
AI for Massive Multiplayer Online Strategy Games

Alexandre Barata, Pedro A. Santos, and Rui Prada
Instituto Superior Tecnico, Technical University of Lisbon, INESC-ID, Lisboa, Portugal.

Abstract

Massive Multiplayer Online Strategy games present several
unique challenges to players and designers. There is the need
to constantly adapt to changes in the game itself and, some-
times, the need to achieve a certain level of simulation and
realism, which typically implies battles involving combat
with several distinct armies, combat phases and diferent ter-
rains; resource management which involves buying and sell-
ing goods and combining lots of diferent kinds of resources to
fund the player’s nation and cutthroat diplomacy which dic-
tates the pace of the game. However, these constant changes
and simulation mechanisms make a game harder to play, in-
creasing the amount of effort required to play it properly. As
some of these games take months to be played, players who
become inactive have a negative impact on the game. This
work pretends to demonstrate how to create versatile agents
for playing Massive Multiplayer Online Turn Based Strategy
Games, while keeping close attention to their playing per-
formance. In a test to measure this performance the results
showed similar survival performance between humans and
AIs.

Introduction
Game AI can take several forms and purposes. Sometimes
game AI’s purpose is purely to advise the player (e.g. SimC-
ity 4’s advisors), sometimes its purpose is to allow the play-
ers to focus on high-level strategy by automating lower-level
tasks (e.g. game pathfinding), and sometimes its purpose is
to challenge players (the AI-controlled rival nations in the
CivilizationTMseries). Good AI is particularly important in
single player games, where it must provide adequate chal-
lenges to the player all by itself. However, even in multi-
player games, AI can play a major role in solving specific
problems as this work will try to show.

The main goal of this work was to create AI capa-
ble of playing in the complex Massive Multiplayer On-
line Turn-Based Strategy Game (henceforth referred to as
MMOTBSG) world of Almansur. As a MMO, Almansur is
a game in constant change, and like many other games of its
specific genre, it has a problem with inactive players. Before
the AI player was implemented, these were treated exactly

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

like active players. Due to Almansur’s conquest based game-
play, however, active players near inactive players could eas-
ily take their territories without a fight, earning an unfair ad-
vantage for the rest of the game.

This problem results from MMOTBSG matches taking
a very long time to be completed (typically more than 1
month) and is especially hard to solve in games with realis-
tic space representation (?) worlds such as Almansur. Thus,
an essential objective of this work is having the created AI
play better than an inactive player.

Due to Almansur’s design as a historical simulation game,
removing an inactive player from a match is not possible
as that would imply removing an active part of the world
from the match and ruin the intended realism. Matches that
can take days or months to complete are very likely to have
some players going inactive as their time available to play
changes. Although these players are no longer playing the
game, their territories and resources are still represented in
the world and can be plundered at will.

The creation of an AI player to replace inactive players
could also allow Almansur to be played in single player
mode, and allow mixed matches where several humans and
AIs compete. To accomplish this work’s objectives, using
artificial agents was a very interesting prospect: it is natural
to classify players as game agents (?). Thus, the key capabil-
ity needed by these agents in order to succeed is the ability
to plan and execute short and long term game strategies and
tatics in a dynamic way that can adapt to constant changes
in the game itself.

Related Work
To the authors’ knowledge, there is a lack of AI developed
for MMOTBSGs. This is due to a few factors:

• MMOTBSGs tend to be resource hogs, with severe scal-
ability issues due to the massive amount of players per
game, which tends to limit the amount of players that can
play at the same time. If there is no space for all the hu-
mans who want to play, why even consider AI?

• MMOTBSGs tend to emphasize interaction between the
players, with resource trading, teamwork and communi-
cation being major factors, which would make the re-
quired AI either too complex or ineffective at its job.

110

Proceedings of the Seventh AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment



• Inactive players are generally not too much of an issue
in most MMOTBSGs (because most do not have realistic
space representation), they are a part of the game instead
and help newer players in their early play while not being
major factors in the mid/late game.

Thus, due to lack of previous related work, the authors
have instead focused on analyzing a non-MMO TBSG with
good AI: Civilization IV (abbreviated CivIV). Unlike Al-
mansur, however, CivIV focuses on the single player facet
of the game with a secondary multiplayer component for up
to eighteen players. Single player is possible due to Civ’s
AI opponents. The AI can also help the player manage low
level tasks by assigning workers to the best available tiles for
example and several advisors for each facet of the game are
present. Civ IV’s AI is soft-coded, uses fuzzy logic (?) and
cheats in order to achieve its ultimate goal: to be fun (?).

