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Abstract 
Goal recognition is the task of inferring users’ goals from 
sequences of observed actions. By enabling player-adaptive 
digital games to dynamically adjust their behavior in concert 
with players’ changing goals, goal recognition can inform 
adaptive decision making for a broad range of 
entertainment, training, and education applications. This 
paper presents a goal recognition framework based on 
Markov logic networks (MLN). The model’s parameters are 
directly learned from a corpus of actions that was collected 
through player interactions with a non-linear educational 
game. An empirical evaluation demonstrates that the MLN 
goal recognition framework accurately predicts players’ 
goals in a game environment with multiple solution paths. 

Introduction  
Over the past several years, AAA digital games have 
grown increasingly complex. In some cases this 
complexity has surfaced as ever-increasing production 
values, which have driven several game genres to move 
toward linear levels and reduced player options. In other 
cases, this complexity has taken the form of open 
environments, missions with multiple solution paths, and 
ill-defined objectives. Games such as Grand Theft Auto IV 
(Rockstar 2008) and Fallout 3 (Bethesda 2008) present 
open environments where players choose which missions 
to complete and pursue multiple paths through the 
storyworld. Alternatively, games like Batman: Arkham 
Asylum (Eidos and Warner Bros 2009) accommodate 
multiple strategies for dispatching foes during otherwise 
linear narratives. Minecraft (Mojang 2009) has recently re-
invigorated an open-ended style of gameplay that eschews 
extrinsic objectives in favor of player-defined goals, 
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expansive virtual environments, and creation-focused 
activities. 
 In this latter category of games, players’ actions may be 
difficult to interpret and predict. On the one hand, 
nonlinearity can promote player agency and increased 
replayability. On the other hand, it presents significant 
challenges to game designers interested in crafting 
cohesive narrative experiences that are attuned to players’ 
actions. These tradeoffs can be addressed by player-
adaptive games, which dynamically generate and augment 
gameplay experiences according to players’ actions and 
preferences. The Artificial Intelligence and Interactive 
Digital Entertainment community has investigated player-
adaptive game technologies in areas such as drama 
management (Li and Riedl 2010; Mateas and Stern 2005; 
Roberts et al. 2007; Thue et al. 2010) and procedural 
content generation (Jennings-Teats, Smith, and Fruin 2010; 
Shaker, Yannakakis, and Togelius 2010).  
 A key challenge posed by player-adaptive digital games 
is recognizing players’ goals. Goal recognition is a 
restricted form of the plan recognition problem. Goal 
recognition involves identifying the specific objectives that 
a user is attempting to achieve, where the user’s goals are 
hidden from the system and must be automatically inferred 
from user actions taken in the game environment. 
 Goal recognition models offer several prospective 
benefits to game creators. First, they enable player-
adaptive systems that preemptively augment game 
experiences. Models that provide accurate predictions 
about players’ actions are essential for games to 
simultaneously promote open-ended scenarios and 
proactively preserve gameplay cohesion, story coherence, 
and character believability. Second, recognizing players’ 
goals is important in serious games. Interpretations of 
players’ goals and plans contribute to assessments of 
learning progress, and goal recognition models can inform 
intelligent tutoring systems within serious games. Third, 
goal recognizers can provide valuable information for 

32

Proceedings of the Seventh AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment



telemetry efforts. Providing detailed descriptions of 
players’ gameplay objectives and problem-solving plans 
facilitates interpretation of raw game logs, and player goal 
data can be analyzed to inform subsequent game designs. 
 Work on goal recognition has traditionally focused on 
sequences of user actions that are derived from well-
defined goals and plans (Blaylock and Allen 2003; 
Carberry 2001; Charniak and Goldman 1993; Geib and 
Goldman 2009; Hu and Yang 2008; Kautz and Allen 1986; 
Pynadath and Wellman 2000). However, nonlinear digital 
games often present players with complex or ill-defined 
goals. Players may not have formulated a specific sub-goal 
when selecting actions to perform; they frequently choose 
actions in an exploratory manner. Exploratory actions may 
lead to the identification of new sub-goals or even 
inadvertent achievement of goals. In this case, goals are 
derived from the preceding sequences of actions, as 
opposed to actions that are derived from particular goals. 
 This paper investigates goal recognition in nonlinear 
game environments with ill-defined goals and exploratory 
behaviors. To address the problem of goal recognition for 
exploratory goals in game environments, which are 
characterized by cyclical relationships between players’ 
goals and actions, a Markov logic goal recognition 
framework is introduced. Model parameters are learned 
from a corpus of behaviors that was collected from player 
interactions within a nonlinear educational game 
environment.  
 The MLN goal recognition framework was evaluated in 
CRYSTAL ISLAND, a story-centric educational game for 
middle school microbiology. In CRYSTAL ISLAND, players 
are assigned a single high-level objective: solve a science 
mystery. Players are expected to interleave periods of 
exploration and deliberate problem solving in order to 
complete a non-linear narrative scenario. In this setting, 
goal recognition entails predicting the next narrative sub-
goal that the player will complete as part of solving the 
mystery. Findings are presented from an empirical 
evaluation comparing the Markov logic network 
framework approach against unigram and bigram 
baselines. In the evaluation, the MLN goal recognition 
framework yields significant accuracy gains beyond these 
alternative probabilistic approaches for predicting player 
goals in a nonlinear game environment. 

Related Work 
Recognizing the goals and plans of players offers 
significant promise for increasing the effectiveness of 
digital game environments for entertainment, training, and 
education. Plan recognition, which seeks to infer users’ 
goals along with their plans for achieving them from 
sequences of observable actions, has been studied for tasks 
ranging from natural language understanding to 

collaborative problem solving and machine translation 
(Carberry 2001; Kautz and Allen 1986). In story 
understanding, plan recognition is used to infer characters’ 
goals from their actions (Charniak and Goldman 1993); in 
dialogue systems, it supports natural language 
understanding and intention recognition (Blaylock and 
Allen 2003). Because plan recognition is inherently 
uncertain, solutions supporting reasoning under uncertainty 
such as Bayesian models (Charniak and Goldman 1993), 
probabilistic grammars (Pynadath and Wellman 2000), and 
variations on Hidden Markov Models (Bui 2003) have 
been investigated. In the restricted form of plan recognition 
focusing on inferring users’ goals without concern for 
identifying their plans or sub-plans, goal recognition 
models have been automatically acquired using statistical 
corpus-based approaches without the need for hand-
authored plan libraries (Blaylock and Allen 2003). 

 The classic goal recognition problem assumes that a 
single agent is pursuing a single goal using deterministic 
actions, and it assumes that a user’s plan can be identified 
using a provided plan library. A major focus of recent 
work on goal and plan recognition has been probabilistic 
approaches that relax several of these assumptions. For 
example, Ramirez and Geffner (2010) describe a plan 
recognition approach that does not require the provision of 
an explicit plan library. Hu and Yang (2008) describe a 
two-level goal recognition framework using conditional 
random fields and correlation graphs that supports 
recognition of multiple concurrent and interleaving goals. 
Geib and Goldman (2009) have devised the PHATT 
algorithm, which is a Bayesian approach to plan 
recognition that focuses on plan execution. PHATT 
provides a unified framework that supports multiple 
concurrent goals, multiple instantiations of a single goal, 
partial ordering among plan steps, and principled handling 
of unobserved actions. Recent work focused on real-world 
applications of goal recognition has emphasized efficient 
and early online prediction. Armentano and Amandi (2009) 
describe an approach for predicting software usage 
behaviors by learning a variable order markov model 
classifier for each user goal. Sadilek and Kautz (2010) use 
Markov logic to investigate multi-agent applications in the 
related area of activity recognition. The work presented 
here focuses on goal recognition in complex, nonlinear 
game environments, which often include ill-defined sub-
goals and cyclical relationships between goals and actions. 

Within digital games, recent work has explored goal 
recognition to determine players’ objectives in an action-
adventure game, support dynamic narrative planning, and 
create adaptable computer-controlled opponents. Gold 
(2010) describes training an Input-Output Hidden Markov 
Model to recognize three high-level player goals in a 
simple action-adventure game. Mott, Lee, and Lester 
(2006) explore several probabilistic goal recognition 
models to support dynamic narrative planning. Kabanza, 
Bellefeuille, and Bisson (2010) explore challenges with 
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behavior recognition in real-time strategy games and 
present preliminary results for creating adaptable 
computer-controlled opponents. The current work 
investigates a Markov logic network goal recognition 
framework for an educational game environment, with the 
eventual aim of dynamically tailoring game experiences to 
players. 

