Proceedings of the Seventh AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment

Ultra-Fast Optimal Pathfinding without Runtime Search

Adi Botea
NICTA* and the Australian National University

Abstract

Pathfinding is important in many applications, including
games, robotics and GPS itinerary planning. In games, most
pathfinding methods rely on runtime search. Despite numer-
ous enhancements introduced in recent years, runtime search
has the disadvantage that, in bad cases, most parts of a map
need to be explored, causing a time performance degradation.
In this work we explore a significantly different approach to
pathfinding, eliminating the need for runtime search. Opti-
mal paths between all pairs of locations are pre-computed.
Since straightforward ways to store pre-computed paths are
prohibitively expensive even for maps of moderate size, pre-
computed data are compressed, reducing the memory require-
ments dramatically. At runtime, pathfinding is very fast, as it
requires visiting only the locations on an optimal path. In
each location, a quick computation provides the next move
along the optimal path. We demonstrate the effectiveness of
this approach on Baldur’s Gate game maps. The compression
factor reaches two orders of magnitude, bringing the memory
requirements down to reasonable values. Compared to A*
search, the runtime speedup reaches and even exceeds two
orders of magnitude. When averaged over paths of similar
cost, the speedup reaches a value of 700 in our experiments.

Introduction

Pathfinding has many applications, including games,
robotics and GPS itinerary planning. Runtime search is used
in most pathfinding techniques. One popular method to ob-
tain a search space is to discretize an initial map into a grid
map. Then, a search algorithm, such as A*, enhanced with
an admissible heuristic function, such as the Manhattan or
the Octile heuristic, can be used for pathfinding.

Numerous enhancements to pathfinding (e.g., on grid
maps) have been introduced in recent years. These include
reducing the size of the search space with hierarchical ab-
straction (Botea, Miiller, and Schaeffer 2004; Sturtevant and
Buro 2005), exploiting symmetry (Harabor and Botea 2010;
Harabor and Grastien 2011), and building accurate heuris-
tics at the cost of using extra-memory (Bjornsson and

*NICTA is funded by the Australian Government as represented
by the Department of Broadband, Communications and the Digital
Economy and the Australian Research Council through the ICT
Centre of Excellence program.

Copyright (© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

122

Halldérsson 2006; Cazenave 2006; Sturtevant et al. 2009).
Despite the success of such enhancements, it is often the
case that solving a pathfinding instance requires visiting
many locations on a map, resulting in a speed degradation.

We introduce compressed path databases (CPDs), a
pathfinding approach significantly different from traditional
approaches based on runtime search. Our goal is to im-
prove the speed dramatically using pre-processing and ad-
ditional memory to efficiently store the pre-processing re-
sults. While many games feature dynamic environments,
and mobile units with different sizes and terrain traversal ca-
pabilities, we focus on static environments and single-agent
pathfinding. We discuss briefly the case of dynamic obsta-
cles (other mobile units or changes in environment) as well.

During pre-processing, optimal paths between any two
locations on a map are computed. If pre-computed data
are stored in a naive way, the memory requirements are
quadratic in the size of the original map, being prohibitively
large even for maps of moderate size. To address this, we
introduce a technique for compressing path information, re-
ducing memory requirements dramatically.

With CPDs in use, runtime pathfinding is very fast. It only
requires visiting each location along an optimal path from
the start to the target location. In each location, a quick com-
putation provides the next location where to move along an
optimal path. The first-move lag, which measures the time
needed before making the first move on a path, is extremely
small, since deciding the next move is independent of decid-
ing the rest of the moves. Computing the next move is faster
even than in real-time search, as the latter relies on a small
local search to compute a move.

Similarly to Sankaranarayanan, Alborzi, and
Samet (2005), our work exploits the idea that, often,
the shortest paths from a current node to any target in a
remote area share a common first move. These authors
call that property path coherence. There are significant
differences between our work and the approach taken by
Sankaranarayanan, Alborzi, and Samet (2005). First off,
Sankaranarayanan, Alborzi, and Samet compress a map
using a quad-tree decomposition. Our method decomposes
a map into a list of rectangles that can have arbitrary sizes
and placements, which can potentially require significantly
fewer rectangular blocks to cover the map. We will show
that, in our experiments, CPDs are significantly more

memory efficient than quad-tree decompositions. Secondly,
Sankaranarayanan, Alborzi, and Samet (2005) applied their
ideas to road maps. We use game maps as a test bed.

