
Behavior Learning-Based Testing of Starcraft Competition Entries

Michael Blackadar and Jörg Denzinger
Department of Computer Science

University of Calgary, Canada

Abstract

In this paper, we apply the idea of testing games by
learning interactions with them that cause unwanted be-
havior of the game to test the competition entries for
some of the scenarios of the 2010 StarCraft AI com-
petition. By extending the previously published macro
action concept to include macro action sequences for in-
dividual game units, by adjusting the concept to the real-
time requirements of StarCraft, and by using macros
involving specific abilities of game units, our testing
system was able to find either weaknesses or system
crashes for all of the competition entries of the chosen
scenarios. Additionally, by requiring a minimal margin
with respect to surviving units, we were able to clearly
identify the weaknesses of the tested AIs.

Introduction

Testing of games has always been a crucial and very costly
part of the game development process. While using conven-
tional testing methods from SE might be sufficient to test
components of a game like the graphics engine, the physics
engine or sound, other components like the game AI and the
interactions between components require other additional
testing. This is done by human test players that have to be
rather good at playing games finding unwanted behavior. In
addition, the improvements in game AIs over the last decade
make this testing more and more difficult, due to the in-
creased abilities of these AIs and the consequently increased
risks for AI misbehaviors.

Automating at least some of the kinds of tests human
testers currently have to do would not only reduce the costs
due to game testing, it would also eliminate the chances for
a “bad day” that human testers have. Recently, the use of
machine learning as the means to automate testing of games
and especially the game AIs has been suggested (see, for ex-
ample, (Chan et al. 2004) or (Xiao et al. 2005)). The method
from (Chan et al. 2004) was refined and improved in (Chan
et al. 2005) and (Atalla and Denzinger 2009) to deal with
more complex game situations and another game genre. The
other game genre was Real-time Strategy games (RTS) that
require game AIs to control a number of units and the infras-
tructure that supports those units, with the goal of battling

Copyright c© 2011, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

and destroying units and infrastructure of the opponent(s).
With games like the Warcraft series, or the StarCraft series,
RTS games represent a sizable market segment and therefore
have drawn the attention of a lot of researchers as evidenced
by two competitions, namely the ORTS competitions (see
(Buro 2007)) and recently the StarCraft AI player competi-
tion (see (Weber 2010)). (Atalla and Denzinger 2009) used
the ORTS competition and AIs developed for this compe-
tition as the application area for the learning based testing
concept and showed the need for so-called macro actions to
deal with the complexity of having to test AIs controlling
groups of units (and the learner having to come up with co-
operative behaviors for groups of agents).

In this paper, we extend the method from (Atalla and
Denzinger 2009) to deal with testing AIs developed for the
StarCraft 2010 competition (respectively the first two tour-
naments of this competition that deal with battles between
groups of units). The new challenges we had to face with
this competition were a game interface that is not turn-based
(in contrast to ORTS), the need for more types of macros
than the cooperation macros, dealing with different types of
units in the same type of tournament scenario and sometimes
having to find wins by some margin of units to be able to re-
ally see the problematic behavior in the tested AI player. Our
solutions to these challenges are heavily based on the macro
concept and on how we represent and interpret a strategy for
the units controlled by the learner. It should be noted that
for testing competition AIs, the main goal is obviously find-
ing weaknesses in them to fix these weaknesses. For testing
game AIs intended to create interesting game experiences
for human players, human testers will have to decide if a
found weakness should be fixed or not.

In our experimental evaluation, our testing system was
able to either crash or defeat all of the competition AIs from
the first two tournaments of the 2010 StarCraft competition
by a margin sufficient enough to show off a weakness. This
included beating the winner of the most complex scenario
losing only 4 of the 28 units.

Testing by learning behavior

In this section, we present the general idea of testing sys-
tems by learning behavior, as first introduced in (Chan
et al. 2004), using an evolutionary learner and also how
this idea was extended in (Atalla and Denzinger 2009).

