
An Object-Oriented Approach to
Reinforcement Learning in an Action Game

Shiwali Mohan and John E. Laird
Computer Science and Engineering

University of Michigan, Ann Arbor, MI 48105
{shiwali, laird}@umich.edu

Abstract

In this work, we look at the challenge of learning in
an action game, Infinite Mario. Learning to play an ac-
tion game can be divided into two distinct but related
problems, learning an object-related behavior and se-
lecting a primitive action. We propose a framework that
allows for the use of reinforcement learning for both of
these problems. We present promising results in some
instances of the game and identify some problems that
might affect learning.

Introduction

Traditionally, artificial intelligence (AI) has been used to
control non-player characters to make games more interest-
ing to a human player. This is a challenging problem in its
own right. However, we hold a different view towards AI
in games. We want to place an artificially intelligent agent
in a game instead of a human player, and investigate what
knowledge and learning capabilities are required of an agent
to play it effectively. In this work, we have concentrated on
a variant of a popular action game Super Mario brothers,
called Infinite Mario.

Action games have been popular among gamers since the
earliest video games were developed. The action genre em-
phasizes acquiring certain physical reactive skills and behav-
iors to progress in the game. Sometimes tactical and explo-
ration challenges are incorporated, but most of the games are
designed around high reaction speed and physical dexterity.
Often, strategic planning is hard because of the time pressure
to complete the game, motivating simple heuristic strategies.
Action games have been popular with AI research commu-
nity and have been studied in detail using rule based systems
(Laird and van Lent, 2001) and static scripting (Spronck et
al., 2006).

The contribution of this work is two-fold. First, through
this work we characterize the learning problem in the action
game, Infinite Mario, as a combination of learning object-
oriented behaviors and action selection. Secondly, we pro-
pose a reinforcement learning framework that gives promis-
ing results on a subset of game instances.

Copyright © 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Related Work

RL has been widely explored for its applicability in RTS
games domain. Driessens (2001) combined RL with regres-
sion algorithms to generalize in the policy space. He evalu-
ated his relational RL approach in two RTS games and RPGs
(role playing games). Marthi et al. (2005) applied hierarchi-
cal RL (HRL) to scale RL to a complex environment. They
learned navigational policies for agents in a limited real-time
strategy computer game domain. Their action space con-
sisted of high-level pre-programmed behaviors called partial
programs, with a number of choice points that were learned
using Q-learning. Ponsen, Spronck, and Tuyls (2006) em-
ployed a deictic state representation in HRL that reduces the
state space complexity as compared to a propositional repre-
sentation and allows the adaptive agent to learn a generalized
policy. Their architecture is capable of transferring knowl-
edge to unseen task instances and significantly outperforms
flat learning.

Our work builds on the concepts introduced by the work
done with RL in RTS games. Learning in strategy games
concentrates on developing an optimal strategy to win the
game through a search in the strategy space. These games
differ from the action game genre, where at any time, quick
decisions are to be made about competing goals and, in gen-
eral, the emphasis is on finishing the game as fast as possi-
ble. Challenges presented by action games are considerably
different from games that have been previously explored and
we will discuss some of them in the following sections.

In the domain of action games, Diuk, Cohen, and Littman
(2008) introduce Object-Oriented Markov Decision Pro-
cesses, a representation that is based on objects in the en-
vironment and their relationships with each other. They con-
jecture that such representations are a natural way of de-
scribing many real-life domains and show that such a de-
scription of the world enables the agent to learn efficient
models of the action game, Pitfall. Wintermute (2010) has
explored agents that learn to play various Atari action games
using predictive features generated by spatial imagery mod-
els of physical processes and reports improvements over
RL agents using typical algorithms and state features. Our
model free framework is considerably different, and requires
little to no domain knowledge.

Infinite Mario has recently become a popular domain for
AI research with the advent of the Mario AI competition.

