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Abstract

Path planning is a critical part of modern computer games;
rare is the game where nothing moves and path planning is
not necessary. A* is the workhorse for most path planning ap-
plications. Block A* is a state-of-the-art algorithm that is al-
ways faster than A* in experiments using game maps. Unlike
other methods that improve upon A*’s performance, Block
A* does not require knowledge of the map before the search
and its paths are never longer than A* paths. In our experi-
ments, Block A* is ideal for games with randomly generated
maps, large maps, or games with a highly dynamic multi-
agent environment. In the domain of grid-based any-angle
path planning, we show that Block A* is an order of mag-
nitude faster than the previous best any-angle path planning
algorithm, Theta*. We empirically show our results using
maps from DRAGON AGE: ORIGINS and STARCRAFT. Fi-
nally, we introduce “populated game maps” as a new testbed
that is a better approximation of real game conditions than the
standard testbeds of this field. The main contributions of this
paper are a more rigorous set of experiments for Block A*
and introduction of a new testbed (populated game maps).

1 Introduction and Overview

Pathfinding is an important topic in numerous domains, in-
cluding computer games. Path planning in games is particu-
larly challenging for a number of reasons. First, the paths
must be calculated in milliseconds due to real-time con-
straints. Second, the domain is dynamically modified; for
example, obstacles like doors or walls may be built or re-
moved in real time. Third, games may have numerous com-
peting players, each controlling an army of mobile agents.
For example, RTS (real-time-strategy) games like STAR-
CRAFT may have up to 8 players, each controlling up to 200
units, for a worst case total of 1600 pathfinding agents.
Academia and the games industry are beginning to col-
laborate, resulting in artificial intelligence (AI) research
being incorporated into computer games (e.g., BioWare’s
DRAGON AGE engine uses University of Alberta re-
search (Sturtevant and Geisberger 2010)). Recently, Yap et
al. developed a new algorithm called Block A* (a general-
ization of A)* that returns the same optimal path as A* for
traditional 4-way and 8-way grid searches (Yap et al. 2011).
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Furthermore, in the domain of any-angle pathfinding (paths
not constrained by 45° angles), it is an order of magnitude
faster than the previously best any-angle path planning al-
gorithm, Theta* (Daniel et al. 2010). Theta* works like A*,
but does a line-of-sight check at every node expansion. Field
D* (Ferguson and Stentz 2006) is another any-angle algo-
rithm. Field D* uses interpolation during each vertex ex-
pansion. Field D* paths can be worse than A* paths, while
both Theta* paths and Block A* paths can never be worse
than A* paths.

RTS games like the STARCRAFT and DAWN OF WAR se-
ries use a grid for its flexibility in dealing with dynamic ter-
rain and multiple path planning agents (Jurney 2010). Other
genres, like BioWare’s DRAGON AGE RPG series, also use
grids. Grids allow one to quickly change the cost of en-
tering a region, for example, a door closing, or a mine-
field; this is harder to do in a continuous space representa-
tion like visibility graphs, nav-meshes or triangulation (De-
myen and Buro 2006). A problem with grids is that it often
leads to jagged paths due to the 45° turning constraints on
grid movements. These paths are often “smoothed” in post-
processing to make the paths shorter and more realistic (Ra-
bin 2000). However paths using this post-processing may
not be ground-truth optimal.

An alternative is to use an any-angle algorithm like Theta*
that searches for a smoother, more human-like path during
the search, as opposed to after the search. Alternatively, the
recently published Block A* provides paths of roughly the
same length as Theta* but is always faster.

Practically every paper in this field uses two sets of
testbeds to test their algorithm: a grid with randomly placed
obstacles and an unpopulated game map. The problem with
the random obstacle testbed is that the randomness does not
properly construct maps that represent real game maps. The
problem with an unpopulated game map, is that it is devoid
of the moving agents or dynamically placed objects that are
placed in the game during run-time. We believe we can
better approximate real game conditions by combining both
testbeds into one, what we call a “populated game map”.