116

Proceedings of the Seventh AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment



When testing a system or multi-agent system Atested =
{Agtested,1,...,Agtested,m} that acts in a given environment
Env, the tester takes over control of his/her own group of
agents Aattack = {Agattack,1,...,Agattack,n} and tries to create
behaviors for the agents in Aattack that result in the agents in
Atested showing an unwanted behavior. We see this even for
a human tester as a learning process that can be automated
using a machine learner.

More precisely, our learner creates an attack strategy for
testing of Atested by creating for each Agattack,i a sequence of
actions (ai,1,...,ai,l), where each ai, j ∈ Actattack,i for the set of
possible actions Actattack,i of Agattack,i. The attack strategy
is then evaluated by having the attack agents execute their
particular action sequences in Env together with the agents
of Atested . The result of this evaluation is a trace e0,e1,...,ex of
environmental states that the learner uses to determine how
good the attack strategy is.

While in theory every learner that can produce sequences
of actions for all attack agents can be used for this approach
to behavior testing, we found evolutionary learners very use-
ful for this task, since they mimic rather closely how hu-
man testers approach the problem. Our evolutionary learner
works on individuals as described above, i.e. a vector of ac-
tion sequences ((a1,1,...,a1,l),...,(an,1,...,an,l)) that forms an
attack strategy. An individual’s fitness is evaluated by mea-
suring the environmental trace produced by the individual.

In (Atalla and Denzinger 2009), the agents in Aattack are
allowed to interpret an action according to the environmen-
tal state e j (with j ≤= x) that the agent is currently ob-
serving. Additionally, (Atalla and Denzinger 2009) extended
each of the sets Actattack,i by a set Actmacro, i.e. Actnew

attack,i =
Actattack,i∪Actmacro, Actattack,i∩Actmacro = /0, and each agent
Agattack,i itself is extended by some internal data fields Dati
for memory and a decision function fAgattack,i : Actnew

attack,1 ×
...×Actnew

attack,n ×Env×Dati → Actattack,i to determine what
“normal” action or sequence of “normal” actions it is tak-
ing during a fitness evaluation run. Dati contains two vari-
ables, namely an element ai ∈ Actmacro ∪{⊥} that contains
the macro action the agent is currently working on (respec-
tively ⊥ if the agent is not involved in such an action at the
moment) and an element ki ∈ IN that indicates how many
“steps” to do are left in the action sequence that implements
the macro action in ai. We will extend this agent definition
once more in the next section.

The general scheme for computing the fitness f it of an
individual given the environment states it produced is

f it((e0,...,ex)) =

{ j, if Gtest ((e0,...,e j)) = true and
Gtest ((e0,...,ei)) = false for all i < j

∑x
i=1 near goal((e0,...,ei)), else.

Here, Gtest is a predicate that evaluates to true, if the environ-
mental states e0,...,e j showed the unwanted behavior we are
testing for. And near goal will measure how near its argu-
ment trace comes to fulfilling Gtest for the particular system
and application that is tested.

In an evolutionary learner, a set of individuals forms a so-
called generation. After each individual in a generation is
evaluated and has a fitness value, new individuals are gener-
ated using genetic operators. For vectors of sequences, there

are several variants of the two standard classes of operators,
namely mutation and crossover, known in the literature. As
in (Atalla and Denzinger 2009), we added so-called targeted
variants of these operators that use the computation of f it for
an individual to identify positions in the action sequences of
individuals, where the near goal-values heavily drop. This
indicates that one or several agents did perform bad actions
and therefore the genetic operators should target the few po-
sitions before that position to try to create individuals that
do better than the old individuals.

Testing Starcraft AI players

In this section, we first briefly introduce the StarCraft game
and the competition setting used in (Weber 2010). Then we
present our extensions/instantiations of the testing method
from the last section to test AI players for the competition.