164

Proceedings of the Seventh AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment

Many agents have been written that are efficient at playing
the game. Most of them are based on A* search for path
finding and use detailed models of game physics and mini-
mal learning. In contrast, we are looking at learning agents
that start with little or no background knowledge about the
physics or the terrain of the game.

(a) Level 0, Seed 121 (b) Level 1, Seed 121

Figure 1: Screenshots from Infinite Mario

Preliminaries

RL is a computational approach to automating goal-directed
learning and decision making. It encompasses a broad range
of methods for determining optimal ways for behaving in
complex, uncertain and stochastic environments. Most cur-
rent RL research is based on the theoretical framework
of Markov Decision Processes (MDPs) (Sutton and Barto,
1998).

Markov Decision Processes

An MDP is defined by its state and action sets and by the
dynamics of the environment. At each time step t, the agent
observes the state of its environment, st, contained in a fi-
nite set S, and decides on an action, at, from a finite action
set A. A time step later, the agent receives reward rt+1 and
the environment transitions to the next state, st+1. The en-
vironment is assumed to have the Markov Property: its state
and reward at t + 1 depend only on the state and action at t
and not on any past values of states and actions. Given any
state and action, s and a, at time t the transition probability
to possible next state, s′, at time t+ 1 is:

Pss′
a = Pr{st+1|st = s, at = a}

Similarly, given any state and action pair, s and a, at time t
along with the next state, s′, at time t+1 the expected value
of the reward is given by:

Rss′
a = E{rt+1|st = s, at = a, st+1 = s′}

The RL problem is finding a way of acting in the environ-
ment such that the reward accumulated is maximized. The
way of behaving, or the policy, is defined as a probability
distribution for selecting actions in each state: π : S ×A→
[0, 1]. The goal of the agent is to find a policy that maximizes
the total reward received over time. For any policy π and any
state sεS, the value of taking action a in state s under pol-
icy π, denoted Qπ(s, a), is the expected discounted future

reward starting in s and taking a, and following π from then
on:

Qπ(s, a) = Eπ{rt+1 + γrt+2 + ...|st = s, at = a}
The optimal action-value function is:

Q∗(s, a) = max
π

Qπ(s, a)

In an MDP, there exists a unique optimal value function,
Q∗(s, a), and at least one optimal policy, π∗, corresponding
to this value function:

π∗(s, a) > 0 ⇐⇒ aε argmax
a

Q∗(s, a)

Many popular RL algorithms aim to compute Q∗ (and
thus implicitly π∗) based on an agent’s experience of the en-
vironment. One of the most widely-used algorithm, SARSA,
was introduced by Rummery and Niranjan (1994). It is
based on the following update equation:

Q(s, a)← (1− α)Q(s, a) + α[r + γQ(s′, a′)]
where 0 ≤ α ≤ 1 is a learning rate parameter and 0 ≤
γ < 1 is the discount factor for future rewards. SARSA
(s, a, r, s′, a′) is an on-policy learning algorithm, it esti-
mates the value of the same policy that it is using for control.
All the agents we describe use SARSA for policy updates.

Semi-Markov Decision Processes

Semi-Markov decision processes (SMDPs) serve as the the-
oretical basis for many hierarchical RL approaches devel-
oped during the last decade to solve complex real world
problems. In these hierarchical approaches, temporally ex-
tended and abstract actions need to be modeled. SMDPs may
be considered a generalization of MDPs. Barto and Mahade-
van (2003) define an SMDP as a continuous-time decision
problem that is treated as a discrete-time system, where the
system makes discrete jumps from one time at which it has
to make a decision to the next.