We run experiments on 120 maps from the Baldur’s Gate
video game, with sizes of up to 320x320 tiles. When the
speed-up is averaged over paths of similar length, the largest
values are within two orders of magnitude, being up to 700
for our test data. To our knowledge, this is by more than
one order of magnitude higher than the best speedups seen
in the literature on the same, frequently used dataset (e.g.,
(Harabor and Grastien 2011; Botea, Miiller, and Schaeffer
2004; Sturtevant and Buro 2005)).

The compression factor achieved with CPDs reaches two
orders of magnitude. This means that, on the larger maps,
our compressed path databases require less than 1% of the
memory required by an uncompressed path database.

Our results on static grid maps demonstrate that a reason-
able amount of extra-memory can eliminate the need for run-
time search in pathfinding. This ensures that all pathfinding
queries are answered very fast, visiting only locations along
an optimal path, whereas methods based on runtime search
can potentially explore the whole map in bad cases. The to-
tal pre-processing time is about 40 minutes on the largest test
map and less than 8 minutes on all other maps. Since pre-
processing is composed of many independent iterations, the
pre-processing time can trivially be reduced further by run-
ning different iterations on different CPUs, with a speed-up
that is linear in the number of processors available.

Related Work

The closest related work is due to Sankaranarayanan, Al-
borzi, and Samet (2005). A brief comparison has been pro-
vided in the introduction. An empirical comparison between
CPDs and quad-trees in terms of memory efficiency is pro-
vided in the experiments section.

Many of the existing memory-based admissible heuristics
designed for pathfinding on grid maps use a pre-computation
step which has similarities with our approach. A major dif-
ference is in the way that memory bottlenecks are avoided.
In CPDs, we pre-compute full path information (i.e., enough
information to quickly retrieve optimal paths between any
two locations) and then compress the data to make it fit into
the memory. On the other hand, the information provided
by memory-based heuristics is more limited, having to be
combined with runtime search in order to compute a path.

Using one or several landmarks is a key idea in comput-
ing memory-based heuristics. In pathfinding, a landmark [
is a location with the property that distances d(I,a) from
the landmark to all other locations a on the map are avail-
able. Storing all distances d(l,a) for a fixed landmark [
requires a table of the size of the (traversable area of the)
map. Given a landmark [and two arbitrary locations a and
b, hr(a,b) = |d(l,a) —d(l,)| is an admissible heuristic for
the true distance d(a, b) (Goldberg and Harrelson 2005).

Several extensions of the Ay heuristic have been intro-
duced in recent years. For example, the so-called ALTBest
heuristic allows defining more than one landmark (Cazenave
2006). ALTBest is equal to the maximum of the heuristic es-

123

timations provided by each landmark. Relatively few land-
marks could typically be used, as each landmark requires to
store a table of the size of the map. Other related techniques,
such as the gateway heuristic (Bjornsson and Halld6rsson
20006), the canonical heuristic (Sturtevant et al. 2009), and
the portal-based heuristic (Goldenberg et al. 2010) rely on
storing perfect distance information for a subset of selected
pairs of locations on a map.

Kring, Champandard, and Samarin (2010) cache full path
information for small parts of a grid map, such as 10x10 ar-
eas called clusters. This allows to traverse a cluster between
predefined entrance points without search, but it does not
avoid the need for search at a global, map-level scale. Our
new compression technique allows us to scale the caching of
path information to full maps.

In pattern databases (PDBs) (Culberson and Schaeffer
1998), an original, very large search space is abstracted into
a smaller space that fits into the main memory and that can
be searched exhaustively. Distances in the abstract space are
cached and used as an estimator of distances in the original
state space. Differences between a PDB and a CPD can be
summarized as follows. PDBs are designed for very large
search spaces, which can’t be searched exhaustively. Typi-
cally pathfinding does not belong to this category. PDBs are
usually built for a fixed goal or set of goals and store imper-
fect distance information. CPDs store perfect information
about optimal paths between any two nodes. They work on
search spaces that can be searched exhaustively during pre-
processing, such as pathfinding maps.