2 Introduction to Any-Angle Path Planning

Figure 1 illustrates the difference between any-angle and
normal A* pathfinding. Here we aim to find the shortest
path from B1 to £/6. The shaded square bounded by C4 and



D5 is an impassable obstacle, however we can traverse on
its edges. The ground-truth shortest path is B1 — D4 — E6
(dashed line), with the optimal length of 5.84. In contrast,
A* will find a zig-zag-like path B1 —C2—-C3—D4— D5 —
E6 (black circles; cost is 6.24). This is because grid-based
A* is constrained to heading changes that are 45°, resulting
in many directions changes (twice as many, in this example).

A* will always find the optimal path, relative to the grid
that it searches on. However, the zig-zag path found by A*
is not ground-truth optimal, thus post processing is applied
to smooth and shorten this path.

In our experiments, we used an efficient post-processing
smoothing where we iteratively check the inflection points
1, ..., Ty found by A*. This path smoothing algorithm re-
moves the inflection point z; if its neighbors z;_; and x4
have line of sight (LOS) of each other. This simple LOS
smoothing algorithm will result in a ground-truth optimal
path in this example, although this is not guaranteed in ev-
ery situation.

1. 2 3 4 5 6

A

Figure 1: Any-angle search results

Traditional A* on a grid searches with 45° constraints;
the jagged path found is only smoothed as an afterthought
during post-processing. A better alternative for smoother
paths is to use Theta*, which considers paths of any-angles
(not just 45°) during the search. While a path-smoothed A*
algorithm does a LOS check after the search, Theta* does a
LOS check during the search. Theta* does a LOS check for
every child of a vertex expansion, but otherwise performs
the same as A*; unlike A*, the parent of a vertex in Theta*
is not confined to its neighbor. Theta* finds paths of any-
angle while searching on a grid. Normally for A*, when the
node s’ is expanded, its child s” has a pointer back to its
parent s’. In Theta*, for each expansion of vertex s’, a LOS
check is made for every child s” of s’. If a LOS check from
the child s” to s (parent(s’)) is successful, then this implies
that an unobstructed line can be drawn from s” to s and the
parent of s” is now set to be s.

In Figure 1, let E'5 be s’ whose parent B1 is s. When E5
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is expanded, it will check if its child s”, E6, has a straight
line to B1. If it does, then F6’s parent is set to B1. In
this example, there is no direct path from E6 to B1 and
thus E6’s parent is set to 5. The path found by Theta* is
B1—E5— D6 (open triangles; cost is 6). Note that Theta* is
actually worse than a post-processed A* path (dashed line;
cost is 5.84) in this example. This figure is also described in
detail in (Daniel et al. 2010).

Finally, in our quest to find smoother and shorter paths,
we can use Block A* for any-angle path planning. Both
Theta* and Block A* search for any-angle paths during the
search. While Theta* conducts LOS checks, Block A* uses
a small pre-computed database that has LOS information
about the local area. We call this database containing the lo-
cal LOS information the LDDB (Local Distance Database).
In Figure 1, Block A* finds the optimal path B1 — D4 — E6
(dashed line) with a cost of 5.84 instantaneously by reading
from its database. However, like A* and Theta*, the ground-
truth optimal path is not guaranteed. Block A* uses locally
optimal (block-wise) information (from the LDDB) to help
improve its path quality, but it lacks the global information
needed for a ground-truth optimal answer. The details of
how Block A* works is not provided here (see (Yap et al.
2011) for full details), but we explain it conceptually in the
next section.

We should note that traditional grid searches on the tiles
(cells) of a grid, while the any-angle literature searches on
the vertices of the grid. As an example, if our grid resembled
a face of a Rubik’s Cube, it would be called a 3x3 (cell) grid
in traditional search literature, but it would be a 4x4 (vertex)
grid in any-angle literature. As such, any-angle paths can
traverse the outer edges of a tile obstacle. The Block A*
algorithm is unaffected by this, so for brevity we use the
term “‘node” to describe both cells and vertices, as Block A*
simply considers both nodes in a graph.