Formally, an SMDP is a tuple < S,B, T,R >, where S is
a set of states, and B is a set of temporally abstract actions.
Given a state s and an abstract behavior b that is k time steps
long, the transition probability to the next state, s′ at t + k
is given by:

P b
ss′k

= Pr(st+k|st = s, bt = b)

R(r|s, b) = Pr(rt = r|st = s, bt = b)

P and R both obey Markov Property.
A policy is a mapping π : S → B from states to behav-

iors. Executing a behavior results in a sequence of primitive
actions being performed. The value of the behavior is equal
to the value of that sequence. Thus, if behavior bt is initiated
in state st and terminates sometime later in state st+k then
the SMDP reward value r is equal to the accumulation of the
one-step rewards received while executing bt:

r = rt + γrt+1 + γ2rt+2 ++ γk−1rt+k−1

which gives identical state-value function as in MDPs. Since
the value measure V π for a behavior based policy π is iden-
tical to the value measure V π for a primitive policy we know
that π∗ yields the optimal primitive policy over the limited
set of policies that a hierarchy allows.

165

Problem Characterization

Infinite Mario, a variant of Nintendo’s Super Mario Broth-
ers, is an RL domain developed for the 2009 RL Compe-
tition. It is a side-scrolling game with destructible blocks,
enemies, fireballs, coins, chasms, and platforms (Figure 1a
and Figure 1b). It requires the player to move right towards
the finish line, earning points and powers along the way by
collecting coins, mushrooms, fire flowers, and killing ene-
mies like the Goomba, Koopa, etc. The game is partially
observable and the player can never perceive the complete
game state. Like other action games, it requires the player
to learn favorable interactions (behaviors) with the differ-
ent elements (objects) of the game. For example, a sea-
soned player would be an expert at killing the enemies like
Goomba by stomping on them, and would know that acquir-
ing a Mushroom is beneficial to the game play. On reach-
ing the finish line in Super Mario Brothers, the player pro-
gresses to the next level. However, in Infinite Mario, the
game restarts at the same level on reaching the finish line.

Game State, Action and Score

Infinite Mario has been implemented on RL-Glue developed
by Tanner and White (2009); a standard interface that al-
lows connecting RL agents, environments, and experiment
programs together.

• State Observations: The state observations from the
framework have two components: the visual scene, which
includes the stationary objects (coins, blocks etc), and the
moving objects (Mario, Goomba etc). The visual scene is
divided into tiles of equal size but different types, and is
provided to the agent as an array. The scene changes as
Mario progresses in the game.

• Actions: The primitive actions available to the agent are
typical of a Nintendo controller. The agent can choose to
move right or left or can choose to stay still. It can jump
while moving or standing. It can move at two different
speeds.

• Score: For every successful interaction with coin, block,
enemies etc. the player is scored positively. The player
is scored negatively on dying before reaching the finish
line and gets a high positive score on reaching the finish
line. The scores are directly translated to rewards for an
RL agent. A small negative reward is given for every ac-
tion taken in the game to encourage the agent to finish the
game sooner. Note that the environment provides a com-
posite reward for the complete state in the environment.

• Levels: The domain is capable of generating several in-
stances of the game with great variability in difficulty, i.e.
as the agent moves to a higher level, making good deci-
sions becomes harder. This can be due to close interaction
with many objects at the same time or having more con-
straints on how the agent can move (see Figure 1b). The
lowest level, which is the easiest, is level 0.

• Memory Agent: The software includes a memory agent
that we used for evaluation as a baseline. The agent learns
through memorization in that it stores the sequence of ac-
tions (decided using some heuristics) it takes as it moves

through the episode. This leads to good performance in a
game instance because all the transitions are deterministic
and the game always starts in the exactly the same state.
However, the total reward earned by the agent is limited
by its negligible exploration of the environment.

The Action Selection Problem

At each time step, the player faces an action selection prob-
lem - given the current state of the game, what action or
sequence of actions would lead to a favorable outcome. RL
techniques lead to goal oriented behaviors as they seek to
maximize the reward signal generated by the environment.
This reward is often related to goals. Past work on learn-
ing in complex environments, such as games, involves di-
viding a large problem into a series of smaller problems.
To achieve the overall goal, these subproblems have to be
solved. Solutions to these problems can be learned hierarchi-
cally, as shown in Dietterich (2000) and in Ponsen, Spronck,
and Tuyls (2006) for strategy games.

