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Abstract

I describe work in progress on a system for interactive
prototyping of Al-based characters. A sort of "Sims
construction set", the system combines a simple physics
simulation with a set of domain-specific languages to allow
programmers to quickly build and test character Al It
allows iterative, incremental development in which
behaviors can be compactly authored, tested, monitored, and
hot-swapped for new behaviors, using in-game editing and
debugging facilities.

Motivation

Building Al-based virtual characters is hard. Building a
system like Fa¢ade (Mateas and Stern 2005) from scratch
requires enormous amounts of both knowledge and
programmer time. In principle, one should be able to
leverage existing tools such as commercial game engines,
or research animation systems. However, in practice these
systems, while very useful for certain genres and
applications, are often difficult for non-specialists to adapt
to other uses.

A number of libraries have been developed for
interfacing research Al systems to commercial game
engines, ranging from early work with Quake Soar (Laird
and van Lent 1999) to more recent work such as
Microsoft’s .NET interface for UT (Sterland, Lissiak et al.
2007) and Pogamut (Gemrot, Kadlec et al. 2009). These
systems typically implement some kind of remote
procedure call interface in which action requests by the Al
system are serialized over a TCP connection and responses
and environment data are returned by serializing over the
same socket. This approach can be extremely valuable;
however it has important limitations that reduce its
flexibility.

First, the user is limited to the character actions provided
by the game engine, which tend to center on running,
jumping shooting. Pogamut, for example, is recommended
by its authors only for first-person shooter genres (Gemrot
et al, p. 13). Actions like hugging another character,
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carrying a child, or lying on a sofa are typically not
supported. They could be added by importing new model
and animation assets, however this requires considerable
time and money, as well as access to facilities (e.g. mocap
studios) and people (skilled animators, actors), which often
aren’t available at research institutions.

One could also attempt to incorporate research tools for
procedural animation (aka motion synthesis) into existing
game engines. Although this would be a daunting task,
many procedural animation systems have been developed,
ranging from early kinematic systems such as (Badler,
Phillips et al. 1993) and (Perlin and Goldberg 1996), to
more recent physically-based methods such as (Treuille,
Lee et al. 2007; Levine, Lee et al. 2011; Muico, Popovi¢ et
al. 2011). Although there has been steady progress, most
work has focused on building high-quality controllers for
isolated actions (usually locomotion), often assuming the
availability of preexisting mocap data, and generally
assuming characters don’t interact physically with other
objects other than as disturbances to be recovered from.
There is simply a dearth of systems that allow easy
implementation of simple human actions such as picking
up a glass, writing on a clipboard, hugging, or shaking
hands (Hecker 2010).

So the animation subsystems of contemporary systems
severely constrain the set of actions an Al researcher can
ask their characters perform. I believe we need to stop
thinking of this as an animation problem and start thinking
of it as an Al problem. Character actions are just that:
actions.  That they happen to be implemented in
contemporary game engines by sequencing and blending
fixed animation clips is simply an implementation
technology, and a suboptimal one at that. As we seek
develop more flexible characters that need to be able to



perform larger repertoires of actions, and more expressive
characters in whom bodily movements and postures are
continually modulated by the character’s motivational and
affective state, we will inevitably need to consider the
control of limbs, posture, and the face to be Al problems,
or at least robotics problems.

The second problem with interfacing Al systems to
game engines via RPC is speed. Control rates typically
range from 4 to 10 Hz, which means the round-trip latency
between the engine and the Al system (i.e. the time
between something happening and the user seeing some
sign of a response) will be a minimum of one RPC cycle
(100-250ms) and more likely two cycles (200-500ms).
This is more than sufficient for a high-level strategic Al
operating over large time scales; however, processes
operating on faster time scales, such as a character
flinching when touched by someone they don’t like, do not
have time to run over the RPC connection and so have to
be coded on the engine side.