In two-player board games, move tables such as opening
books and end-game databases are common enhancements
to game playing programs.

Introducing Compressed Path Databases

Similarly to Sankaranarayanan, Alborzi, and Samet (2005),
our work exploits a feature, called by these authors path co-
herence, that many search maps exhibit.

Consider we are in Montreal, Canada and want to travel
on an optimal route to San Diego, California, intersection
Broadway — 10th Avenue. Assume we have a pathfinding
system that tells, in each current location (such as a street
intersection), what move to make next (e.g., what intersec-
tion to reach next). When we are in a new current location,
the pathfinding system once again will tell what intersection
to reach next along an optimal path to the destination.

Pre-computing and storing all this information about what
move to make next would normally require huge memory
resources, as we would need one first-move record for each
pair of locations (e.g., street intersections) on the map. For-
tunately, path coherence offers a massive potential for com-
pressing the information. Consider again the previous ex-
ample. It is very likely that the first move along an optimal
path from the current location in Montreal towards any tar-
get location in San Diego is the same. Take things to a larger
scale: it could actually be the case that the first move on an
optimal path towards any destination in the USA is the same.

The example just presented suggests the following data
compression strategy, which we implement in compressed

path databases. When the first move on an optimal path from
a current location n to any target ¢ in a contiguous rectan-
gular area R is the same, we store only one move record,
corresponding to (n, R), instead of storing the same move
record many times, once for each pair (n, t). In this way, for
each current location n, the map is decomposed into a set of
rectangles. Each rectangle R has the property that the first
move from 7 on an optimal path to any target location inside
R is the same (we call these homogeneous rectangles). The
fewer such rectangles, the better the compression.

The following section describes our method in detail. The
discussion and the experiments will use grid maps, which
are very relevant to the games community, even though the
method is more generally applicable (e.g., to road maps).

Computing CPDs as Preprocessing

Algorithm 1 outlines the procedure that computes com-
pressed path databases. It iterates through all traversable
tiles n on the map. Each iteration has two steps. First, com-
pute a bi-dimensional move table T'(n), having the size of
the map. Each entry T'(n)][c, r] contains the first move on an
optimal path from tile n to the tile whose column—row coor-
dinates are (c,7).! We call this the move label (or the color)
of tile (¢, r). Computing T'(n) is performed with a slightly
modified Dijkstra algorithm. A standard Dijkstra implemen-
tation outputs the distance from the origin to any target. Our
implementation provides the first move on an optimal path
from the origin to any target.

Figure 1 shows an example of a move table on a toy map.
The white cell is the current location n. Black cells represent
obstacles. The label in a cell [is the first move on an optimal
path from n to [. For clarity, each label has its own color.

There is an important detail about breaking ties in a move
table. When two distinct moves are optimal in a given lo-
cation, we prefer the one that favours obtaining straighter
borders between clusters. Straight borders allow building
fewer rectangles in the decomposition step. For example, in
Figure 1, consider [, the NW location above the leftmost We
location. Location [could be labelled either NW or We. The
reason is that there are several optimal paths from the origin
to [, and some of the paths start with an NW move, whereas
others start with a We move. The NW label is preferred to
build a straighter cluster border.

The second step in an iteration compresses the move table
T'(n) into a list L(n) of homogeneous rectangles ordered
decreasingly according to their traversable area. We say that
a rectangle is homogeneous if all traversable tiles have the
same move label. A homogeneous rectangle may contain
blocked tiles. For each homogeneous rectangle in a list we
store both its coordinates (i.e., upper-left tile and bottom-
right tile) and the unique move label of its traversable tiles.

The rectangles in L(n) are disjoint and cover the whole
map? except for the origin tile n.

"Entries T'(n)[c, 7] corresponding to a blocked tile (c,) are
never needed, so such entries need no initialization.

“However, homogeneous rectangles with only blocked tiles (if
any) are never needed and thus they can be dropped from L(n).