For action games, overall goals are harder to define. A
goal in an action game like Infinite Mario could be to reach
the finish line. However, while achieving that goal, the agent
has to target several smaller, local goals such as killing the
enemy, collecting coins, jumping over the pits, jumping on to
the platforms etc. These goals do not arise as subproblems of
solving the complete game nor do they aid in reaching the
finish line; they are independent of the overall goal of the
game but have to be accomplished for a good score (and to
refrain from dying). A successful play would involve being
an expert at achieving all these goals while moving towards
the finish line. The overall goal of finishing the game cannot
be hierarchically divided into a static sequence of subgoals
to be achieved. Often these goals suggest conflicting actions
in the environment and their occurrence is independent of
each other. We look to RL techniques to provide us with
evaluations of actions suggested by competing goals, which
are then used to select an appropriate action using some sim-
ple heuristics.

Properties of the Domain

The domain is highly complex in a variety of ways:

• Continuity: The domain is continuous, and the positions
of objects on the visual scene are real-valued. A true, con-
tinuous state representation would lead to an infinitely
large state space. A simple solution to this problem is
to discretize the visual scene, by grouping spatially close
states into a single state. However, this is to be approached
with caution; learning the value function will be impossi-
ble if the discretization is not fine enough and functionally
distinct states are merged together. On the other hand, an
extremel y fine discretization will lead to an enormous
state space.

• High Dimensionality: At any time step, the visual scene
is occupied by a large number of objects and correspond-
ing goals. The action selection problem given these multi-
ple goals is combinatorial in the number of objects and is
largely intractable. In a prior study on the game, John and
Vera (1992) observed that a human expert concentrated

166

on interacting with objects that were very close to Mario.
The spatial distance between the objects and Mario was
indicative of which objects were important to interact with
first, greatly constraining the action selection problem.

• Dynamic: There is a high degree of relative motion be-
tween objects in the game and although the domain is not
real-time (the environment waits for an action from the
agent before stepping), the state might change indepen-
dently of the actions of the agent.

• Determinism: The environment is deterministic, how-
ever the state abstractions introduced to make learning
tractable might introduce non determinism of a varying
degree, leading to unpredictable outcomes and often, a
failure to learn.

• Partial Observability: At any given time, the agent can
perceive only a part of the complete state of the game.
There is little reason to believe that parts of the state that
are not visible to the agent might play an important part
in action selection in Infinite Mario. However, as above,
various abstractions applied to make learning in the game
tractable can lead to partial observability.

Object-Oriented Design and Empirical Results

We are interested in an object-oriented view of the environ-
ment, where the agent learns object-oriented behaviors to
achieve object-related goals. For example, an agent learns a
behavior tackle-enemy associated with an object belonging
to a class enemy, with the goal of killing the enemy by stomp-
ing on it. This approach is motivated in part, by a GOMS
(Goals, Operators, Methods and Selection rules) analysis of
Nintendo’s Super Mario Brothers conducted in 1992 by John
and Vera (1992). They demonstrated that the behavior of a
Soar agent that used simple, hand coded heuristics formu-
lated by taking knowledge explicit in the instruction book-
let and by reasoning about the task, was predictive of a hu-
man expert playing the game. They also reported that the
expert’s behavior was highly object-oriented. The analysis
was carried out at two levels: the functional-level-operators
that constitute the behaviors associated with objects and the
keystroke-level-operators or the primitive actions. Our im-
plementation closely follows theirs, however we show that
these behaviors can be learned by the agent by acting in the
envirovment.