3 Introduction to Block A*

Block A* is a generalization of A*. Instead of searching one
node per iteration like A*, Block A* searches one block per
iteration, where a block is a square region of nodes. The
performance gain of Block A* derives from it searching in
bulk. Consider a shopping analogy of purchasing 100 beer
kegs for a party. Instead of driving to the brewery to buy one
keg per trip (A*), 100 trips, we drive to the brewery to buy
25 kegs per trip (Block A*), 4 trips. Obviously, the more we
buy per trip, then the less trips are needed. For non-trivial
cases, where the search space is large (we need to buy a lot
of beer!), Block A* will out-perform A*. We will later show
this in our experiments with real game maps.

There are two main components to Block A*. First, A*
is generalized so that it can handle blocks of nodes. Sec-
ond, a database is built, called the Local Distance Database
(LDDB), that enables the efficient processing of these blocks
during the search. A particular set of obstacle combinations
in a block is called a “block pattern”. The LDDB will store
every block pattern, so that it can handle every possible ob-
stacle combinations possible in a block. Each LDDB en-
try stores the all-pairs-shortest-path results for the perimeter



nodes of the block pattern. The all-pairs-shortest-path re-
sults can be quickly computed using Dijkstra’s algorithm as
a one-time cost, and is not part of the runtime cost. Comput-
ing the LDDB takes less than one second.

For example in Figure 1, a 5x5 cell LDDB (or equiva-
lently, a 6x6 vertex LDDB) would have stored the all-pairs-
shortest-path between every vertex on the boundary. Indeed,
both the vertices B1 and E6 are boundary vertices, and we
can simply look up in the LDDB to find the optimal path
between these two boundary vertices quickly after the block
pattern is identified.

Figure 2 contrasts the area of explored by A* with the
area of Block A*. The shaded area is the region searched by
A*. The blocks encapsulate the area examined by Block A*.
Block A* actually examines more nodes than A*. For every
node x searched by A*, Block A* will examine the entire
block (of nodes) that = belongs to. Note that when Block
A* examines a block, it does not search nor expand ev-
ery node in the block in the traditional sense. For one, the
interior block nodes are ignored. It is somewhat counterintu-
itive that by examining more nodes, one actually goes faster,
yet this is the case for Block A* in our experiments. Firstly,
the heap of Block A* is smaller. Instead of dealing with a
heap of n nodes, Block A*’s heap deals with 57 blocks
of nodes, where B x B is the size of the square block. Sec-
ondly, we use a LDDB database to quickly process these
blocks. Finally, we only directly deal with the perimeter
block nodes; the interior block nodes are ignored.

Figure 2: The shaded area is the region searched by A*. The
blocks encapsulate the area examined by Block A*

A* and Block A* mainly differ in how each expand a node
(A*) or a block (Block A*). We only summarize the main
ideas of Block A* here using the simplest example. The full
details can be found in (Yap et al. 2011). Consider Figure 3,
where we expand a block of 2x2 unobstructed tiles. For sim-
plicity, assume 4-way vertex moves with a zero heuristic.

1) PRE-EXPANSION: This block’s parent is from the
south. The ingress vertices (circled) are the vertices from
the parent block that have a finite g-value. The egress ver-
tices are all the vertices on the block boundary.

2) LDDB LOADED: The LDDB entry for this block
pattern is retrieved, LD D B(y, x) returns the length of the
shortest path between any ingress y (circled) and egress x for
a given block obstacle pattern. Since we have three ingress
vertices, we use the LDDB for each. The circled value is
the g-value of that ingress found during search and does not
come from the LDDB. The top block is the LDDB entry for
the leftmost ingress (¢=3). The middle block is the LDDB
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entry for the middle ingress (g=4). The bottom block is the
LDDB entry for the rightmost ingress (g=5).

3) LDDB APPLIED: We add y.g and LDDB(y, x) to
find the g-value of the shortest path from start to = via y.

4) POST-EXPANSION: For each egress x, its new g-
value is the minimum of its old g-value and the small-
est g-value from all paths via these ingresses (circled).
z.g = mingey(x.9,y.9 + LDDB(y,x)). For example,
the shortest path to the top-left vertex is min(5,7,9) = 5.
Finally, we place the four block neighbors of the expanded
block into the open list using the min,pdated s (s".9 + s".h)
as its heap value, where s’ are the boundary vertices shared
by the neighboring block and the expanded block. With a
zero heuristic, the east block neighbor would be added with
a heap value of min(5,6,7) = 5.