Observation Corpus 
In order to investigate goal recognition in a nonlinear game 
environment involving many possible goals and user 
actions, data collected from student interactions with the 
CRYSTAL ISLAND learning environment were used.  
 CRYSTAL ISLAND (Figure 1) is an educational game for 
eighth-grade microbiology. It is built on Valve Software’s 
SourceTM engine, the 3D game platform for Half-Life 2. 
The environment features a science mystery where 
students attempt to discover the identity and source of an 
infectious disease that is plaguing a research team stationed 
on the island. Students play the role of a visitor who 
recently arrived in order to see her sick father, but they are 
promptly drawn into a mission to save the entire research 
team from the outbreak. Students explore the research 
camp from a first-person viewpoint and manipulate virtual 
objects, converse with characters, and use lab equipment 
and other resources to solve the mystery. Now in its fourth 
major iteration, CRYSTAL ISLAND has been the subject of 
extensive empirical investigation, and has been found to 
provide substantial learning and motivational benefits 
(Rowe et al. 2010). Students consistently demonstrate 
significant learning gains after using CRYSTAL ISLAND, and 
they report experiencing boredom less frequently than in 
alternative instructional software. CRYSTAL ISLAND is also 
challenging for students, with fewer than 50% of students 
solving the mystery in less than an hour. The current 
investigation of goal recognition models is part of an 
overarching research agenda that is focused on artificial 
intelligence technologies for dynamically shaping students’ 
interactions with game-based learning environments. Prior 
work has focused on a range of computational modeling 
tasks, including probabilistic representations for user 
knowledge modeling (Rowe and Lester 2010) and machine 
learning frameworks for driving characters’ affective 
behaviors (Robison, McQuiggan, and Lester 2009). 

Student interactions with CRYSTAL ISLAND are 
comprised of a diverse set of actions occurring throughout 
the seven major locations of the island’s research camp: an 
infirmary, a dining hall, a laboratory, a living quarters, the 
lead scientist’s quarters, a waterfall, and a large outdoors 
region. Students can perform actions that include the 
following: moving around the camp, picking up and 
dropping objects, using the laboratory’s testing equipment, 
conversing with virtual characters, reading microbiology-

themed books and posters, completing a diagnosis 
worksheet, labeling microscope slides, and taking notes. 
Students advance through CRYSTAL ISLAND’s non-linear 
narrative by completing a partially ordered sequence of 
goals that comprise the scenario’s plot. Seven narrative 
goals are considered in this work: speaking with the camp 
nurse about the spreading illness, speaking with the camp’s 
virus expert, speaking with the camp’s bacteria expert, 
speaking with a sick patient, speaking with the camp’s 
cook about recently eaten food, running laboratory tests on 
contaminated food, and submitting a complete diagnosis to 
the camp nurse.  

The following scenario illustrates a typical interaction 
with CRYSTAL ISLAND.  The scenario begins with the 
student’s arrival at the research camp. The student 
approaches the first building, an infirmary, where several 
sick patients and a camp nurse are located. A conversation 
with the nurse is initiated when the student approaches the 
character and clicks the mouse. The nurse explains that an 
unidentified illness is spreading through the camp and asks 
for the student’s help in determining a diagnosis. The 
conversation with the nurse takes place through a 
combination of multimodal character dialogue—spoken 
language, gesture, facial expression, and text—and student 
dialogue menu selections. All character dialogue is 
provided by voice actors and follows a deterministic 
branching structure. 

After speaking with the nurse, the student has several 
options for investigating the illness. Inside the infirmary, 
the student can talk to sick patients lying on medical cots. 
Clues about the team members’ symptoms and recent 
eating habits can be discussed and recorded using in-game 
note-taking features. Alternatively, the student can move to 
the camp’s dining hall to speak with the camp cook. The 
cook describes the types of food that the team has recently 
eaten and provides clues about which items warrant closer 
investigation. In addition to learning about the sick team 
members, the student has several options for gathering 
information about disease-causing agents. For example, the 
student can walk to the camp’s living quarters where she 
will encounter a pair of virtual scientists who answer 

Figure 1. CRYSTAL ISLAND virtual environment. 
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questions about viruses and bacteria. The student can also 
learn more about pathogens by viewing posters hanging 
inside of the camp’s buildings or reading books located in 
a small library. In this way, the student can gather 
information about relevant microbiology concepts using 
resources that are presented in multiple formats. 