The inactive player problem is easily solved in CivIV by
using the AI. Whenever a player leaves the game the other
players are prompted to vote over whether to wait for him to
return, to save the game until that player returns or to simply
replace him with an AI player. Players joining a game can
take over previously AI-controlled nations as well. CivIV
players can also focus on high level tasks by delegating low
level tasks to the AI.

Although CivIV’s AI has solved a lot of problems for the
game, it cannot be easily adapted to Almansur as CivIV is
not a MMO game in constant evolution, and thus its develop-
ers scripted much of the race/resource/facility specific deci-
sions, making the hard task of adapting a game AI to another
game even harder (?).

As these factors are in constant change in Almansur (new
races/resources/facilities can be added or removed at any
time), the AI is required to not rely on scripting and rather
do a more versatile approach able to adapt on the fly. It was
also the desire of this paper’s authors to have a non-cheating
AI, which invalidates CivIV’s approach to difficulty levels
where harder difficulties use cheating AI.

Almansur
Almansur is a browser MMOTBSG in a medieval-like world
that combines empire-building, turn-based gameplay with
the defining MMOG characteristic of allowing hundreds of
players to play simultaneously (?). In a single game there are
many independent Lands of different races, each controlled
by a single player.

Victory comes through the completion of several differ-
ent game objectives. In order to achieve these objectives, the
players improve their territories by building / upgrading fa-
cilities on them, by recruiting / training armies to defend
their Land and attack others, and by creating alliances be-
tween themselves through diplomacy.

In order to understand how to implement an AI player ca-
pable of playing MMOTBSGs, the authors have identified
several independent game facets in this genre, and in Al-
mansur in particular:

• Economy : The economy facet is a part of all strategy
games where players need to build their own facilities in
order to receive resources and create armies. The more

units/facilities/resources/technologies there are in a game,
the more complex its economic system usually is.

• Military : Last but not least, Military exists in any strategy
game where there is the notion of armies and their com-
posing units. Different strategy games have completely
different styles of military control that a player must mas-
ter in order to win. Even so, the path to victory is very
influenced by military control and as such this is perhaps
the hardest facet to master in such games.

Playing Almansur implies playing all the facets described
above at the same time and while they can be treated as
mostly independant entities (?), all affect the performance of
the player in a very significant, unique fashion. Almansur’s
environment can be classified (?; ?) as inaccessible, deter-
ministic, dynamic and (partially) discrete, which makes it a
very complex environment to design AI for.

Furthermore, the nature of the interaction between the AI
and its environment is quite complex as well, as the AI has
the same knowledge access as human players, using the ex-
act same interface as these to access and modify the game.
Finally, the AI needs to be able to adapt itself to modifi-
cations in the game without requiring code changes, as it
represents an independent system.

Given the points presented above, the objective of solv-
ing the inactive player problem and the need to somehow
simplify the huge task that is playing Almansur in all of its
facets while keeping the AI as dynamic as possible, it was
concluded that the AI needed two main competences in or-
der to succeed in this environment, which are presented be-
low:

• Strategic Competence - Ability to do long-term strategic
thinking, for example “What goals should I create for the
current turn?”.

• Tactical Competence - Ability to do short-term strategic
thinking, for example “How to complete all the conquer
goals for the turn with my current armies?”.

Agent Architecture

Figure 1: The AI Player’s Architecture

As seen in Figure ??, the AI was implemented by three
distinct agents: the strategy, economy and military agents.
To interact with the game engine, a specific module named
AIController was created. This module is responsible for

111



collecting the information the agents will need to plan,
which is stored in their specific state, and for converting
agent’s plans into game actions. In order for each agent to
play, while being as dynamic and resilient to game changes
as possible, a custom search-based planning system (?) was
created, which uses agent-specific goals and operators as
well as the state information to plan out the best perceived
course of action for the turn.

Strategy Agent
The strategy agent is responsible for the AI’s high level
strategic decisions, which take the form of goals for the other
agents (?). This agent’s state contains information about the
Land’s map territories, about the Land’s resource produc-
tion levels and about whether the AI’s Land is at war with
other players or not and uses this information to decide on
which goals to set for the Military and Economic agents.
Economic goals can be of two kinds: resource goals and pro-
duction goals. Resource goals are achieved when the Land
stockpiles a certain amount of resources of a kind while pro-
duction goals require the Land to stockpile a certain amount
of production per turn of the desired resource.