2) LDDB loaded 3) LDDB applied
+2_ _+3  +4 5 6 7

+1 3=14 5
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Figure 3: Expanding a block using a 3x3 vertex LDDB of
4-way movement.

Block A* is database-driven in that it is simple to switch
from finding 4-way paths to any-angle paths. To demon-
strate this, consider the difference between expanding the
same block in Figure 3 using a 4-way LDDB and Figure 4
using an any-angle LDDB. Note that the LDDB is any-angle
only in the paths within the block. It is only truly any-angle
for sufficiently large blocks. In Figure 4, the execution of
Block A* is the same, however, the resultant g-values of
the expanded block differs. In this simple case, the leftmost
ingress (g=3) is dominant over the other ingresses.

Not only is Block A* faster than A*, it also finds shorter
paths. Intuitively, Block A* glues together path segments
that are any-angle optimal piece-wise (block-wise). See Fig-
ure 5. The larger the B x B block used in the LDDB, the
shorter the path in general. One can think of A* as a special
case of Block A* that only expands one node (one tile, or a
2x2 vertex block) at a time. At top is the path found by A*
using the Euclidean heuristic; the path has many turns (10).
The ground truth optimal path is the dashed line. At bottom
is the Block A* path found by using a LDDB of 3x3 vertex
blocks (equivalently a 2x2 tile block); it has less turns (2)
than the A* path. In this trivial example with no obstacles,
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Figure 4: Expanding a block using a 3x3 vertex LDDB of
any-angle movement.

smoothing these paths in the post-processing will result in
the ground-truth optimal path. However, this is generally
not possible in practise because of obstacles.

While not described here in detail, Block A* improves
upon the performance of A* by making the computation of
g-values during the A* search more efficient. Most search
enhancements have gone in the opposite direction by im-
proving the performance of h-values, as noted in (Harabor
and Botea 2010). As such, the performance gains of Block
A* are orthogonal to other A* speed enhancements such as
hierarchical planning or a weighted heuristic.

It should be noted that in traditional 4-way and 8-way
pathfinding, Block A* and A* return the same optimal path
and is 2-4 times faster in our experiments (not shown here).

4 Experimental Results

Block A* is evaluated using three classes of experiments: 1)
grids with randomly placed obstacles; 2) commercial game
maps; and 3) commercial game maps populated with ran-
dom obstacles. Comparisons are made to A*, Theta*, and
visibility graphs (v-graphs). Neither A* nor Theta* require
any pre-computation. While Block A* requires preprocess-
ing to build the LDDB, it is less than one second (even for
the largest 5x5 LDDB used in this paper), and once com-
puted it will work for every map and for every size; the
amortized cost is negligible. In contrast, the time required to
generate the v-graphs was quite extensive (2 weeks of com-
puting time were needed using Xeon 3.0 GHz computers).
Generating these v-graphs were O(v?) where v is the num-
ber of all vertices (obstacles’ corners) in the map. The time
(in hours) to generate these v-graphs are shown in brackets
under the “Data Set” column in the subsequent tables.

It should be noted that the original game maps were pro-
vided as grids, not as v-graphs. In reality, most games maps
are either exclusively in grid representation or in a contin-
uous representation (e.g. v-graphs). For comparison pur-
poses, we tried our best to do a fair conversion. There are
many techniques that trade off between the construction time
and the search time of v-graphs (de Berg, van Kreveld, and
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Figure 5: Top: A* path (special case of 2x2 vertex Block
A*). Bottom: 3x3 vertex Block A* path. Dashed line is the
ground-truth optimal path.

Schwarzkopf 2000). In addition, there are many techniques
that forsake v-graph optimality for speeding up the search
time or the construction time; for this paper, v-graph always
returns the optimal path. While there may never be a fair
comparison between discrete and continuous path planning
techniques, we have tried our best and warn the reader of our
deficiencies.