StarCraft

Starcraft is an RTS game where each player is in control of
a number of agents (units). In a typical game, the goal of
each player is to destroy the other players’ buildings. Units
have different types and abilities, so the player must know
how to use these appropriately. Each unit has different at-
tack capabilites, such as only being able to attack in close
range, or only being able to attack ground units from the
air. These units also have abilites such as cloaking, which
hides the unit until detected by a special enemy unit, or the
ability to heal friendly units. Exploiting weaknesses of the
opposing player by using the best units and abilities for the
situation is part of the skill involved while playing. At the
beginning of a complete game, each player has a number of
worker units, a base which can produce more workers, and
nearby resources. The player must harvest these resources
using the workers, and use the workers to create structures.
These structures are what allows for the creation of new
units. In this way, each player creates an army which fights
with the opponent anywhere on the map. For our testing, we
concentrate on battles between groups of units only, which
is also the setting of the first 2 tournaments in the AI player
competition.

For the StarCraft competition, the competition AIs in-
teracted with the game using the bwapi API (see (BWAPI
2010)). Given that StarCraft is a commercial product and
that therefore it is not possible to easily change the source
code of it, bwapi needs to emulate a human user interacting
with the game, which essentially means that it sends mouse
positions, mouse button events and keyboard events to the
game. In return, bwapi sends back the game state as it can
be constructed from what the game presents to the human
player, which contains the positions of the units and their
current health. In order to realize the real-time aspect of the
game, bwapi interacts with the game via 24 frames per sec-
ond, which theoretically allows for a game AI to influence
its units much more than a human player could. It should
also be noted that the game itself already provides each unit
with a rather simple control AI, that lets a unit react to some
events in its immediate neighborhood in cases when the unit
is not following explicit commands from the (human or AI)

117



player. This essentially results in the unit defending itself
when attacked by either counterattacking or running away.

Instantiating the testing approach

In order to apply the testing approach from the last sec-
tion to StarCraft AIs, we needed to extend the macro con-
cept from (Atalla and Denzinger 2009) to on the one hand
side deal with the bwapi API and also to allow for a more
selective way how macros influence the game units (i.e.
the Agattack,is). In order to evaluate the different kinds of
macros, we created 3 variants of our testing system: variant
one, the basic variant, is not using any macros, variant two
only uses macros that influence single units (macros that did
not exist for ORTS) and variant three adds to variant two co-
operation macros, i.e. macros that influence several units at
the same time.

More precisely, an agent Agattack,is in Aattack can choose
its possible actions from the union of three sets, Actattack,i,
Actindmacro,i and Actcoordmac,i with empty intersection sets.
Actattack,i contains actions that move the agent a given dis-
tance to either the north, east, south, or west and that allow
it to attack either the closest or weakest enemy unit in range.

Actindmacro,i contains two attack macros that either attack
the closest unit of the enemy or the weakest unit (as known
to the testing system). In contrast to the attack actions in
Actattack,i, these macros will first move near enough to the
particular unit to get it in range before they then perform
the attack. If the enemy has different types of units, we have
these two macro actions for each possible type. For the unit
type medic, we also have the heal macro that causes the
medic to find the weakest other unit, move towards it and
heal it, while also healing any other own units on the way.

Actcoordmac,i contains macro actions that involve several
attack agents and that coordinate the efforts of these agents.
Similar to (Atalla and Denzinger 2009), we have a gather
macro that causes all units to move towards the center of the
group and a team attack macro that has a group of agents
moving in range of the weakest enemy unit and attacking it.
We also have for agents of type marine a stim macro that has
every marine who has enemy units nearby perform the unit-
specific stim action that allows these agents to move faster
at the cost of loosing health points. And we have the team
heal macro that causes injured units to move away from the
enemy and towards a medic, while this medic moves towards
those injured units.

In order to enable Actattack,i to use these macros, we
needed to extend its internal data fields Dati by a field
Ai ⊆ Aattack that tells the agent which other attack agents
it is performing a macro currently with. Ai is empty, if
the agent is not performing a macro, it is {Actattack,i} if
the agent performs a macro out of Actindmacro,i and it con-
tains Actattack,i and all other agents that perform the macro,
if it is from Actcoordmac,i. The agent’s decision function
fAgattack,i has been extended as explained above to initial-
ize the macro behavior and to then perform the macro as
intended. Please note that not only the initialization of a
macro from Actcoordmac,i requires that several agents coor-
dinate with each other, this is also necessary during the per-
formance of the macro, for example when a targeted enemy

unit is destroyed and the target needs to be changed. As in
(Atalla and Denzinger 2009), a macro is activated if a sin-
gle agent has this macro as next action in its sequence and
performing this macro overrides the actions intended for the
other agents involved.