An object oriented, learning agent has two distinct but
inter-dependent problems:

Learning a behavior

Through RL, the agent learns a set of primitive actions that
define a behavior for every class of objects. These behaviors
should form an ideal interaction with the object, culminat-
ing in achieving the goal associated with it and consequently
earning a positive reward. For example, the behavior grab-
coin, instantiated for a coin <c> ends a positive reward and
absence of <c> in future observations. The positive reward
received while executing grab coin guides learning the cor-
rect sequence of primitive actions.

The state representation we use is similar to those of
Relational MDPs (Guestrin et al., 2003) with some dif-
ferences. Similar to RMDPs, we define a set of classes
C = {C1, ..., Cc}. Each class includes a set of attributes
Attribute(C) = {C.a1, ..., C.aa}, and each attribute has
a domain Dom(C.a). The environment consists of a set of
objects O = {o1, ..., oo}, where each object is an instance
of one class: oεCi. The state of an object, o.state, is a value
assignment to all its attributes. The formalism by Guestrin
et al. (2003) describes the complete state of the underlying
MDP as the union of the states of all its objects. We, on
the other hand are interested in learning independent, object-
related MDPs rather than learning the composite MDP. The
composite MDP is combinatorial in the number of objects,
hence learning it is intractable in Infinite Mario.

While learning an object-related MDP, we assume that
other objects present in the observations do not affect the re-
ward function (isolated interaction assumption). This is an
over-general assumption and is met only in specific cases.
This also implies that what we are trying to learn is es-
sentially a partially observable MDP. Since the problem is
framed as a POMDP, convergence of the value function is
not guaranteed. However, in lower difficulty levels the as-
sumption of isolated interaction holds and the agent is able
to learn good policies.

The action space is composed of the primitive actions
available and the transitions are dependent on the dynamics
of the game.

Selecting a primitive action

The selection problem arises when there are multiple, visible
objects. Learned behavior for each of those objects may sug-
gest conflicting primitive actions. There are multiple strate-
gies to select an action. One of the strategies is to select an
object first, and then execute the behavior corresponding to
the object. The knowledge for object selection can be hand-
programmed or learned using RL.

To learn object selection, we look at prior work done
in hierarchical RL (Dietterich, 2000) which relies on the
SMDP framework. Playing the game can be formalized as
an SMDP, where object related behaviors are temporally ex-
tended actions and the agent learns the value of choosing
a particular behavior over others, given a set of visible ob-
jects spatially close to Mario. For the state representation,
we define a relation is-close(x,Mario) which is true if an ob-
ject is spatially close to Mario. The ‘closeness’ relationship
can be independently defined for each class of objects. The
set of available behaviors form the temporally extended ac-
tion space and the transitions are based on the presence or
absence of objects. The task of playing the game can be for-
mulated as an SMDP based on present objects, and a value
function is learned that gives a sense of the ‘goodness’ of a
behavior in a state.

These two problems affect each other. The ‘availability’
of a particular behavior depends on the presence of the cor-
responding object. The agents selects a behavior based on
its past experience with similar states. Once a behavior is
selected, the agents executes the behavior while learning
more about the successful interaction with the correspond-

167

200 600 1000 1400 1800
Number of Episodes

0

20

40

60

80

100

120

140

160

T
ot

al
R

ew
ar

d

RL Agent
Memory Agent

(a) Using hand coded object selection strategy, environ-
mental rewards

200 600 1000 1400 1800
Number of Episodes

0

20

40

60

80

100

120

140

160

T
ot

al
R

ew
ar

d

RL Agent
Memory Agent

(b) Using learned object selection, environmental rewards

Upper Bound on Reward

(c) Using background spatial knowledge

200 600 1000 1400 1800
Number of Episodes

0

20

40

60

80

100

120

140

160

T
ot

al
R

ew
ar

d

RL Agent
Memory Agent

(d) Using learned object selection, goal related rewards

Figure 2: Learning performance on Level 0, Game Seed 121 of Infinite Mario. The data is averaged over 10 runs of 2000
episodes each. The black data points indicate the average reward earned by our RL agents in a particular episode. The light grey
data points indicate the average reward earned by the memory agent. The upper bound in the particular instance of the game is
indicated by the dotted line.

ing object and the utility of selecting the behavior in the
current state. This new knowledge, in turn, affects the selec-
tion when a similar state is encountered next.