In our experiments, we also compared using different
LDDB block sizes: 3x3, 4x4, and 5x5. A 2x2 (vertex) block
is equivalent to a single tile cell with its 4 exterior vertices.
Therefore, a 2x2 Block A* search is simply A* searching in
8 directions. The results for 2x2 Block A* are not provided.
A simple 3x3 LDDB is only a few bytes, a 5x5 is 60MB,
while a 6x6 LDDB (not used here) uses over 2GB.

The average number of nodes expanded during the search
is typically provided in these types of experiments shown
here. However, they are omitted here as they are not accu-
rate indicators of algorithmic performance because the cost
to expand a node differs significantly between algorithms.
In particular, node counts artificially inflates Block A*’s per-
formance. For A*, each node expansion is a relatively con-
stant cost. For Theta*, each node expansion includes an
additional LOS check, whose cost differs significantly de-
pending on how open or cluttered the map is. Theta*’s LOS
check is in addition to the normal A* cost of expanding a
node, thus Theta* is always slower than A* per expansion.
Finally, Block A* expands blocks, not nodes; thus its num-
ber of expansions is much fewer.

In Tables 1, 2, and 3, the path length is averaged over 500
searches and is listed in the “Distance” column. The length
of the path after smoothing is done is shown in brackets.
Theta* did not significantly benefit from this so its smooth-
ing result was omitted, while v-graphs already have the per-



fect any-angle paths so its smoothing result are also omitted.
The time for path smoothing was at most 1% of the total
search time.

The average run-time is given in the “Time” column. In
addition, v-graphs require a pre-computation to generate the
graph to search on; the total pre-computation time (hours)
is given in brackets under the “Data Set” column. While
LDDBs need to be pre-computed too, they take less than
one second, and they work for every map of every size. Thus
its pre-computation time is not shown. The “Time” column
excludes the times for pre-computations.

4.1 Random Maps

We start by comparing the algorithms using a 600x600 grid
(typical for modern games) filled with randomly placed ob-
stacles, the probability of a cell being an obstacle ranges
from 0% to 50%. A*, Theta*, visibility graphs (v-graphs),
and Block A* (with different LDDB block sizes) are com-
pared. These results are in Table 1, with each entry repre-
senting the average over 500 randomly generated maps, each
with its own random start and goal node.

For the trivial case of maps with zero obstacles, v-graphs
clearly win, as the shortest path is simply a straight line
between the start and the goal. This is also the only case
where any algorithm is faster than Block A*. Theta* also
performs poorly compared to A* here because the cost for
LOS checks are enormous if the LOS is very long (caused
by the large open space).

For non-trivial searches, maps with any positive percent-
age of obstacles, Block A* is clearly the fastest algorithm.
The larger the LDDB used by Block A*, the greater the
speed gain. The greatest speed improvement per memory
usage is from using a simple 3x3 LDDB. While there are di-
minishing returns as the block size increases, Block A* still
maintain an overall speed improvement. Furthermore, the
paths found are shorter than A*.

The performance of Theta* is mixed; while it is faster
compared to v-graphs and returns paths that are very close
to the ground-truth optimal, Theta* is generally slower than
A*. In comparison, Block A* is always faster than A* and
gives paths that are within 0.1% of Theta* in length. For
games like RTS games, finding a path quickly is more im-
portant than finding a smooth path. By this criteria, both
Theta* and v-graphs are poor alternatives to A*. In com-
parison, not only is Block A* at least twice as fast as A*, it
returns a shorter path at no extra charge.

4.2 Unpopulated Game Maps

Maps with random obstacles are obviously not indicative of
actual game performance. In this section, we use five STAR-
CRAFT maps used in the AIIDE 2010 STARCRAFT Compe-
tition. These maps were chosen due to their popularity in
human competitions, and partly because they are strategi-
cally challenging for the game Al. In addition to these five
maps, we also included the largest map, Korcari Wilds, from
DRAGON AGE: ORIGINS. These results are displayed in
Table 2.