The fitness f it used by our learner instantiates the general
scheme from the last section as follows. Our predicate Gtest
is not just having won the game against the tested StarCraft
AI. In our initial experiments we had to realize that for some
of the tournament scenarios just winning was not enough to
identify the general problem the AI has. Therefore our Gtest
allows to define a margin surv of units by which to win, i.e.
at least surv agents of Aattack need to still be alive after the
last enemy unit has been destroyed. Given our definition of
near goal, this extension was not difficult to do.

For near goal, we followed the general ideas from (Atalla
and Denzinger 2009), but used only two of the components
from there, namely the surviving unit count SU and the
health criteria HE. SU(e j) for an environmental state e j is
the difference between the agents in Aattack still alive and
the agents in Atested still alive, with different weights asso-
ciated with different types of units. Similarly, HE(e j) adds
up the health points of each unit in Aattack and Atested , mul-
tiplied by weights associated with the type of a unit, and
then subtracts the sum for Atested from the sum for Aattack.
near goal((e0,...,e j)) then just sums up SU(e j) and HE(e j).

As evolutionary operators, we used some slight modifi-
cation of the ones used in (Atalla and Denzinger 2009).
This modification is that on the level of agents, our opera-
tors randomly selected some of the agents (and not just one)
to be affected by the operator. Then the standard operators
for strings, respectively the targeted variants, are applied to
the action sequences for these selected agents. For select-
ing the individuals that act as parents to the operators, we
used roulette-wheel selection. And naturally the best indi-
viduals of one generation are copied over to the next gener-
ation without change.

Experimental evaluation

In this section, we present our evaluation of the 3 variants
of our testing system described in the last section using AI
StarCraft players from the 2010 AI player competition. We
will first provide the exact settings for the parameters of our
system and a short description of the test scenarios and then
look at our experimental results.

Setup

For the evolutionary learning system, we used 10 genera-
tions with 20 individuals in each of them. One in four genetic
operator applications was a mutation the others crossovers.
For each type of operator, 4 out of 5 applications were of
the targeted kind. Our attack agents provided an action to
the game every second (i.e. each 24th frame) and the ac-
tion sequence for an agent in an individual consisted of 300
actions, so that a single game had a maximum duration of
5 minutes and consequently a whole run of our testing sys-
tem could last 1000 minutes (although this was seldomly the
case). In our experiments, there were 5 types of units in the

118



scenarios: zealot, mutalisk, scourge, marine and medic. For
determining the weights used in the computation of the SU-
value, we used the costs that building such a unit requires.
This resulted in weights of 100, 250, 137.5, 50, and 87.5.
The weights used in the computation of HE reflect the initial
health points each type of unit has, which results in weights
of 160, 120, 25, 40, and 60.

For performing our experiments, we used two computers
interacting in a network. The first computer ran the newest
version of bwapi, the game itself and our testing system. The
second computer ran the proper version of bwapi for the AI
we are testing and had it join the game hosted by the first
machine.

The StarCraft AI player competition consisted of several
tournaments and some of the tournaments had several sce-
narios. The first two tournaments deal with battles between
two opponents. We selected two scenarios from the first
tournament (Scenario 1 and 2 in Table 1) and one scenario
from the second tournament (Scenario 3). Scenario 1 in-
volves two small groups of melee units battling over a small
map. This was chosen as a starting point for our system, as it
is the simplest scenario from the competition. There is only
one type of unit to control, namely zealots which have no
special unit abilites, and the map has no terrain features. In
Scenario 2, both players control two types of flying units.
One type, mutalisks, has a ranged attack that can hit mul-
tiple enemies if they are close together, and the other type,
scourges, can explode when in contact with the enemy. This
scenario takes place on the same simple map as Scenario 1.
To be successful in this scenario, a player must know how
to use each type of unit properly, which makes this scenario
more interesting than the other scenarios in the first tourna-
ment and the reason why we selected this scenario.