This brings us to the last issue with RPC-style systems,
which is that they impose a hard division between the “Al
part” and the “engine part,” where the latter is relatively
fixed. Adding new sensory or motor capabilities, a new
camera controller, or anything else that needs to run fast,
requires the user to bring the engine down, edit and
recompile the relevant parts of the engine or the interface
library, and restart the whole system. We want these
things to be scriptable and debuggable in-game.

In this paper, I will discuss work in progress on Twig, an
open-source prototyping environment for research in
character Al. Tt allows researchers (or students) with little
or no knowledge of graphics or game programming to
rapidly construct a wide range of character behavior, from
high-level reasoning down to low-level sensory-motor
control. Due to space constraints, this paper will focus on
the overall design and goals of the system, and on the
authoring system for bodily behaviors, since these are the
most unusual aspects of the system.

Design Goals

The system was designed with a number of technical
goals in mind:

e Cartoon believability; true realism is beyond the
abilities of the system.
Ease of interface to Al systems.
Ease of adding new behaviors and objects.
Support for behaviors involving sustained
contact between characters.

e Continuous tuning and blending of behaviors.

In addition, there were a set of social goals:

e Ability to use and extend the system without
access to professional animators

e Usable without having to learn graphics, game
programming, quaternions, etc.
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To support these goals, the system adopts the following
design principles:

e Everything is scriptable. As much as possible is
interactively scriptable using an in-game IDE.

e Everything is debuggable. Scripting is fully
interactive. Behaviors can be hot-swapped in
running characters, and debugged using in-game
debugging displays.

e Everything is a robot. Characters are powered
ragdolls; low-level motion is driven by classical
behavior-based robot controllers (Arkin 1998)
rather than animation clips.

e Everything is IK. Programmers need never think
about joint angles or revolute coordinate systems;

High Level Design

The system is written in C# and built on the Microsoft
XNA platform. We will focus here on its scripting, and to
a lesser extent, simulation facilities, since they are most
relevant.

Overview of Scripting Facilities

The primary scripting language for the system is Scheme, a
derivative of Lisp. Scheme was chosen in part because it’s
simple to implement, and in part because it makes it easy
to construct embedded languages (domain-specific
languages implemented within Scheme itself). It is these
DSLs that do most of the run-time work for the Scripts.
Scheme is largely used as a front-end for implementing
and accessing the DSLs. We have also recently added a
relatively simple Prolog implementation, since it allows a
fair amount of existing code, e.g. for planning and natural
language to be downloaded and run directly. The use of
Scheme and Prolog is not particularly important to the
discussion here; any language that provides good support
for metaprogramming (e.g. a Turning-complete macro
system) could be used instead. See Norvig (1991) for an
excellent discussion of the implementation of Scheme and
Prolog, as well as their use in Al programming; see also
Thompson’s Yield Prolog (2010) for a particularly elegant
implementation of Prolog within languages such as C# and
Python.

Each character or other simulation object has its own
namespace to prevent cross-talk between scripts for
different characters. Code can be run within a given
character’s namespace using the Scheme form (within
object ...code...). Each character also has a blackboard
structure (Isla and Blumberg 2002) used principally to
implement optional adverbs for actions, such as telling a
ball which direction a character would like it to move in
when kicked.

The Scheme and Prolog implementations emphasize
power over speed; although they are fast enough for event
handlers, they are have not been extensively optimized and
should not be used for code that runs frequently (e.g. on



every frame). High performance code is supported through
special-purpose DSLs embedded in Scheme, but which
bottom-out in custom interpreters written in C#.

The Signal Language (GRL)

The most important DSL is a language for describing real-
time signals based on the GRL robotics language
(Horswill 2000). GRL programs define a graph of signals
whose current values are updated automatically. A GRL
expression such as:

(define-signal a
(+ b (low-pass—-filter c 1.5)))

tells the system that it is responsible for ensuring that
whenever one asks for the value of a, it should hold the
sum of the values of b and a low-pass filtered version of c.
How the system does this is up to the implementation; the
original GRL compiler did elaborate analysis and
optimization. However the current version simply does
type inference and constructs a graph of signal objects that
are then topologically sorted and updated in round-robot
fashion on each clock tick; this has been more than fast
enough for the time being.