The STARCRAFT maps are strategically interesting with
large open spaces with choke points. The large open spaces
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[ DataSet [ Algorithm [ Distance Time
Random A* 336.4 (319.6)  0.0090s
0% Theta* 319.6 0.0117s
(Oh) V-graph 319.6 0Os
3x3 Block A* | 323.9(319.6) 0.0037s

4x4 Block A* | 321.8 (319.6)  0.0025s

5x5 Block A* | 320.8 (319.6) 0.0017s

Random A* 3359 (325.1) 0.0091s
10% Theta* 319.5 0.0068s
(41h) V-graph 319.3 0.0099s
3x3 Block A* | 323.5(321.4) 0.0045s

4x4 Block A* | 321.5(320.3) 0.0030s

5x5 Block A* | 320.6 (319.9)  0.0023s

Random A* 330.9 (321.1)  0.0089s
20% Theta* 3153 0.0079s
(62h) V-graph 315.1 0.0109s
3x3 Block A* | 319.2 (317.1)  0.0051s

4x4 Block A* | 317.4(316.2) 0.0034s

5x5 Block A* | 316.6 (315.9)  0.0029s

Random A 334.9(326.1)  0.0093s
30% Theta* 320.1 0.0101s
(62h) V-graph 319.9 0.0132s
3x3 Block A* | 324.0(321.9) 0.0061s

4x4 Block A* | 3224 (321.1)  0.0042s

5x5 Block A* | 321.6 (320.8)  0.0039s

Random A* 341.0 (332.4)  0.0107s
40% Theta* 327.5 0.0146s
(48h) V-graph 327.2 0.0108s
3x3 Block A* | 331.6(329.3) 0.0081s

4x4 Block A* | 329.9 (328.4) 0.0054s

5x5 Block A* | 329.2(328.2)  0.0052s

Random A* 364.0 (354.9) 0.0170s
50% Theta* 350.9 0.0282s
(30h) V-graph 350.7 0.0123s
3x3 Block A* | 3553 (352.7) 0.0142s

4x4 Block A* | 353.6(351.9) 0.0092s

5x5 Block A* | 352.8 (351.6)  0.0090s

Table 1: Algorithm performance (random obstacles)

allow for bases to be built there, and facilitate large-scale
battles with hundreds of participants. Additionally, the
choke points are narrow corridors between large open spaces
to facilitate conflict and control of the map. In terms of
pathfinding, large open spaces means more states for A* to
explore. Moreover, choke points affect the efficacy of our
Euclidean heuristic. Consequently, the pathfinding results
for game maps in Table 2 differ from the random maps in
Table 1.

With game maps, Theta* performs worse with game maps
than with random maps; in the map Python, Theta* is over
11 times slower than A*. Block A* is still at least twice
as fast as A*. The effect of different LDDB block sizes for
game maps is similar to random maps, in that the larger the
block size the faster the search is, and thus the 3x3 and 4x4
entries are not shown. Finally, we see that v-graphs do better
for real game maps than for random maps. This is mostly
because the number of v-graph vertices is lower, and the pre-
computation time of v-graph is in minutes instead of days.



[ DataSet [ Algorithm [ Distance Time |
Tau Cross A* 334.4 (319.7)  0.0120s
0% Theta* 318.0 0.0841s
(0.1h) V-graph 318.0 0.0016s
5x5 Block A* | 319.3 (318.1)  0.0048s
Andromeda A* 328.2 (315.5) 0.0154s
0% Theta* 313.3 0.1316s
(0.2h) V-graph 313.3 0.0021s
5x5 Block A* | 314.4 (313.5)  0.0062s
Destination A* 299.4 (287.0)  0.0084s
0% Theta* 285.2 0.0514s
(0.1h) V-graph 285.2 0.0011s
5x5 Block A* | 286.4 (285.4)  0.0036s
Python A* 245.5(234.0) 0.0155s
0% Theta* 232.8 0.1628s
(0.1h) V-graph 232.8 0.0014s
5x5 Block A* | 233.7 (232.8)  0.0056s
Heartbreak A* 288.9 (277.1)  0.0084s
Ridge Theta* 275.5 0.0592s
0% V-graph 275.5 0.0010s
(0.1h) 5x5 Block A* | 276.5 (275.6)  0.0036s
Korcari A* 422.7 (408.8)  0.0106s
Wilds Theta* 403.5 0.0556s
0% V-graph 403.5 0.0021s
(0.3h) 5x5 Block A* | 405.0 (403.7)  0.0050s

Table 2: Algorithm performance (unpopulated game maps)

4.3 Populated Game Maps

Here we present our final experiment, where we combined
the random obstacles from Table 1 with the game maps from
Table 2. The results are shown in Table 3. For each open tile
in the game map, we placed an obstacle on that tile with 10%
probability.