In Scenario 3, each player controls a large group of
marines, which are a ground unit with a ranged attack, and a
group of medics which are support units. The marines have
a special ability, namely the already mentioned stim action,
that increases their fire and movement rates at the cost of
their health. The medics are capable of healing each other
and the marines as long as they are close enough to each
other. This scenario takes place on a larger map that has ter-
rain features such as ramps and different levels of elevation.
This is important because units on higher ground are less
likely to be hit by ranged attacks from lower ground. This
scenario was chosen because it is the most interesting of the
scenarios from the two tournaments, since it involves multi-
ple unit types, terrain, unit abilites, and requires cooperation
between units in order to be successful.

In the 2010 StarCraft AI player competition, there were
7 competitors in the first tournament (for all scenarios),
namely FreScBot, Sherbrooke, MSAILBOAT, Windbot, It-
Clusters, UTPABroncScript, and ChaosNeuron (which is
called ArixSheeBot on the participant page at (Participants
2010)). FreScBot and Sherbrooke also participated in the
second tournament (in all scenarios). In the 2010 compe-
tition, FreScBot won both tournaments.

Scenario/Player One Two Three
Scenario 1

FreScBot X X 8(6)
ChaosNeuron X X 8(3)
UTPABroncScript X X 8(6)
Windbot X X 2(6)
ItClusters X X 3(4)

Scenario 2
FreScBot X 5(7) 0(6)
ChaosNeuron X X 3(8)
UTPABroncScript X X 5(8)
ItClusters X X 5(9)

Scenario 3
FreScBot X X 3(24)

Table 1: Generation of sucess of our learner

Results

We applied all three variants of our testing system to all
competitors for the scenarios they participated in in the 2010
competition. Unfortunately, we had problems with some of
the competitors due to crashes, but since it is the goal of
our testing system to test systems, we see this also as a suc-
cess of our system. We were able to reproduce the crashes at
will with all three variants of our system. The Sherbrooke AI
crashed on every scenario within the first five games of a test
run (i.e. within creating the initial generation). This crash
occured immediately when a new game was started, before
either player could issue orders to their units. A possible ex-
planation for this behaviour may be not clearing memory
properly. It should be noted that our system relies on play-
ing multiple games against the opponent to find a weakness,
which makes clearing the memory an issue.

The Windbot AI always crashed in Scenario 2 immedi-
ately after our system had destroyed all of the AI’s units.
This may have happened because the developers may have
assumed that the game would be immediately over when a
player loses its units, but we found that it took a frame af-
ter this event to end the game. The last AI that had crashing
problems was MSAILBOAT. Strangely, Scenario 1 would
crash the first time our testing system only had one unit left.
It is possible that there is a calculation in the tested system
that depends on the enemy having two or more units. In Sce-
nario 2, the AI crashed a few seconds after our units came
in view during the first game. We do not have a reasonable
explanation for this behaviour.

The results of our tests with the other competition AIs
are reported in Table 1. An X indicates that the system vari-
ant was not able to win against the competitor within the
given number of generations. An entry of the form X(Y) in-
dicates that our testing system produced an individual that
won against the competitor and that allowed us an idea what
the problem of the competitor is in generation X with the
testing system having Y units left alive.

As can be seen in Table 1, variants One and Two of
our testing system are not really very successful. It takes
all types of macros to play the game well enough to iden-

119



tify weaknesses. But if all macro types are used, i.e. variant
Three, our testing system was able to win against all of the
competition AIs with margins high enough to allow for an
analysis of the weaknesses of the opponents.