124

W N N I [e N e
BRI E NE NE NE [NE
B = NE NE [NE
B~z NE [NE
B~z NE [N
Bl NE NE NE NE |
NE NE NE |NE |NE
NE NE NE |NE |NE
NE NE NE |NE |NE
INE INE NE |NE |NE
INE INE NE |NE |NE
NE NE NE [NE Il
£ NE NE nE I
£ ne e IR
E NE [NE INE NE [NE
|
|

NE N
NE N
NE N

NE

llﬂ%ﬁ%ﬁ%
lllﬁ%ﬁﬁﬁ%ﬁ%ﬁ

[|

- [| |

SW SW [[[| e
!_!_!_hhhh!_!_!_hhhhl_l

Figure 1: A move table on a toy map.

In the following sections, the coordinates of a rectangle p
are represented as (c1,r1, co,), Where ¢ is the first col-
umn that has common tiles with p, co is the last column that
has common tiles with p, r; is the first row that has common
tiles with p, o is the last row that has common tiles with p.

Algorithm 1 Building a compressed path database

for each traversable tile n do
T'(n) < Dijkstra(n)
L(n) «+ Compress(T'(n))

The compression of a move table T'(n) is a recursive pro-
cess. First, depending on the placement of the origin tile
n on the map (corner, edge, or interior tile), eight or fewer
rectangles are identified around n. In the most general case
of an interior tile n, there are one rectangle at the northwest
of n: (0,0, col(n) — 1,row(n) — 1); one narrow, width-one
rectangle at the north: (col(n),0,col(n),row(n) — 1); one
rectangle at the northeast of the origin: (col(n) + 1,0,w —
1,row(n) — 1) (where w is the map width); one narrow,
height-one rectangle at the east: (col(n) + 1,row(n),w —
1,row(n)); and so on.

The example shown in Figure 1 features three homoge-
neous rectangles after the first decomposition step: the one
at the north east, the one at the south west, and the one at
the west of the origin. All others rectangles are decomposed
further as follows.

Each non-homogeneous rectangle is decomposed further
recursively, with one or more decomposition steps, until all
rectangles are homogeneous. A decomposition step splits a
given rectangle p into two smaller rectangles p’ and p”. To
determine where to split p, the algorithm considers four op-
tions first: 1) split p vertically such that the rectangle at the
left is homogeneous, has width at least 1, and is as wide as
possible; 2) split p vertically such that the rectangle at the
right is homogeneous, has width at least 1, and is as wide

as possible; 3) split p horizontally such that the rectangle at
the top is homogeneous, has height at least 1, and is as high
as possible; 4) split p horizontally such that the rectangle at
the bottom is homogeneous, has height at least 1, and is as
high as possible. If at least one of the four options is possi-
ble, choose the one that provides the homogeneous rectangle
with the largest traversable area. Notice that, in such a case,
at least one of the two obtained rectangles, p’ and p”, is ho-
mogeneous and therefore requires no further decomposition.
On the other hand, if none of the four options is possible,
split p in two parts. If width(p) > height(p), split it with a
vertical line as evenly as possible. (If the width is odd, we
assign one extra column to the rectangle at right.) Other-
wise, split p with a horizontal line as evenly as possible.
The procedure to compress one move table outlined above
has a O(N log N) time complexity, where NV is the number
of tiles on the map. Therefore, the time complexity of build-
ing a compressed path database for a map is O(N? log N).
If desired, the preprocessing time can be reduced by per-
forming different iterations of Algorithm 1 on different pro-
cessors. Such iterations are independent from each other
and hence it is trivial to parallelize the process, obtaining a
speed-up that is linear in the number of available processors.

Runtime Pathfinding

Algorithm 2 Runtime pathfinding

z < s {initialize current location}

while z # t do
m < getMove(L(c), t) {retrieve next move info}
z + 7(z, m) {simulate move to update z}
7 < m @& m {append move to solution}

return 7

Retrieving a path at runtime is a straightforward proce-
dure. As all path information is pre-computed, no runtime
search is needed. Instead, runtime pathfinding is a simple
and fast process that retrieves path information and returns
an optimal path as a sequence of moves.