The results are presented in Figure 2. All results have been
averaged over 10 trials of 2000 episode each. The q-values
are updated using SARSA with α = 0.3. The action se-
lection policy used is epsilon-greedy with ε = 0.1 and an
epsilon-decay-rate of γ = 0.99. Since the domain to too
complex to be studied mathematically, the optimal policy is
hard to analyze. To get an idea of how good our agents are
performing, we estimated the upper bound on the reward that
can be achieved in the level by counting the reward given for
every object in the level. The optimal policy will earn strictly
less than the upper bound.

Figure 2a shows the performance of an agent with hand
coded object selection knowledge and Figure 2b, of an agent
with learned object selection knowledge; the agents learn
to play at the particular level and on average earn more re-
ward than the memory agent, as our design allows more ex-
ploration of the environment. The average reward earned in
both cases is close to the upper bound on the reward that can

be earned in the particular instance, however the agent learns
considerably faster when it learns an object selection strat-
egy from its experience. This is because a human can pro-
gram only very general object selection strategies, such as
for a choice between a coin and a Goomba, select Goomba.
However, if an agent is learning the selection knowledge it-
self, it can learn more specific selection strategies that in-
volve relative distances. These strategies are very specific to
the game instance, and hence converge faster.

Our framework also allows for inclusion of background
knowledge in the design of agents which is beneficial in sit-
uations that are hard to learn through RL. Such knowledge
can include spatial knowledge such as - if an object x is on a
platform p, and is-close(p, Mario), then is-close(x, Mario).
The agent can learn to climb on the platform to reach the ob-
ject. This leads to higher total reward (148.56 as compared
to ˜145 in other designs) as shown in Figure 2c.

Limitations

When we used the proposed learning scheme at harder levels
of the game, the agent failed to learn a good policy for play-

168

ing the game. We believe that it is because of the following
reasons.

Structural Credit Assignment Problem

Observations from the harder levels of the game indicate the
problem of credit assignment. The environment provides the
agent with one composite reward signal for the complete
state of the agent. However, in a complex environment there
can be multiple sources of rewards. In Infinite Mario, the
agent is rewarded when it achieves an object-related goal
and that reward should be used to update the value function
related to the specific object only. This distinction was lack-
ing in the formulations described earlier. If the agent succes-
fully collects a coin, while executing tackle-monster for a
particular monster m, the positive reward so acquired is used
to update the policy related to tackle-monster. The compos-
ite reward leads to spurious updates in policy.

The correct object-reward association could lead to better
learning of object-related policies. In order to test this the-
ory, we added a simple modification, and instead of using
the environment supplied reward, we used a goal-directed
reward while learning object-related MDPs. For example,
while executing tackle enemies the agent would get positive
reward only when it succeeded in killing the corresponding
enemies. Figure 2d shows that adding this modification leads
to faster learning. The performance at higher levels did not
get better, and it could be because of more complex dynam-
ics occurring in higher levels leading to a harder action se-
lection problem. This issue is a candidate for further explo-
ration.

Partial Observability

As noted in the previous section, to constrain the learning
problem to one object at a time, we assumed that when the
agent is executing a particular behavior, other objects do not
affect the agent’s selection strategy. However, such isolation
is rare. In a general case, when an agent is executing a be-
havior for a particular object, other spatially close objects
also affect the behavior and should be accounted for. In spe-
cific cases where the object density around Mario is high
(see Figure 1b), this leads to problems in learning a good
policy because of incorrect updates to the value function.