Let us first look at FreScBot, the winner of both tourna-
ments. In Scenario 1, we found the following unwanted be-
havior. Our, i.e. the testing system’s, units stayed at the start-
ing point for a while, then moved slowly towards the centre.
The opponent moved towards the centre, and upon reaching
it, split its units into three groups. One was sent to the top
of the screen, the other stayed in the middle, and the third
moved towards us to attack. The intention may have been
to search for our units, but once our units were in sight, the
opponent did not bring its units together again. Instead, all
of our units fought the small group of units that came for-
ward, then the ones in the centre, then finally the ones at
the top of the map. The top group never attempted to re-
join the others, so our system was able to win with 6 of the
original 9 units surviving due to having greater numbers in
the battle. In Scenario 2, the opponent moves all units to-
wards the centre, which causes them to be very close to-
gether. Our strategy spread out our units as they moved to-
wards the centre, simply due to the random generation of
move actions by the learner. Because the opponent had many
units close together, our selfdestructing scourge units were
able to cause a great deal of damage. In contrast, our units
were rather spread out, making it difficult for the opponent to
chose the proper unit to attack with its scourges. Addition-
ally, fewer of these caused damage, because we were able
to shoot them down before they detonated. When both sides
only had ranged units left, we had the greater numbers.

In Scenario 3, both groups moved towards each other,
however our system moved slowly due to frequently gather-
ing the units together via the gather macro (see Figure 1, we
are the yellow units, the opponent’s are red). The opponent
had most of its units moving in a long line, without stopping
to regroup. This caused the battle to happen at the top of our
ramp (see Figure 2), which gave the opponent units less of
a chance to hit us. The opponent did not seem to consider
the terrain, which gave us an advantage. Because our units
were together while the opponent’s came in small groups,
we were able to cause much more damage. The stim abil-
ity was not used by the opponent, which may be a weakness
since it provides an attack speed bonus, and our agents used
it heavily. Finally, as a side effect of having its units spread
out, the opponent’s medics were not very effective at heal-
ing, whereas ours were close to the marines, supporting the
main army (see Figure 3). Due to all these factors, we were
able to win with 24 of the original 28 units surviving.

In Scenario 1, when testing ChaosNeuron, it took until the
6th generation for our system to win by a significant margin.
In the game, our system and the opponent both sent their
units towards the centre of the map. Both players formed
a line with an equal number of units and some units be-
hind, unable to fight since they are melee units. Our units
in the back then quickly moved to the top of the line and
surrounded the top units of the opponent’s line. The oppo-
nent attempted the same technique at the bottom of the line,
but did it at a slower rate. This meant our system was able to

defeat the units at the top of the line, giving us superior num-
bers, which later won us the game. At the end, we won by
the smallest margin of all our experiments, but were able to
demonstrate a weakness nonetheless. In Scenario 2, the op-
ponent spread its units in a v-shape, while ours were shaped
in a line as they moved towards the centre. This meant that
more of our units were in range to fire on the opponent’s
units when the groups first met. Then our units formed two
groups, one to attack the top of the v-shape, and one to attack
the bottom. Some of the opponent’s unit were out of range
to attack us, so we were able to overwhelm the units at the
top and bottom. This technique caused us to win with still 8
of the 12 range units left.

In both of the scenarios tested, UTPABronScript left all of
its units in the corner in a very tight group instead of moving
to the centre. This seems to rely on facing an opponent that
will move its units into the corner to avoid having a draw. In
Scenario 1, we moved our units in a group towards the op-
ponent’s corner. As we approached, the opponent sent two
of its units to explore the map. When we came in contact
however, the other units did not react. Our group was able
to destroy the two units, and then moved back to the corner.
Again, as we approached only a few of the units came to
fight, so we were able to win due to having more units fight-
ing at the same time. In Scenario 2, the opponent had its
units in the corner spread in a line. This weakness is difficult
to describe due to the fast pace of the battle, but it appeared
as though our units were able to fire first, destroying several
of the scourges before they could do any damge to us. Our
system also focused on attacking specific units more than
the opponent, quickly decreasing its numbers which gave us
the win.