Algorithm 2 illustrates the runtime process. The current
location z is initialized to the starting position s. At each it-
eration, z moves to the next location along the optimal path,
until the target location ¢ is reached. The move to take next is
retrieved as a result of a computation that iterates through the
rectangles of the list L(z) until the rectangle p that contains
the target location ¢ is found. The move to take at location
z is precisely the move label associated with p. Checking
whether a given location ¢ belongs to a given rectangle p is
called a rectangle check. It is a constant-time operation that
compares the coordinates of ¢ with the coordinates of p.

As said earlier, ordering the list L(z) decreasingly, ac-
cording to the traversable area of each rectangle, reduces the
number of rectangle checks. Let w; be the area of rectangle

pi, normalized such that Zé:l w; = 1, where | = |L(z)].
Proposition 1 Given a list of homogeneous rectangles

L(z), and a location t that is chosen uniformly randomly,
the average number of rectangle checks necessary to detect

125

the rectangle that contains t is 22:1 iw;, where | = |L(2)|.

Proof: It is easy to see that the number of rectangle checks
can be modelled as a discrete random variable v that takes
the values 1, 2, ..., [with the probabilities wy, wo, ..., w;.

. . l .
The mean value of v is precisely >, iw;.

CPDs and Dynamic Environments

Even though this paper focuses on static environments, we
comment briefly on using CPDs in dynamically changing
environments. Here we present a strategy that combines
CPD-based pathfinding with online search. The latter is
used only when CPD paths run into (recently appeared) ob-
stacles, aiming at keeping runtime search effort low. Let
lo,l1, ...,y be a CPD-provided path. Assume that the unit
is at location [; and that location [, with b > ¢, becomes
blocked, invalidating the path. We launch an online search,
starting from [;, and stop as soon as we reach any location
l;, 7 > b. Repair the path by replacing the original /; . ..[;
segment with the new one.

Small variations of this strategy might prove worthwhile.
For example, instead of starting searching from location [;,
advance to location [;_1 and re-plan from there. Clearly,
if location [;, becomes unblocked quickly, there is no need
to repair the original path. In the case of more permanent
obstacles (e.g., a bomb destroying a bridge), incrementally
repairing a CPD is a promising idea. This is beyond the
focus of this paper, being left as future work.

Experimental Results

We have run experiments on maps obtained from the Bal-
dur’s Gate game. This frequently used benchmark contains
120 maps varying in size from 50x50 to 320x320.

After building a compressed path database for each map,
the performance is analyzed in terms of preprocessing time,
memory requirements, and the runtime speedup over con-
ventional A*. We generated for each map 100 instances with
the start and the target selected randomly in such a way that
a path exists between them. In each instance, we compare
CPD pathfinding and A* pathfinding in terms of time and
nodes. The environment is assumed to be static.

Our program is written in C++ from scratch. For
comparison, we used the A* implementation available in
the open-source HOG library (http://webdocs.cs.ualberta.ca/
“nathanst/hog.html). All tests have been run on a Linux sys-
tem with a 3.2GHz processor.

Figure 2 illustrates how the average speedup of CPDs
over A* search evolves as path cost increases. The speedup
reaches two orders of magnitude even for relatively short
paths, having a cost of 100. It increases steadily as the path
cost increases, reaching a maximum average value of 700.
Other speedups over A* previously reported in the pathfind-
ing literature are much smaller, as mentioned earlier.

The explanation for CPD’s very large speedup can be
summarized as follows. Firstly, there is the difference in
the number of processed nodes, which we present in Fig-
ure 3. CPDs require visiting only the nodes along an opti-
mal path. In contrast, in search-based methods the number