GRL has the standard advantages of strongly-typed
functional languages; it allows higher-order, polymorphic
procedures to be used, but these are resolved at
compile/load time, and transformed into a form that can be
run without any dynamic storage allocation or run-time
type checks. It was originally introduced to allow easy
scripting of sensory and motor systems. However, its use
has extended to other parts of the system where script code
needs to be run at video rate, for example for camera
control, or in condition checks for state machines or
behavior trees that cannot be handled through event-driven
messaging.

Other Domain-Specific Languages

The system also contains DSLs for common game- and
research-Al tasks. A state machine language based on
Rabin’s work (2002) and a behavior tree language based
on Chris Hecker’s implementation from Spore (2008) are
available as embedded languages within Scheme. Since
they are straight reimplementations of Rabin and Hecker’s
work, T will not discuss them here, but instead refer the
reader to the original authors. State machines and behavior
trees can call code in the other languages; for example,
they can use signals as event triggers and can explicitly
start, stop, and pass arguments to motor behaviors written
using the signal language. They can also specify arbitrary
Scheme code to run upon entry to or exit from a given state
or behavior tree node.

The Prolog system also supports the standard Prolog
notation for definite-clause grammars for natural
language parsing and generation. Again, this is a textbook
DCG implementation, so the reader is directed to Norvig
(1991) for a good introduction both to their implementation
and their use.
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Finally, we are working on a simple rendering DSL,
renderkun, for scripting passes and material/effect
mapping in the renderer. The intent is that this will make it
easy to programmatically switch between, different styles
of rendering, such as cel versus Gouraud shading, or even
deferred shading, and experiment with different renderers
interactively.

Physics and Motion Control

Twig began as a procedural animation system (Horswill
2009) that has been repeated extended to make it easier for
others to use, until it’s now effectively a full-fledged game
engine. It allows programmers to control character bodies
by applying forces directly to push and pull individual
body parts, as if it were a puppet, rather than having to deal
with joint torques. Unpowered body parts are moved
passively by the Verlet physics solver (Jakobsen 2001),
providing a kind of passive inverse-kinematics. This
allows body parts to be controlled independently, with
minimal risk of a change in one controller destabilizing
another.

Development Environment

The system runs as a subprocess of GNU Emacs (Stallman
1981), providing a simple IDE supporting editing, syntax
highlighting, and interactive debugging of running
character behaviors. Behaviors can be interactively added
and removed, monitored (using watch points and
visualization tools), and hot-swapped with new versions,
all while the character moves about the world and interacts
with other characters.

Body Control

Twig character bodies are controlled through low-level
interfaces called effectors. An effector takes a control
signal as input and drives the body part(s) appropriately.
For example, the effectors for limbs take a signal
specifying forces to apply to the endpoint (hand/foot) of
the limb and/or the joint (elbow/knee) and its drives them
with those forces.

Control signals are generated by collections of
behaviors. A behavior consists of the actual control signal
together with an activation signal that provides a dynamic
estimate of the utility of allowing that behavior to drive the
effector rather than some other behavior.  Arbiters
produce aggregate control and activation signals from a set
of input behaviors, either by weighted averaging, as with
motor schemas (Arkin 1998), or by choosing the highest
priority active behavior. Arbiters can use either fixed
priorities, as with the Subsumption architecture (Brooks
1986) or dynamic priorities as in behavior nets (Maes
1989).

Current Effector Interfaces

The system is a work in progress. One of the open
research questions is what kinds of interfaces would be
most congenial for controlling the body in different ways.



The system currently provides support for controlling
individual limbs, pairs of limbs, the overall posture of the
character (pelvis and shoulder height, relative positioning,
and twist), locomotion (what target velocity to send to the
gait control system), and object approach (a built-in
behavior that drives the locomotion system toward a
specified object).

Examples

A scripting system is difficult to evaluate in any
meaningful quantitative manner. So at the risk of making
the paper look like a tutorial, I will go through two
examples of simple behavior systems, both to illustrate the
general operation of the system and also to show that
relatively simple code, of the sort that an undergraduate
might be able to write, can implement useful functionality.
Both examples are from the course notes used in an
undergraduate course on virtual characters.