Beyond gathering information from virtual scientists and 
other instructional resources, the student can conduct tests 
on food objects using the laboratory’s testing equipment. 
The student encounters food items in the dining hall and 
laboratory, and she can test the items for pathogenic 
contaminants at any point during the learning interaction. 
A limited number of tests are allocated to the student at the 
start of the scenario, but additional tests can be earned by 
answering microbiology-themed multiple-choice questions 
posed by the camp nurse.  

After running several tests, the student discovers that the 
sick team members have been consuming contaminated 
milk. Upon arriving at this finding, the student is instructed 
to see the lab technician, Elise, for a closer look. The 
screen momentarily fades to black to indicate elapsing 
time, and Elise returns with an image of the contaminated 
specimen, which she explains was taken using a 
microscope. At this point, the student is presented with a 
labelling exercise where she must identity the 
contamination as bacterial in nature. After successfully 
completing this activity, the student can use the camp’s 
books and posters in order to investigate bacterial diseases 
that are associated with symptoms matching those reported 
by the sick team members. Once she has narrowed down a 
diagnosis and recommended treatment, the student returns 
to the infirmary in order to inform the camp nurse. If the 
student’s diagnosis is incorrect, the nurse identifies the 
error and recommends that the student keep working. If the 
student correctly diagnoses the illness and specifies an 
appropriate treatment, the mystery is solved. 

All student actions are logged by the CRYSTAL ISLAND 
software and stored for later analysis. The data used for 
creating the MLN goal recognition system was collected 
from a study involving the eighth grade population of a 
public middle school. There were 153 participants in the 
study. Data for sixteen of the participants was removed 
from the analysis due to incomplete data or prior 
experience with CRYSTAL ISLAND. Participants whose data 
was included had no prior experience with the software.  

MLN-based Goal Recognition 
Following previous work on goal recognition (Blaylock 
and Allen 2003), our work defines goal recognition as the 
task of predicting the most likely goal for a given sequence 
of observed player actions in the game environment. The 
current work assumes that a given sequence of actions 
maps to a single goal, and no interleaving occurs between 
actions associated with different goals. Under these 
conditions, goal recognition is cast as a classification 
problem, in which a learned classifier predicts the most 
likely goal associated with the currently observed player 
action. The player’s actions in the game environment are 
encoded using the following three properties:  

•  Action Type: The type of current action taken by the 
player, such as moving to a particular location, opening a 
door, and testing an object using the laboratory’s testing 
equipment. To avoid data sparsity issues, only the 
predicate (e.g., OPEN) of the action is considered, 
ignoring the associated arguments (e.g., laboratory-door). 
Our data includes 19 distinct types of player actions.  
•  Location: The location in the virtual environment 
where a current player action is taken. This includes 39 
fine-grained and non-overlapping sub-locations that 
decompose the seven major camp locations in CRYSTAL 
ISLAND. 
•  Narrative State: An indication of the player’s progress 
in solving the narrative scenario. Narrative state is 
represented as a vector of four binary variables. Each 
variable represents a milestone event within the narrative. 
The four milestone events are: Discuss the illness with the 
nurse, Test the contaminated object, Submit a diagnosis to 
the nurse, and Submit a correct diagnosis to the nurse. If 
a milestone event has been accomplished, the associated 
variable is assigned a value of 1. Otherwise the value of 
the variable is 0. 

The data exhibits two sources of complexity that pose 
modeling challenges. First, individual goals are not 
independent of one another. Goals represent key problem-
solving steps in the science mystery, and some goals are 
naturally completed in rapid succession to other goals. In 
particular, the island’s layout can lead to co-occurrence 

Figure 2. Map of the CRYSTAL ISLAND research camp. 
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patterns among goals. Thus, goals should be inferred in 
relation to one another rather than in isolation. Second, 
players are not provided explicit goals to achieve; players 
learn about the goals while interacting with the virtual 
environment. As a consequence, player actions may not be 
motivated by well-defined goals in all cases. Instead, 
causality between player actions and goals is potentially 
cyclical. A goal could influence a player’s next action if 
she has a particular goal in mind. However, it is also 
possible that the player’s current action will influence 
which goal will be pursued next. This would occur when 
the player does not know what the next goal will be, but 
the current action reveals it (e.g., the player enters a new 
location and observes a character that she can engage in 
conversation).  