Runtine speedup
1008

speedup factor
=
5
3

[} 58 188 158 2080 258 388 350 480 458 588
Path cost

Figure 2: Average speedup of CPD over A* search

Node conparison
1e+86

CPD —+—
A% expanded ——
A= touched —¥—

188080

18888

1008

i

8 58 100 150 208 258 308 350 488 458 588
Path cost

Figure 3: Nodes

of nodes along a path is just a lower bound for the number
of searched nodes. As shown in Figure 3, the number of ex-
panded nodes in A* can be two orders of magnitude larger
than the number of nodes visited in CPD. The number of vis-
ited nodes is even larger. Secondly, the cost per node is lower
in CPDs. The only processing needed per node is iterating
through a list of rectangles until a rectangle that contains the
a given tile (the target) is found. The largest average number
of rectangle checks per node is 6.2 (computed as in Proposi-
tion 1) and corresponds to the largest map, which has more
than 50,000 traversable tiles. As mentioned earlier, order-
ing the rectangles in the list decreasingly according to their
traversable area minimizes the number of average rectangles
checks per node. On the other hand, expanding a node in A*
requires generating up to 8 successors and performing oper-
ations on a priority list (the Open list) whose complexity is
often (depending on the implementation (Cazenave 2006))
logarithmic on the size of the list.

Next we analyze the memory requirements and the com-
pression power of CPDs by comparing CPDs with uncom-
pressed path databases (UPDs). A UPD is a collection of
move tables before these are compressed into lists of rectan-
gles. UPDs can provide the next move in constant time, but

126

1008

Conpression facter

c

oen

1 ——
5
5 —H—

3
c=

38000 48008

Traversable area

[} 10008 20000 58000 [EE

Figure 4: Compression factor

their memory requirements are prohibitive for all but very
small maps or submaps. Figure 4 plots the compression fac-

tor, computed as % X ’%, which is the memory required
by a UPD divided by the memory required by a CPD. A
is the number of traversable tiles. A UPD stores A2 records,
one for each pair of traversable locations (m,n). Each UPD
record contains two moves: the first move from m to n and
the first move in the other direction. R is the number of rect-
angles contained in a CPD and c is a constant that reflects the
size difference between a UPD record and a CPD record. In
a CPD, one rectangle record stores the coordinates of the
upper-left and the bottom-right corners, and the move label
(five numbers per rectangle record). In our implementation,
we represent all data members as integers, with no attempt to
optimize the size of each record. In such a case, the constant
¢is 5/2 = 2.5. However, the record size could be optimized
as follows. We need three bits to represent each of the 8
moves possible on grid maps. When the map size doesn’t
exceed 512 x 512, we need at most 4 x 9 bits to represent
the coordinates of a rectangle. Therefore, since we would
need 3 + 3 = 6 bits for a UPD record and 3 + 36 = 39 bits
for a CPD record, the constant ¢ would be 39/6 = 6.5.

In Figure 4 we show the compression factor for three sam-
ple values of ¢: 1, 2.5 and 6.5. Even when scaled down by
the largest constant, the compression factor approaches and
even exceeds two orders of magnitude.

Figure 5 compares the number of rectangles in a CPD
and the number of square blocks in a quad-tree decom-
position. CPDs require significantly fewer decomposition
blocks. Factors that explain the differences include the fol-
lowing. CPDs decompose a move table around the origin
point of that table. As illustrated in Figure 1, with a proper
tie breaking when more than one color can be assigned to
one location, clusters tend to have straight borders around
the origin. CPDs split a rectangle in two at a time, whereas
quadtrees split a square block into four. CPDs allow arbi-
trary sizes and locations of rectangles, allowing more flexi-
bility in covering a map with a (small) set of rectangles.

For the largest map, with more than 50,000 traversable
tiles (51,586, to be precise), the CPD requires about 5 mil-

3e+07

CPD rectangles —+—
Quadtree squares ——

2.5e+07

2e+07

1.5e+07

Nr rectangles/squares

1e+07

5e+08

0 10000 20000 30000 40000

Traversable area

50000 60000

Figure 5: Number of CPD rectangles and quad-tree squares

CPD preprocessing time
1600

1400

1200

1000

800

Time in seconds

400

200

0 10000 20000 30000

Traversable area

40000 50000 60000

Figure 6: Preprocessing time needed to build CPDs

lion rectangle records. With our implementation, that does
not optimize the size of a record, 5 million times 5 integers
times 4 bytes per integer sums up to roughly 100 MB. While
far from negligeable, it fits easily into the RAM of today’s
computers. With an implementation with 39-bit (= 5-byte)
per record, the memory requirements drop to 25 MB. In con-
trast, a UPD with an optimized record size would require
about 2 GB. An unoptimized UPD would require about 20
GB, which is beyond the reach of most today’s computers.