Space considerations prohibit a complete explanation of
the code, but the following should be sufficient to at least
give a sense of what authoring behaviors is like.

Implementing Manual Control
The simplest possible behavior system implements the
manual piloting of the character from the keyboard. It
consists of three behaviors, each defined by a name,
activation (utility) signal, and a control signal.

We start with two posture behaviors that apply torques
to the body to turn it left and right, respectively:

(define-posture-behavior steer-left
(posture-force shoulder-yaw: 20

20)

(trigger-on-key Keys.Left))

pelvis-yaw:
activation:

(define-posture-behavior steer-right
(posture-force shoulder-yaw: -20

-20))

(trigger-on-key Keys.Right))

pelvis-yaw:
activation:

Each behavior’s control signal rotates the body one way or
the other. The activation: clauses give the numeric
activation/utility of the behavior. Trigger-on-keyis a
signal function whose value is 1 when the key is pressed
and 0 otherwise:

(define-signal-procedure (trigger-on-key k)
(1f (key-down? k) 1 0))

thus posture behaviors are active when their respective
keys are pressed.

Forward motion is controlled by sending a vector in the
forward direction to the gait control system. This is
accomplished with a locomotion behavior that, again, is
triggered by the press of the appropriate arrow key:
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(define-locomotion-behavior walk
this.FacingDirection
activation: (trigger-on-key Keys.Up)))

The four expressions above are the complete code for

manually piloting the character.

Stealth Humor

The next example involves two characters and a simple
simulation of the startle reflex. One character, Fred,
sneaks up behind another, Lefty, and taps him on the
shoulder, startling Lefty and causing him to jump. Lefty’s
arousal level (wakefulness) is determined by how much
noise Fred has produced while sneaking up on Lefty (as
with a stealth mechanic). Lefty’s startle response, which
involves jumping into the air and flailing his arms with
deliberate cartoon exaggeration, is inversely proportional
to his arousal level.

We start with the code to make Fred sneak up on Lefty.
Fred needs to approach Lefty until he is within range and
then stop and tap Lefty on the shoulder. This is
implemented by the following fragment:

(within fred
(define-signal touched-lefty?
(flip-flop (not (null? fred.ContactObject))
false))

(define-locomotion-behavior approach-lefty

(saturate (- lefty.position fred.position)
0.03)
activation: (if touched-lefty? 0 1)

(define-locomotion-behavior tap-lefty
@(0 0 0)
activation:
(if (< (distance fred.position
lefty.position)

0.4)
2
0)
exclaim: "boo!"
reach: (not touched-lefty?)))

The touched-lefty? signal is false until Fred touches
Lefty, after which, the flip-flop keeps it true even if Fred
stops touching Lefty. Approach-lefty walks toward
Lefty at 3cm/sec until tap-lefty overrides it when
Fred comes within 40cm. The exclaim: and reach:
clauses send ancillary signals through blackboard channels
to forcibly trigger the reaching behavior, and to generate a
speech bubble (“boo!”).

Now, for Lefty. We start with the sensory code that
implements the stealth mechanic; the faster and closer Fred
is, the noisier he is:

(within lefty
(define-signal fred-distance



(distance fred.Position
lefty.Position))

(define-signal fred-noise
(/ (%1
(max 0.1

(magnitude fred.Velocity))
(square fred-distance))))

To simulate Lefty’s arousal, we say that the noisier Fred is
(and the longer he’s noisy) the more Lefty wakes up:

(define-signal arousal
(leaky-integrator fred-noise 10)))

The leaky integrator insures that sustained noise over a
period of time will wake Lefty, but that if Fred is quiet for
a time, then Lefty will go back to sleep.