Military goals can be of three kinds: army size goals, fa-
cility goals and conquer goals. Army size goals are achieved
when the Land’s armies cost a certain percentage of the
Land’s income to maintain and the Land’s fortresses have
a certain amount of troops guarding them, facility goals are
achieved when the Land upgrades its secure (in a territory
with fortress) military facilities up to a certain level and con-
quer goals are achieved when the Land conquers a certain
territory.

The strategy agent was implemented by a simple decision
tree following interviews with expert human players. When
at war, production goals are cancelled, resource goals for
resources required to recruit troops are created / increased,
army size and facility goals are increased and conquer goals
prefer to target enemy territories, if possible. When at peace
production goals are set to increase the overall production
of the Land with focus on the most important resources,
resource goals are set in order to ensure there are always
reserve resources available to upgrade facilities / recruit in
case of sudden war, army size and facility goals are de-
creased and conquer goals only target uncontrolled territo-
ries.

Economy Agent
The economy agent is responsible for solving the economic
goals. This agent’s state contains the AI’s Land economic
details: how much resources the Land has, which resource-
producing facilities exist and how much they produce, the
income of each resource, the upkeep of each resource, how
many resources of each kind are avaliable on the market and
their price.

Using this information and the economic goals for the turn
this agent is able to determine how to best satisfy them given
the Land’s current economic situation.

The initial node of the economic planning system is the
state of the current turn. To create successors for the search,

the AI applies several operators to this state: tries to up-
grade every resource-producing facility the Land has, tries
to buy all market resources available, tries to sell all mar-
ket resources avaliable and tries to pass the current turn (and
thus, predict how the game will change into the next turn,
in the economic view of resource production and consump-
tion). The pass turn operator is especially interesting, as it
allows the AI to understand the result of its actions over time
before it commits to them.

Since all of the operators described above have argu-
ments, some of which with continuous ranges such as the
market related ones, the total amount of possible operators
that can be applied each turn is huge. Considering that the
pass turn operator allows all other operators to be used again,
in the context of the new turn, the total search space is too
large to search blindly. Therefore, in order to reach a com-
promise between playing quality and software performance,
finding a way to prune the search graph and guide the plan-
ner’s search was a requirement.

The market operators’ arguments were restricted to very
limited ranges: instead of trying to trade many different
amounts of resources at the market, the AI tries to trade as
much resources in a single operation as possible given the
resources available both in the market and on the Land. In
order to guide the search, a system based on both the concept
of heuristic (estimated distance to a goal from the current
state) and cost to get to the current state so far was imple-
mented:

The heuristic function used by this agent to evaluate how
far a certain state s is from a certain goal is slightly different
for production goals pG and resource goals rG. The produc-
tion goal heuristic formula is:

h(pG,s) = ∑
r in pG

(oP(r)− f P(r))∗mP(s,r) (1)

• r represents the resource for which the agent has a pro-
duction goal pG.

• oP(r) is the objective production amount of resource set
by the production goal pG.

• fP(r) is state s’s future production of resource - that is, the
production the AI’s Land will have when all upgrading
facilities complete.

• mP(s,r) is state s’s market price of resource for the AI’s
Land.
The resource goal heuristic formula is:

h(rG,s) = ∑
r in rG

oR(r)− cR(r)
f P(r)

∗mP(s,r) (2)

• r represents the resource for which the agent has a re-
source goal rG.

• oR(r) is the objective resource amount set by the resource
goal rG.

• cR(r) is the current amount of resource for the AI’s Land.
Using these heuristic functions, nodes with smaller

heuristic values are preferred. One important thing to note
which is not represented in the equations is that if the result

112



of oP(r)− f P(r) or oR(r)− cR(r) is negative, it is set it to
0 instead in order to avoid giving value to overcompleting
a goal, which was proven by testing to cause the planner to
prefer overcompleting single goals rather than completing
all goals equally.