Conclusions and Future Work

Through this work, we have attempted to characterize the
reinforcement learning problem designed around the game
of Infinite Mario. The game domain is object-oriented, con-
tinuous, high-dimensional and has a high degree of rela-
tive motion between objects. These properties of the do-
main present some interesting challenges to an RL agent.
An object-oriented approach can lead to tractable learning in
complex environments such as this one. We proposed that a
learning problem can be broken down into two inter-related
problems, learning object-related behaviors and action se-
lection given a set of behaviors and objects. We proposed an
action selection policy based on SMDP learning, and pre-
sented encouraging results in specific instances of the game.
The isolation assumption leads to partial observability in

most general cases, leading to inefficient policies. We specu-
late that in a complex, multi-object environments there could
be multiple sources of reward, and knowledge of the object-
reward association could aid in learning better RL policies.

In the future, we will attempt to study the problem of mul-
tiple sources of rewards in a complex environment in detail.
We are extremely interested in architectures (Shelton, 2001)
that allow an agent to maintain and learn multiple, distinct
object-related policies while acting in the environment and
would like to investigate if these policies can be combined
in simple ways to produce a good composite policy.

References
Barto, A. G., and Mahadevan, S. 2003. Recent Advances in Hierar-
chical Reinforcement Learning. Discrete Event Dynamic Systems
13(4):341–379.
Dietterich, T. G. 2000. Hierarchical Reinforcement Learning with
the MAXQ Value Function Decomposition. Journal of Artificial
Intelligence Research 13(1):227–303.
Diuk, C.; Cohen, A.; and Littman, M. 2008. An object-oriented
representation for efficient reinforcement learning. In Proceedings
of the 25th International Conference on Machine learning, 240–
247.
Driessens, K. 2001. Relational reinforcement learning. Multi-
Agent Systems and Applications 271–280.
Guestrin, C.; Koller, D.; Gearhart, C.; and Kanodia, N. 2003.
Generalizing plans to new environments in relational MDPs. In
Proceedings of International Joint Conference on Artificial Intelli-
gence.
John, B., and Vera, A. 1992. A GOMS analysis of a graphic
machine-paced, highly interactive task. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems,
251–258.
Laird, J., and van Lent, M. 2001. Human-level AI’s killer applica-
tion: Interactive Computer Games. AI Magazine 22(2).
Marthi, B.; Russell, S.; Latham, D.; and Guestrin, C. 2005. Con-
current hierarchical reinforcement learning. In Proceedings of the
National Conference on Artificial Intelligence, volume 20, 1652.
Ponsen, M.; Spronck, P.; and Tuyls, K. 2006. Hierarchical rein-
forcement learning with deictic representation in a computer game.
In Proceedings of the 18th Belgium-Netherlands Conference on Ar-
tificial Intelligence, 251–258.
Rummery, G., and Niranjan, M. 1994. On-line Q-learning using
Connectionist Systems. In Tech. Report CUED/F-INFENG/TR166.
Cambridge University.
Shelton, C. R. 2001. Balancing Multiple Sources of Reward in
Reinforcement Learning. In Advances in Neural Information Pro-
cessing Systems, 1082–1088.
Spronck, P.; Ponsen, M.; Sprinkhuizen-Kuyper, I.; and Postma, E.
2006. Adaptive game AI with dynamic scripting. Machine Learn-
ing 63(3):217–248.
Sutton, R., and Barto, A. 1998. Introduction to Reinforcement
Learning. MIT Press, 1st edition.
Tanner, B., and White, A. 2009. RL-Glue: Language-independent
software for reinforcement-learning experiments. The Journal of
Machine Learning Research 10:2133–2136.
Wintermute, S. 2010. Using Imagery to Simplify Perceptual Ab-
straction in Reinforcement Learning Agents. In In Proceedings of
the the Twenty-Fourth AAAI Conference on Artificial Intelligence.

169