Next, we define an ambient behavior for Lefty that
produces a rough simulation of sleeping standing up. As
his arousal level decreases, Lefty gradually leans forward
and sags (by applying a force to the shoulders pushing
them forward and down). However, the sagging force is
modulated by a sine wave, producing a cartoon
approximation to breathing during sleep:

(within lefty
(define-posture-behavior StOOp
(posture-force
shoulder-force:
(* (abs (* 0.5 time)))
(saturate (/

(sin
(- lefty.TorsoForward
lefty.TorsoUp)
(max arousal 0.5))
100)))
(if (= 0 (count touched?))
1.0)))

activation:

Finally, the actual startle behavior. Its strength is inversely
proportional to both Fred’s distance and Lefty’s arousal.
The physical reaction is produced by stretching the
character along his spine for 0.4 seconds:

(within lefty
(define-signal touched?
(not (null? lefty.ContactObject)))
(define-signal startle-level
(if touched?
(/ 10
0))

(* fred-distance arousal))

(define-posture-behavior startle-jump
(posture-force spine-extension-delta: 10)

activation:

(1f (> startle-level 1)

0.4)

startle-level

0)

exclaim:

(one-shot

n#s%!u))
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Evaluation

Evaluating a system like 7wig is difficult. It does not
introduce any stunning new algorithms, and in general
does not let the user do anything that couldn’t be done, at
least in principle, with some other system. Its claim
instead is that it makes it easier to produce rough-and-
ready prototypes of a wider range of character Als than
could be done with other systems. The examples given in
the previous section are an attempt to establish the
plausibility of this claim.

Twig was developed research both in my own lab and at
other universities. In research, it has been used for a
simulation of a biological model of extroversion and
neuroticism in humans (Fua, Horswill et al. 2009), as a
behavioral back-end for the ICARUS agent architecture
(Langley, Trivedi et al. 2010), and for cinematic camera
control (Jhala, unpublished). These projects used the older
version of the system, whose scripting was very limited.
The design of the current system was driven in large part
by feature requests from these other projects.

An early version of the scripting system described here
was used last year as the basis for a course on simulation-
based virtual characters. The course consisted of 7 juniors,
16 seniors, and 3 graduate students, most of whom were
CS majors.  The course had no Al or graphics
prerequisites, and most students had little knowledge of
these areas.

Although they complained about using Emacs, they
were able to learn to use 7wig relatively quickly. The
embedded DSLs had both pedagogical advantages and
disadvantages, however. On the one hand, they allowed
code to be written more concisely and made large classes
of bugs impossible. However, the embedding of the DSLs
within Scheme meant they all “looked like Scheme” to the
students, so students would often mix the languages in
nonsensical ways. Many students also said they would
prefer a more familiar language like C#. However, those
students who later took our Game Engine Design course,
where they were forced write character behavior code in
C# said that Twig had been much easier to use and debug.

Students implemented a wide range projects, including
dancing, soccer, fighting games, simple narratives, and
reimplementations of existing games, such as Super Mario
Bros. and Pac-Man.

Since Twig allows users to write script code that runs at
frame rate (60Hz) performance is an important concern.
Thus far, the system has been more than fast enough for
our needs; Idiotball, a simple soccer simulation used in
class, uses approximately 2% of a 2.4GHz Core 2 Duo
laptop to simulate 7 characters with 6 behaviors and their
associated (simple) sensory systems. In the class,
performance was only a problem for one project, which
involved 53 characters and 230 objects in a relatively
densely-packed environment.  This swamped Twig’s
collision detection system, which does no broad-phase
pruning. It could be improved easily by implementing a
broad-phase algorithm such as sweep-and-prune.



Conclusions

The system described here represents an early attempt to
allow researchers to build interactive characters with
flexible sensory and motor systems and to drive those
characters from research Al systems, without substantial
background in graphics or game programming. Although
not suitable for all applications, it allows Al researchers to
control characters that move and interact in engaging
manners, including behaviors that involve sustained
contact between characters, such as hugging, holding
hands, or walking together, without having access to the
infrastructure of an animation studio. While still in its
early stages, initial results with the authoring system are
encouraging. The Twig system is open source and
currently hosted on SourceForge at twig.sourceforge.net.
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