As cost, the turn number works well since faster is better
in Almansur when all goals are achieved:

c(s) = t(s) (3)

• t(s) is state s’s turn number.
These two values work well together for guiding the eco-

nomic agent to its current goals. However, there are typically
many different ways to reach these goals, resulting in differ-
ent final states - a final state might be reached which has
more overall resources than another, yet both reached the
proposed goals on the same turn, for instance. In these situ-
ations, we use the state evaluation function sEval described
below to decide what state is, overall, the best:

sEval(g,s) = (tA(g,s)− iP∗δ(turn))∗0.98δ(turn) (4)

• tA(g,s) represents the totalAssets of the Land for the
state’s turn, which are given by:

tA(g,s) = ∑
resource

(a(s)+ pA(s))∗mP(s)∗gC(g) (5)

– resource represents each of the resource types available
to the AI’s Land.

– a(s) is the amount of resource in the Land’s coffers for
the state’s turn.

– pA(s) is the amount of resource produced every turn by
the Land for the state’s turn.

– mP(s) is the state’s market price of resource for the AI’s
Land

– gC(g) represents how much the Land currently requires
a particular resource type. These values depend on the
Land’s goals: if there is a goal for resource its value is
5, if there is no goal for resource its value is 1. These
values were throughly tested in order to ensure that goal
resources have priority, but not so much priority that all
other resources would be recklessly sacrificed in order
to obtain them. Having a bigger range of values for this
variable would be useful in order to create a better bal-
ance when there are several competing resource goals
with different priorities but this wasn’t implemented
due to lack of time to properly test its implications.

• iP represents the initialProduction of the Land, which
represents the productionAssets of the turn where eco-
nomic planning started.

• δ(turn) represents the amount of turns which have passed
in the current plan state since the economic planning
started.
0.98δ(turn) represents the penalty awarded to the sEval

value for passing a turn, which favours exploring the nodes
which achieve better results in the least amount of turns.

When completing all economic goals takes too long (more
than 2 seconds), the planner returns the best plan found dur-
ing the search. In nearly 100% of the cases this is a plan

with actions that extend over the current turn, and thus effec-
tively a complete plan for the current turn already. Each turn
the economic agent creates a new plan, as in most cases the
economic situation changes significantively as territories are
lost / conquered and it would be more complicated to adjust
the old plan than to create a new one, based on the current
turn.

Military Agent
The military agent is responsible for the details of war. This
agent’s state contains the AI’s Land military details: which
armies are on the map, where they are, what orders they cur-
rently have, how much experience they have, what kind of
troops they have, how much status (army characteristic that
determines how rested it currently is) they have, which mil-
itary facilities exist, the map itself and by which types of
territories it is composed, how many resources are available
for military use, how many resources the Land is paying in
upkeep to supply its armies, how many of these resources
are being produced and how many days and turns (a turn is
typically 30 days) have passed since the start of the game.

This information is then compilated into influence maps
which give a quick overview of the field when decisions
are required (?). Using the influence maps and the strategy
agent’s goals for the turn this agent is able to determine how
to best satisfy them given the game’s observable military sit-
uation.

The initial node of the military planning system is the
state of the current turn, similar to how the economic agent
works. However, in the military agent’s case, the huge search
space problem is solved by three sub-agents whose decisions
combined make for a complete military plan:

• The Military Facility Agent is responsible for building a
military infrastructure and, depending on whether the AI
is at war with other players or not, to upgrade this infras-
tructure to the required levels for optimal army recruit-
ment options. The military facilities are only built / up-
graded at territories with a fortress in them in order to en-
sure their safety from enemy attacks. The decision process
for upgrading the military facilities is simple and does not
involve search: if the ironworks is below the required level
and can be upgraded (resources are available and the fa-
cility is not in the process of being upgraded already), up-
grade it, then do the same for the recruitment center.

• The Military Recruitment Agent is responsible for using
the AI’s resources to recruit military units, creating bal-
anced, strong armies to attack the AI’s enemies and dy-
namically filling Fortress’ garrisons using the influence
maps to guide whether there is danger nearby and, thus,
more resources should be devoted to defense or no dan-
ger is present and a token garrison is enough. Armies
are preferably recruited at the territory with best mili-
tary facilities, in order to make these armies as efficient
as possible. Recruitment requires resources, proportional
to which troops and how many are being recruited. This
means that, like the decision to trade at the market on the
economic agent, there are nearly infinite combinations of
army compositions and amounts possible. Thus, as the

113



game is designed to favour balanced armies, the authors
opted for creating army templates, and to recruit the max-
imum amount of troops that resources allow, as long as
this recruitment doesn’t take the Land’s upkeep above its
production. As armies are not worth much without train-
ing, they are kept at training order after recruitment, until
they are experienced enough to be used in combat.