To address these challenges, the current work employs 
Markov logic networks (MLNs) (Richardson and Domingos 
2006). MLNs are a type of statistical relational learning 
framework, and they are well suited for machine learning 
tasks in domains with complex associations between 
modeled entities. MLNs encode undirected probabilistic 
graphical models with structures that are determined by 
first-order logic formulae and associated weights. In 
contrast to directed graphical models (e.g., Bayesian 
networks, hidden Markov models), undirected graphical 
models are well suited for representing cyclical 
relationships between entities. In addition, MLNs leverage 
the full representational expressiveness of first-order logic. 
This capability contrasts with traditional machine learning 
frameworks that rely on propositional expressions, such as 
hidden Markov models (Rabiner 1989). To illustrate the 
representational benefits of MLNs, a standard hidden 
Markov model would require 11,856 observation symbols 
(19 actions x 39 locations x 16 narrative states) to represent 
our goal recognition domain. This would lead to 
prohibitive data sparsity when using a player-generated 
training corpus. With the expressive power of first-order 
logic in MLNs, the data can be modeled more compactly. 
Our domain was represented in a MLN using 74 symbos 
(19 actions + 39 locations + 16 narrative states) and 13 
logic formaulae. 

MLNs have recently been applied to tasks that are 
related to goal recognition, such as probabilistic abduction 
for plan recognition (Kate and Mooney 2009) and multi-
agent activity recognition (Sadilek and Kautz 2010). The 
following sections describe how our goal recognition data 
was represented using MLNs.  

Background 
Markov logic (ML) combines first-order logic with 
probabilistic graphical models (Richardson and Domingos 
2006). In contrast to traditional first-order logic, in which 
possible worlds are assigned a binary value (true when a 

world satisfies all the logic formulae, false otherwise), ML 
allows certain logic formulae to be violated in a given 
world, by associating a weight to each logic formula. Thus, 
while the logic formulae in traditional first-order logic are 
hard constraints over possible worlds, the weight-
associated logic formulae in ML represent soft constraints. 
The weight reflects the strength of the constraint 
represented by the associated logic formula.  

A Markov Logic Network (MLN) consists of a set of 
weighted first-order logic formulae written in Markov 
logic. Together with constants that represent objects in the 
domain, an MLN defines a Markov network, an undirected 
graphical model whose nodes have a Markov property 
described by the structure of the graph. Each ground 
predicate in a MLN has a corresponding binary node in the 
Markov network and each ground logic formula is a 
feature.1 The value of a binary node is 1 if the ground 
predicate is true; otherwise it is 0. Similarly, the value of a 
feature is 1 if the ground logic formula is true, otherwise 0. 
An MLN defines a probability distribution over possible 
worlds. The probability of a possible world x  in a MLN is 
given by equation (1), in which F  represents the number 
of logic formulae in the MLN, wi  is the weight of the i th 

logic formula f i , ni (x)  is the number of true groundings 
of the formula f i  in the given world x , and Z  is a 
normalization constant (Richardson and Domingos 2006). 
The weights of the logic formulae are learned from training 
data. An MLN can be viewed as a template by which one 
can construct Markov networks. 

MLN for Goal Recognition 
We first defined a set of predicates as the basic building 
blocks to represent the proposed MLN for goal 
recognition. There are two types of predicates, observed 
and hidden. Observed predicates are those that are fully 
observable while a player is interacting with the game 
environment. In contrast, hidden predicates are those that 
are not directly observable by the game environment. 
Instead, the groundings of the hidden predicates are 
predicted from the groundings of the observed predicates 
based on a learned model. In other words, hidden 
predicates represent the target phenomena to be modeled 
with the MLN. Table 1 shows the observed and the hidden 
predicates in our MLN. The three observed predicates, 
action(t, a), loc(t, l), and state(t, s), are the properties that 
characterize player actions as described earlier in this 

                                                
1 MLNs make classification decisions based on the values of the features. 
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section. The hidden predicate goal(t, g) represents the 
player’s goal at a given time t. 