Regarding Windbot in Scenario 1, both our system and it
moved their units towards the middle of the map. In a simi-
lar manner to the ChaosNeuron test, our units quickly tried
to surround the opponent’s units. The opponent had some of
its units moving around frequently in order to get into better
positions, which allowed us to do more damage than it. Be-
cause we were able to surrond an opponent unit, we created
an advantage in numbers and that allowed us to win.

The weaknees found in the ItClusters AI for Scenario 1
is quite simple. Both players moved towards the centre in
a group. When the battle occured, equal numbers of units
were attacking, and our system tried to surround one of the
opponent’s units. The opponent’s weakness appeared to be
the technique it used of pulling back hurt units. When units
were hurt, the opponent would have them retreat and then
come back to the fight, hoping we would start attacking units
with higher health. Although this is a good idea, the problem
was that we had a greater number of units attacking at one
time, so some of the opponent’s units were being attacked
by several of our units. The weakness leading us to win Sce-
nario 2 is difficult to describe despite winning with nine of
the twelve ranged units. Both players moved their units to at-
tack in a large clump, and after a couple of seconds we have
a larger number of units, which caused us to win the battle.
The best explanation we have is that our units were about
twice as spread out when the battle occured. This meant that
the ranged attack was unable to hit as many of our units at

120



the same time. We were able to destroy several of the op-
ponent’s self-destructing units before they could cause dam-
age, but the opponent could not destroy ours because they
were too spread out.

As these descriptions show, the ways how the different op-
ponents can be beaten are rather different (even completely
opposite). It should also be noted that the 2010 competition
was the first StarCraft AI competition, so there were no AIs
from ”old” competitions that the designers could use to test
their AIs. But this shows how important having testing sys-
tems like ours is!

Conclusion and future work
We presented an extension of the testing method of (Atalla
and Denzinger 2009) for testing competition entries for the
StarCraft AI competition. By adding more types of macros
and aligning those macros with the real-time requirements of
StarCraft we were able to identify weaknesses in all of the
entries into the 2010 competition for different game scenar-
ios. While (Atalla and Denzinger 2009) only claimed that
the concept can be used for heterogeneous unit types, we
demonstrated how this could be done.

Future work should be directed to integrate the economic
side of StarCraft into our testing method, which will require
dealing with changing numbers of agents (as new buildings
and units are created). Also, our current method focusses on
the first weakness it detects. Without fixing the weakness it
is usually not possible to find other weaknesses. This is not
always in the interest of a developer and we want to find
ways how to keep the learner away from already detected
problems.

References
Atalla, M. and Denzinger, J. 2009. Improving Testing of
Multi-Unit Computer Players for Unwanted Behavior using
Coordination Macros. In Proc. CIG-09, 355–362, IEEE.
Buro, M. 2007. 2007 ORTS RTS Game AI Competition.
http://www.cs.ualberta.ca/∼mburo/orts/AIIDE07/, as seen
on Apr. 24, 2011.
BWAPI: Setting up the Broodwar API. 2010.
http://eis.ucsc.edu/StarCraftBWAPI, as seen on Apr.
24, 2011.
Chan, B.; Denzinger, J.; Gates, D.; Loose, K.; and
Buchanan, J. 2004. Evolutionary behavior testing of com-
mercial computer games. In Proc. CEC 2004, 125–132.
Denzinger, J.; Loose, K.; Gates, D.; and Buchanan, J.
2005. Dealing with parameterized actions in behavior test-
ing of commercial computer games. In Proc. CIG-05, 51–58,
IEEE.
StarCraft Participants. 2010. http://eis.ucsc.edu/StarCraft
Participants, as seen on Apr. 24, 2011.
Weber, B. 2010. StarCraft AI Competition.
http://eis.ucsc.edu/StarCraftAICompetition, as seen on
Apr. 24, 2011.
Xiao, G.; Southey, F.; Holte, R.C.; and Wilkinson, D.
2005. Software Testing by Active Learning for Commercial
Games. In Proc. AAAI’05, 898–903, AAAI Press.

Figure 1: Our units stay together

Figure 2: Opponent is spread out

Figure 3: Our units pick off the enemy

121