• Finally, the Military Command Agent is responsible for
directly controlling the existing trained armies. In order
to determine which armies should conquer which terri-
tories and on what order, a scheduling system was imple-
mented which roughly estimates how much time - in game
days, not turns, as most armies can conquer several terri-
tories on a single turn - a given army will take to accom-
plish a particular order. In this system, to determine how
long it will take to conquer a territory simple pathfind-
ing (which takes the characteristics of the terrain into ac-
count) is used to estimate the amount of time the army
will need to reach that territory using standard speed and
then estimate the amount of time the army will need to ac-
tually conquer the territory using a simple formula avail-
able on the game’s wiki. The military planner uses two
operators: one that represents sending an army to conquer
a certain territory, which creates a scheduled event which
keeps that army from being able to be sent anywhere else
while conquering that territory and one operator which,
much like the pass turn operator on the economic planner,
advances time up to the closest scheduled event creating
a new state where at least one army is able to move again
(as it has completed its previous orders) and updating ter-
ritory control, since territories will change ownership as
they are conquered. A problem with this system, however,
is that the larger the amount of armies that must be man-
aged at the same time, the more time this planner’s search
takes. Due to way the game works, larger armies conquer
things faster than smaller ones, up to the point where hav-
ing armies smaller than a certain amount is simply useless
when trying to conquer territories as they take too long to
do it. Thus, to solve this problem two very simple solu-
tions were implemented, based on expert play:

– Armies which start a turn in the same territory are
merged into a single, more powerful, combined army.

– Armies with less than a critical mass amount of troops
are sent back to the AI Land’s main recruitment terri-
tory in order to be merged with armies who are training
there.

The military agent was split into these three sub-agents in
order to both simplify the military agent’s planning, which
would be quite complex otherwise and because it was a deci-
sion which made sense, as each of these three sub-tasks are
mostly independent from each other and, thus, could easily
be split without harming the AI’s play quality.

Results
The previous section described how each of the essential
tasks to play in a MMOTBSG game was implemented in
the Almansur AI by means of specialized agents. All of the

agents combined are able to play the economic and military
sides of Almansur. In this section empirical results are pro-
vided that show that the AI was, indeed, successful at pro-
viding a suitable replacement for inactive players, while also
being able to play a full Almansur game.

The AI was tested on a historical scenario based on the
map of France in the 12th century. There were 15 human
players who had previous experience in the game and 17
AI-controlled players. The game took a month to complete,
with one turn processing every day except weekends for a
total of 30 turns. While conducting the tests, the following
results for AI / Human territory control were obtained:

Turn AIs Humans
0 7.53 8.33
11 8.00 7.80
13 8.05 7.73
18 7.53 8.33
30 7.41 8.47

Table 1: Average AI / Human territories by turn

What the results in this table point out is that, around
turn 11/13 at least, AI players are actually controlling more
territories on average than the human players. However, as
the game progresses the human players recovered by having
better coordination and military control of their armies than
AI’s.

When deciding which production facilities to upgrade, ex-
pert human players consider their cost-effectiveness, that is,
the amount of resources and time it takes to upgrade it com-
pared to the amount of extra resources produced. The AI
does the same, upgrading facilities with higher suitability
further than it upgrades facilities with low suitability, while
not neglecting to upgrade these when the cost of upgrading
the best suitability facilities becomes high enough.

Also the AI, like a human player, comes to the help of
its allies when they are attacked, as alliance war declares
war for all of its members, thus creating an enemy for the
AI player. In case that is the closest enemy to the AI, its
armies will be moved to its ally’s battlefield, helping out in
the war. In case the AI was already being attacked, it will try
to defend itself and counter-attack the closest enemy first,
which makes sense from expert human perspective.

Finally, the following results for AI/Human player final
victory points (abbreviated VPs) were also calculated (the
initial VPs for each Land was subtracted from the end VPs
as each Land starts with a different amount):

AIs Humans
VPs 711797 773809

σ 348651 645071

Table 2: Average AI / Human VPs for the game and its σ

As the above table shows, the average VPs of AI’s and
Humans was close, with the humans having a slight lead.
It also also very interesting to note that the variance σ of
human players was much higher than that of AI players. The

114



reason this happened was because, while the test game was
played by experienced human players, some went inactive
for several turns, thus leading to very different performances
between the human players, while all AI’s played the same
way, with the only difference being how the other players
interacted with them and their positions in the map. Thus,
one conclusion from these statistics is that the AI is capable
of holding its own against experienced players.