Game maps by themselves are devoid of the numerous ob-
stacles that often inhabit the game space during the course
of the game. For example, there may be numerous buildings
and objects that clutter the game map. These extra obsta-
cles are not represented by the plain game map because they
are placed in real-time by the players and are not known a-
priori. The actual number of obstacles and their placements
depends on numerous factors. In a multi-player RTS game
like STARCRAFT, there may be hundreds of mobile agents
and buildings in the game space. In a single-player RPG
game like DRAGON AGE: ORIGINS, the maximum number
of obstacles is less. In a RTS game, the number of obsta-
cles grows as the game progresses and peaks as the armies
collide in the “late game”, while in a RPG game the number
of foes is fairly low and constant. Due to time and resource
constraints, we simply populated obstacles in the playable
game space randomly. Although not ideal, this gives us
a rough idea of the relative worst case performance of the
competing algorithms in a cluttered game map. The average
case performance is likely closer to 0% obstacles than 10%
obstacles, although this depends on many factors.

In populated game maps, both Theta* and v-graphs are
slower than A*. Theta*’s performance here is better than
Theta* in an unpopulated game maps, this is due to the
shorter and cheaper LOS checks caused by obstacles. While
the performance of v-graphs is greatly affected by the ad-
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dition of random obstacles on game maps, A*’s and Block
A*’s performance are robust in this domain. Similar to the
results from Table 2 and Table 3, Block A* is always at least

twice as fast as A*, while finding shorter paths.

[ DataSet | Algorithm [ Distance Time |
Tau Cross A* 326.3 (318.6) 0.0126s
10% Theta* 310.8 0.0280s
(12h) V-graph 310.6 0.0163s
5x5 Block A* | 311.9(311.2)  0.0055s
Andromeda A* 327.8 (319.7)  0.0155s
10% Theta* 313.2 0.0378s
(14h) V-graph 313.0 0.0212s
5x5 Block A* | 314.2 (313.6) 0.0072s
Destination A* 302.9 (295.8)  0.0087s
10% Theta* 288.9 0.0200s
(7h) V-graph 288.8 0.0111s
5x5 Block A* | 290.0 (289.4)  0.0043s
Python A* 247.2 (240.1)  0.0152s
10% Theta* 234.7 0.0354s
(17h) V-graph 234.6 0.0212s
5x5 Block A* | 235.6(235.1)  0.0065s
Heartbreak A* 287.2 (280.4)  0.0085s
Ridge Theta* 274.1 0.0205s
10% V-graph 273.9 0.0118s
(7h) 5x5 Block A* | 275.0 (274.4)  0.0043s
Korcari A* 417.0 (407.8)  0.0105s
Wilds Theta* 398.6 0.0258s
10% V-graph 398.4 0.0122s
(6h) 5x5 Block A* | 400.0 (399.1)  0.0056s

Table 3: Algorithm performance (populated game maps)

4.4 Discussion of the Different Testbeds

For all three testbeds, Block A* is always at least twice as
fast as A*, and often 5-30 times faster than the previously
best any-angle algorithm Theta*. Block A* always finds
an any-angle path no worse than A*, and is within 0.1% of
Theta* paths. The only algorithm faster than Block A* are
v-graphs, but only if the preprocessing time is omitted and
if the map is unpopulated. For highly dynamic games, the
cost to maintain the v-graphs in real-time makes it inferior
to Block A*.

V-graphs suffers as the number of random obstacles in-
crease. Additional experiments (not shown here) shows that
v-graphs are roughly the same speed as Block A* using pop-
ulated game maps with just 1% obstacles. It can be a difficult
endeavor to optimize v-graph performance if the number of
in-game obstacles is high and the map rapidly changes. In
contrast, grids are robust with respect to these concerns and
are simple to implement, but have slower search times.

