; Hung Yao Hsu; and
Ferdous, W.M. 2010. A proposal on development of intelligent
PSO based path planning and image based obstacle avoidance for
real multi agents robotics system application. In Proceedings of
the 2nd International Conference on Electronic Computer Tech-
nology (ICECT 2010), 128-132.
Nareyek, A. 2001. Constraint-Based Agents - An Architecture for
Constraint-Based Modeling and Local-Search-Based Reasoning
for Planning and Scheduling in Open and Dynamic Worlds.
Reading, Springer LNAI 2062.
Nareyek, A. 2001. Using Global Constraints for Local Search. In
Freuder, E. C., and Wallace, R. J. (eds.), Constraint Programming
and Large Scale Discrete Optimization, American Mathematical
Society Publications, DIMACS Volume 57, 9-28.
Nareyek, A. 2003. Choosing Search Heuristics by Non-Stationary
Reinforcement Learning. In Resende, M. G. C., and de Sousa, J.
P. (eds.), Metaheuristics: Computer Decision-Making, Kluwer
Academic Publishers, 523-544.
Kumar, A., and Nareyek, A. 2009. Scalable Local Search on Mul-
ticore Computers. In Proceedings of the Eighth Metaheuristics In-
ternational Conference (MIC 2009), 146.1-146.10.
Silver, D. 2006. Cooperative pathfinding. In Rabin, S. (ed.), AI
Game Programming Wisdom 3, Charles River Media, 99-111.
Wang, H.; Malik, O. N.; and Nareyek, A. 2009. Multi-Unit Tacti-
cal Pathplanning. In Proceedings of the 2009 IEEE Symposium
on Computational Intelligence and Games (CIG 2009), 349-354.

Fig. 6. The effect of utilizing meta-data.

Fig. 7. The effect of varying allowed repair times.

181