Conclusion and Future Work
This paper presented the implementation of a MMOTBSG
playing AI, able to replace an inactive player at any
moment’s notice (it should be noted that the details of
when/why a player is deemed inactive and replaced by the
AI are beyond the scope of this work) and play a full game.

The reason this was possible was because the authors
managed to identify and separate different aspects of the
game, which when considered all at once would create im-
possibly large search graphs, yet can be solved individually
in a relatively short time, leading to local solutions to partic-
ular problems.

The AI architecture using multiple agents also has the
advantage of being easily expanded and modified, as each
agent is easily modified on its own, without any risk of
changes affecting other agents. Still, there were several hard
decisions to make while creating the AI system presented in
this paper.

One of them was deciding whether to separate the market
planning from the facility planning. Doing so would speed
up both processes considerably, however it was eventually
decided to keep them together as there were many situa-
tions where buying / selling resources at the market was a
prerequisite for upgrading facilities due to lack of key re-
sources, and the option of aiming for predetermined amounts
of resources when market trading was considered too static.
There are many other things which can be improved in the
future such as:

• Improving army control in the Military Agent’s Command
sub-agent by adding different army profiles such as distin-
guishing between infantry and cavalry and different kinds
of armies such as melee heavy or ranged heavy, which
would help determine better army compositions depend-
ing on the existing battlefields.

• Expand the Strategy Agent’s decision tree by adding war
preparation to the existing peace and war nodes, which
would prepare the AI’s Land for war and declare it after
a few turns, which would help make the transition from
peace to war smoother and allow the AI to take the inicia-
tive rather than simply reacting when attacked.

• More widespread influence map usage in all agents, rather
than only the Military Agent, which could be useful in or-
der to avoid having the Economy Agent building impor-
tant facilities in dangerous territories and help the Strategy
Agent decide which territories to focus on each turn.

A future application of the AI would be game scenario
balancing, as the AI can play a very large amount of turns in
a short time, and all AI controlled Lands play at the same

skill level. These two characteristics allow for extensive,
yet inexpensive, scenario testing where the major factors of
Land success are imbalances in the map itself.

It would also be interesting to create AI advisors in the
future based on this work, supporting players that wish to be
helped with strategies and tactics. Finally, it should be noted
that the version of Almansur that includes this paper’s AI
system will be launched very soon, allowing for extensive
testing with a vast amount of players.

Acknowledgments
This work was partially supported by FCT (INESC-ID mul-
tiannual funding) through the PIDDAC Program funds.

References
AlmansurLDA. 2007. Almansur. URL:
http://www.almansur.net/.
Champandard, A. 2003. AI Game Development. New Rid-
ers.
Dill, K., and Papp, D. 2005. A Goal-Based Architecture for
Opposing Player AI. Artificial Intelligence and Interactive
Digital Entertainment Conference.
Johnson, S. 2008. Playing to lose: AI and civilization. Game
Developer Conference.
Jones, J.; Parnin, C.; Sinharoy, A.; Rugaber, S.; and Goel,
A. 2009. Adapting game-playing agents to game require-
ments. Proceedings of the Fifth Artificial Intelligence for
Interactive Digital Entertainment Conference.
MCCoy, J., and Mateas, M. 2008. An Integrated Agent for
Playing Real-Time Strategy Games. Twenty-Third AAAI
Conference on Artificial Intelligence.
Pottinger, D. 2000. Terrain Analysis in Realtime Strategy
Games. Computer Game Developer Conference.
Russell, S., and Norvig, P. 2002. Artificial Intelligence: A
Modern Approach - Second Edition. Prentice Hall.
Santos, P. 2007. MMOSG gameplay characteristics. URL:
http://thoughtsongames.blogspot.com/2007/07/mmosgs-
gameplay-characteristics-part-2.html.
Wooldridge, M. 2009. An Introduction to MultiAgent Sys-
tems - Second Edition. John Wiley & Sons.
Wray, R.; Lent, M.; Beard, J.; and Brobst, P. 2005. The de-
sign space of control options for AIs in computer games.
Proceedings of the 2005 IJCAI Workshop on Reasoning,
Representation, and Learning in Computer Games.

115