It is interesting to note the dramatic performance degra-
dation of v-graphs when tested on populated game maps in-
stead of unpopulated game maps. Most academic papers
only tested on vacant game maps without obstacles for their
evaluations. We believe that using a testbed of populated
maps better approximates actual in-game performance, and
uncovers algorithmic flaws that are otherwise undetectable
in the standard testbeds.



5 Advantages and Disadvantages of Block A*

Besides finding smoother and shorter any-angle paths faster
than A*, we further identify four advantages of Block A*.

1. Generality: A priori map knowledge is not necessary.

2. Scalability: It can be used to solve maps of any size.

3. Optimality: It will never find a path worse than A*’s path.
4. Memory: One LDDB will solve any map.

Games like STARCRAFT and DRAGON AGE: ORIGINS
have maps that are known before the game is shipped. There
are numerous search enhancements that can pre-process
these maps to derive run-time speed gains (Sturtevant and
Geisberger 2010). They essentially trade domain knowledge
for speed. Upcoming dungeon crawler games like DIABLO
IIT or TORCHLIGHT II have randomly generated maps to
maximize replay-ability. Randomly generated maps limit
the use of pre-processed speed gains. Block A* works well
here as no domain knowledge is required.

DRAGON AGE: ORIGINS used 157 maps. A hierarchy
or look-up table may need to be built (several hours) for
each map to use abstraction techniques. In contrast, only
one LDDB (1 second build time) is needed for Block A* to
solve all.

Many search abstraction techniques do not guarantee op-
timality, trading off accuracy for speed. In contrast, Block
A* always returns a path no worse than A*.

Many search enhancements generally require more mem-
ory to store their hierarchies or look-up tables that speed up
A*. They trade off memory for speed. While Block A*
also requires memory to store the LDDB, it is possible that
Block A* will actually use /ess memory than A* while still
finding a path no longer than A*. This is because the grid
that A* searches on is node based, while Block A* searches
on a block map. As an example, a 600x600 node map can
be reduced to a 200x200 block map if Block A* uses a 3x3
LDDB. The size of a block map is less than the size of a
node map, and as the size of the map increases, the memory
savings from using a block map instead of a node map will
eventually out-weight the cost of storing the LDDB. It may
be more practical memory-wise to use block maps for large
search spaces. Furthermore, many patterns in the LDDB are
irrelevant and can be removed for more space.

Recalling Figure 2, we noted that Block A* examines a
larger search space as A*. The worst case scenario for Block
A* is when A* search finds a direct path to the goal. While
the search area is a straight line, Block A* will explore many
unnecessary nodes, as it must process the entire block. In
game maps with large open spaces, this can be mitigated
by a LOS check from start to goal before calling Block A*
(this trick is also used in games to check if A* is required).
Another issue with Block A* is that the cost of revisiting a
block is very expensive, as it must update many nodes in the
block. This can be mitigated (but not avoided) by using a
consistent heuristic.

6 Conclusion

Block A* is a new algorithm that is a generalization of A*
that searches a block of nodes instead of one node per itera-
tion . Block A* is different than other enhancements in that
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it is more general and more scalable— one LDDB can solve
every map of any size without any prior knowledge of the
map. This particularly benefits games with randomly gener-
ated maps. The performance gain of Block A* is the com-
bination of its LDDB usage and the more efficient explo-
ration of the search space. It should be noted that Block A*
works just as well for traditional 4-way and 8-way pathfind-
ing while returning the same optimal path as A*. In our ex-
periments with any-angle path planning, Block A* is at least
twice as fast as A* while providing shorter and smoother
paths, paths that are very close ground-truth optimal. The
next best any-angle path planning algorithm, Theta*, is an
order of magnitude slower than Block A* in the worst case,
but the difference between their paths is less than 0.1%.
This paper introduces populated game maps to the re-
search community, as we believe it is a more realistic
testbed for algorithmic performance compared to the stan-
dard testbeds. Our experiments also tested over the standard
random obstacle maps and unpopulated game maps. We find
that Theta* is always slower than A*, especially for game
maps. We find that v-graphs works well for unpopulated
(static) game maps but poorly for populated (dynamic) game
maps. Finally, Block A* is always faster than A* in all these
domains while returning shorter and smoother paths.
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