By combining these observed and hidden predicates 
with logical operations, a total of 13 logic formulae were 
constructed. As an example, formula (2) considers the 
relation between actions and goals. Given an observed 
action a at time t, this formula predicts that the player’s 
goal at time t will be g. However, it is unrealistic to assume 
a one-to-one mapping between actions and goals. To allow 
potential many-to-many mappings between actions and 
goals, the formula was defined as a soft constraint by 
assigning a weight function to it. Analogous soft 
constraints were defined for user location and game state 
as well. Formula (3) reflects an implication that the same 
action could imply a different goal at a different narrative 
state. Formula (4) considers the previous player action as 
well as the current action. These were also defined as soft 
constraints. In addition to the soft constraints, our MLN 
includes one hard constraint, which is represented by 
Formula (5). This hard constraint asserts that there should 
exist exactly one goal per action at any given time.  

The weights for the soft constraints were learned by 
using Cutting Plane Inference (CPI) in Markov theBeast, 
an off-the-shelf tool for MLNs (Riedel 2008). CPI is a 
maximum a posteriori inference (MAP) technique for 
Markov logic, which instantiates a small fraction of a given 
complex MLN incrementally and solves it using a 
conventional MAP inference method such as integer linear 
programming (ILP) and MaxWalkSAT. CPI has been 
shown to improve the efficiency of MAP inference 
compared to conventional methods alone. As the base 
inference method for the proposed goal recognition model, 
ILP was used, which provides exact solutions to the MLN.  

Figure 3 shows a partial graphical representation of the 
described MLN. Shaded and clear nodes indicate hidden 
and observed predicates, respectively. Two nodes are 
connected with an undirected arc when they appear 
together in at least one of the MLN formulae.  

Evaluation 
To train and test the proposed MLN, the data from the 
observation corpus was processed in several steps. First, all 
player actions that achieve goals were identified. Second, 
all actions in the observation sequence that precede the 
current goal but follow the previous goal were labeled with 
the current goal. Third, actions that achieve goals were 
removed from the data. Removing goal-achieving actions 
was necessary to ensure that model training was fair, 
because it would be trivial to predict goals from the goal-
achieving actions. Finally, all actions that were taken after 
achievement of the last goal were ignored, since those 
actions have no direct mapping to any goal. Summary 
statistics about the training data are shown in Table 2. 
Table 3 shows the set of goals considered in this work and 
their distribution in the processed corpus data.  

For evaluation, the proposed MLN was compared to one 
trivial and two non-trivial baseline systems. The trivial 
baseline was the majority baseline, which always predicted 
the goal that appears most frequently in the training data. 
The non-trivial baselines included two n-gram models, 
unigram and bigram. The unigram model predicted goals 
based on the current player action only, while the bigram 
model considered the previous action as well. In the n-
gram models, player actions were represented by a single 
aggregate feature that combines all three action properties: 
action type, location, and narrative state. Although 
simplistic, the n-gram models have been shown to be 

Predicate Description 
action(t, a) Player takes an action a at time t. 
loc(t, l) Player is at a location l at time t. 

Observed 

state(t, s) The narrative state at time t is s. 
Hidden goal(t, g) Player pursues a goal g at time t. 

Table 1. Observed and Hidden Predicates 

∀t,a,g : action(t,a) ⇒ goal(t,g)  
∀t,a,s,g : action(t,a) ∧ state(t,s) ⇒ goal(t,g)

 ∀t,a1,a2 ,g : action(t,a1 ) ∧ action(t − 1,a2) ⇒ goal (t,g)  
∀t,a : action(t,a) ⇒ ∃g : goal (t,g) = 1 

(2) 
(3) 
(4) 
(5) 

Total Number of Observed Player Actions 77182 
Total Number of Goals Achieved 893 
Average Number of Player Actions per Goal 86.4 

Table 2. Statistics for Observed Actions and Goals 

Running laboratory test on contaminated food 26.6% 
Submitting a diagnosis 17.1% 
Speaking with the camp’s cook  15.2% 
Speaking with the camp’s bacteria expert 12.5% 
Speaking with the camp’s virus expert 11.2% 
Speaking with a sick patient 11.0% 
Speaking with the camp nurse 6.4% 

Table 3. Distribution of Goals 

Figure 3. Graphical Representation of the proposed MLN 

Hidden Predicates 
Observed Predicates 

Current 
Game State 

Previous 
Player Action 

Current 
Location 

Current 
Player Action 

Current 
Goal 
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effective for goal recognition in spoken dialogue systems 
(Blaylock and Allen 2003) and interactive narrative game 
environment (Mott, Lee, and Lester 2006). In their work, 
both unigram and bigram models achieved higher 
prediction accuracies than a more sophisticated Bayesian 
Network model.  