Obviously, the memory requirements are much smaller
for smaller maps, as Figure 5 shows. For example, a map
with 9,836 traversable tiles requires a CPD with 184,034
rectangles. This sums up to about 3.6 MB even with an un-
optimized record encoding, being acceptable even for small,
mobile gaming devices. An implementation with 39-bit (=~
5-byte) records would require less than 1 MB.

Finally, Figure 6 plots the time needed to build CPDs of-
fline. The times needed to build the quat-tree decomposi-
tions are similar. The largest preprocessing time is about 40
minutes. All other maps require less than 8 minutes each.
As mentioned earlier, these times can be reduced by running
different iterations of Algorithm 1 on different CPUs.

127

Conclusion

We introduced compressed path databases (CPDs), a
pathfinding method based on pre-computing and compress-
ing all-pair shortest path data. Compared to a standard, A*-
based pathfinding system, we report an average speed-up of
up to 700 on realistic game maps from Baldur’s Gate.

We believe that CPDs open many new research directions.
Future work includes applying CPDs to more classes of
pathfinding problems, such as moving target search (Ishida
and Korf 1992). Existing multi-agent pathfinding algo-
rithms, such as MAPP (Wang and Botea 2009), could possi-
bly be combined with CPDs to reduce the runtime search ef-
forts. Our compression technique exploits redundancies in-
side individual move tables, but ignores redundancies across
different move tables. Exploiting these could result in a
further reduction of the memory requirements. In domains
where units have different sizes and terrain traversal capa-
bilities, one could start by computing one CPD for each unit
type. Then, combine all CPDs together, exploiting redun-
dancies across CPDs to reduce the memory needs.

References

Bjornsson, Y., and Halldérsson, K. 2006. Improved heuris-
tics for optimal path-finding on game maps. In AIIDE, 9-14.

Botea, A.; Miiller, M.; and Schaeffer, J. 2004. Near optimal
hierarchical path-finding. Journal of Game Dev. 1:7-28.

Cazenave, T. 2006. Optimizations of data structures, heuris-
tics and algorithms for path-finding on maps. In CIG, 27-33.

Culberson, J., and Schaeffer, J. 1998. Pattern Databases.
Computational Intelligence 14(4):318-334.

Goldberg, A. V., and Harrelson, C. 2005. Computing the
Shortest Path: A* Search Meets Graph Theory. In ACM-
SIAM Symposium on Discrete Algorithms SODA-05.

Goldenberg, M.; Felner, Ar.; Sturtevant, N.; and Schaeffer,
J. 2010. Portal-based true-distance heuristics for path find-
ing. In Symposium on Combinatorial Search, 39—45.

Harabor, D., and Botea, A. 2010. Breaking path symmetries
in 4-connected grid maps. In AIIDE-10, 33-38.

Harabor, D., and Grastien, A. 2011. Online graph pruning
for pathfinding on grid maps. In AAAI-11.

Ishida, T., and Korf, R. E. 1992. Moving Target Search. In
1JCAI, 204-210.

Kring, A.; Champandard, A. J.; and Samarin, N. 2010.
DHPA* and SHPA*: Efficient Hierarchical Pathfinding in
Dynamic and Static Game Worlds. In AIIDE-10, 39-44.
Sankaranarayanan, J.; Alborzi, H.; and Samet, H. 2005. Ef-
ficient query processing on spatial networks. In ACM work-
shop on Geographic information systems, 200-2009.
Sturtevant, N., and Buro, M. 2005. Partial Pathfinding Using
Map Abstraction and Refinement. In AAAI 47-52.
Sturtevant, N. R.; Felner, A.; Barrer, M.; Schaeffer, J.; and
Burch, N. 2009. Memory-based heuristics for explicit state
spaces. In Proceedings of IJCAI, 609-614.

Wang, K.-H. C., and Botea, A. 2009. Tractable Multi-Agent
Path Planning on Grid Maps. In IJCAI, 1870-1875.