The n-gram comparison models were created in ML. 
The unigram model was represented with the single 
weighted formula (6). The weighted formula defined for 
the bigram model was similar but considered two 
consecutive player actions at the same time. 

The two n-gram models and the proposed MLN model 
were trained using one-best MIRA (Crammer and Singer 
2003) as the update rule that is provided by Markov 
theBeast. The three models were evaluated with ten-fold 
cross validation on the entire data set. The models’ 
performance was measured using F1, which is the 
harmonic mean of precision and recall. It should be noted 
that in our data, each observed player action is associated 
with a single goal. The goal recognition model predicts the 
most likely goal for each player action. Thus, the values of 
precision, recall, and F1 are the same. Table 4 shows the 
average performance of each model over ten-fold cross 
validation. The MLN model scored 0.484 in F1, achieving 
82% improvement over the baseline. The unigram model 
performed better than the bigram model. A one-way 
repeated-measures ANOVA confirmed that the differences 
among the three compared models were statistically 
significant (F(2,18) = 71.87, p < 0.0001). A post hoc 
Tukey test revealed the differences between all pairs of the 
three models were statistically significant (p < .01). 

Discussion 
While all three models performed better than the baseline, 
the MLN model achieved the best performance, suggesting 
that the proposed MLN goal recognition framework is 
effective in predicting player goals from actions in a 
complex game environment.  The F1 score of 0.484 may 
appear low. However, this result is encouraging given the 
challenges posed by the data. The chance probability of 
accurately recognizing the seven goals in our data is 0.143. 
The MLN model’s improved performance compared to the 
n-gram models can be partially explained by the MLN’s 
relational learning framework, which facilitates explicit 
modeling of associations between goals. Furthermore, the 

structural flexibility of undirected graphical models, which 
permit cyclical relations, enables MLNs to model richer 
relations between actions and goals than n-gram models. 
The finding that the unigram model achieved higher 
performance than the bigram model is consistent with the 
result reported by Mott, Lee, and Lester (2006). Among the 
possible reasons for the unigram model’s superiority over 
the bigram model is data sparsity. The bigram model 
considers two consecutive previous goals, which would 
lead to each training instance for each bigram becomes 
sparser than in the unigram model.     

Inducing accurate goal recognition models has several 
prospective benefits for current work on CRYSTAL ISLAND. 
First, goal recognizers can be used to inform player-
adaptive decisions by narrative-centered tutorial planners, 
which comprise a particular class of drama managers that 
simultaneously reason about interactive narrative and 
pedagogical issues. Data-driven approaches to narrative-
centered tutorial planning are the subject of active research 
by the CRYSTAL ISLAND research team. They offer a 
method for dynamically tailoring events during students’ 
game-based learning experiences in order to individualize 
pedagogical scaffolding and promote student engagement. 
Second, goal recognizers can be used during data mining to 
inform the analysis and design of future iterations of the 
CRYSTAL ISLAND software. By automatically recognizing 
players’ goals, and identifying which actions are likely to 
be associated with those goals, researchers can gain 
insights into common types of problem-solving paths and 
challenges encountered by students. Finally, recognizing 
players’ goals will enrich in-game assessments of student 
learning and problem solving, which is a critical challenge 
for the serious games community.  

Conclusions 
Effective goal recognition holds considerable promise for 
player-adaptive games. Accurately recognizing players’ 
goals enables digital games to proactively support 
gameplay experiences that feature nonlinear scenarios 
while preserving cohesion, coherence and believability. 
This paper has introduced a goal recognition framework 
based on Markov logic networks that accurately recognizes 
players’ goals. Using model parameters learned from a 
corpus of player interactions in a complex, nonlinear game 
environment, the framework supports the automated 
acquisition of a goal recognition system that outperforms 
three baseline models.  
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