
Minstrel Remixed: Procedurally Generating Stories

Brandon Tearse, Noah Wardrip-Fruin, and Michael Mateas
Jack Baskin School of Engineering

University of California at Santa Cruz
1156 High Street, Santa Cruz, CA 95064
{batman, nwf, michaelm}@cs.ucsc.edu

Abstract
We are recreating, investigating, and defining new uses for
one of the most influential artificial intelligence projects of
the past 25 years: Scott Turner’s Minstrel, which is regarded
as a landmark in both the story generation and
computational creativity communities. We compare our new
system, Minstrel Remixed, with the implementation of the
original, and discuss the various additions made during our
rational reconstruction which facilitate investigations into
the inner workings of the system. In conclusion, we evaluate
the performance of Minstrel Remixed and determine that its
results are quite close to those of the original.

Introduction
While ongoing progress in digital entertainment
technology continues, commercial designers still largely
eschew systems for procedural story generation, preferring
instead to generate content by hand. In the academic
literature, projects such as (Appling & Riedl 2009, Roberts
& Isbell 2009) continue to investigate ways to improve the
nuances of interactive storytelling while others attempt to
create their own systems to investigate ways to use
knowledge from interactive narrative and story generation
in new fields such as playable games (Drachen & Hitchens
et al. 2009, Sullivan, Mateas & Wardrip-Fruin 2009). As a
complement to current research in the field, revisiting the
landmark systems of the 1970s and 80s with modern
computers and techniques may yield fruitful results. One
such landmark is Minstrel, developed by Scott Turner for
his Ph.D thesis (Turner 1993). Despite the fact that
Minstrel saw no further testing or investigation beyond that
which Turner performed in his dissertation, it is still one of
the most acclaimed story generation systems to date.
� Since a working copy of Minstrel does not exist to be
investigated and the system was designed and implemented
so long ago, Minstrel is an attractive candidate for rational
reconstruction (see below) followed by thorough testing.
� In the ongoing reconstruction of Minstrel we investigate
several topics, including: what authorial affordances
Minstrel provides, what new representations might be
needed to expand the system beyond strictly passive story
generation, and what new algorithms might be exploited to
favorably alter its performance. Through answering these

questions and continuing to explore what can be done with
such a successful system from the past, we have discovered
many interesting possible uses for Minstrel and a number
of insights into how and why it works.

Related Work

This section briefly outlines previous work done in the
three principal areas relevant to this project: classical story
generation systems, case based reasoning, and rational
reconstruction.

Classical Story Generation. The first major story
generation system, which preceded Minstrel and which
also received significant attention, is Tale-Spin (Meehan
1977). Like Minstrel, this system generates stories which
satisfy user-submitted requirements. Tale-Spin creates
English stories by planning a method for the main
character to achieve her or his goal, using inferences and
rules to generate a large number of details about a story
(many of which do little contribute to an audience
experience). This contrasts nicely with Minstrel, which
performs no logical inferences and which performs all
actions from the point of view of an author, manipulating
all parts of the story in parallel.
� Along with Minstrel and Tale-Spin, the other widely-
discussed early story generator is Universe (Lebowitz
1985) later reconstructed as WideRuled (Skorupski,
Jayapalan, et al. 2007) which implement a Hierarchical
Task Network planner to generate stories. These systems,
like Minstrel, generate stories from an author’s perspective.
Unlike Minstrel’s creative approach, however, they are
organized around immutable “plot fragments.”

Case Based Reasoning. Minstrel was developed as an
approach to creativity for Case Based Reasoning (CBR)
and its approach has been followed up in some past work,
some rather far afield. For example, TRAM-like operators
were applied to feature vector-based case representations in
the real-time strategy game Wargus in multiple studies
(Weber & Mateas 2009, Aha 2005).
� A bit closer to the original Minstrel, multiple projects
have been published in which Vladimir Propp’s work on
story fragment interchangeability (Propp 1968) is
leveraged to assist CBR systems to dynamically generate Copyright © 2010, Association for the Advancement of Artificial

Intelligence (www.aaai.org). All rights reserved.

192

Proceedings of the Sixth AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment

stories. One such such system was created to manage a
multiplayer game environment (Fairclough 2003) while
another has the same goals as Minstrel but uses predefined
relevant knowledge to supplement its CBR instead of
applying transformations (Gervas 2007).

Rational Reconstruction. The normal goal of rational
reconstruction is to investigate the inner workings of a
system by altering some components of the system and
comparing the results to the original. Once accomplished,
arguments can then be made about the pieces that were
altered and a view of the potential of the underlying system
can be separated from the arbitrary programming that the
original author implemented.

A number of projects (Musen, Gennarj & Wong 1995,
Tate 1995) have successfully used rational reconstruction
to better understand the fundamental concepts of the
original systems and to explore various improvements. It
should also be noted that a partial reconstruction of
Minstrel was performed (Peinado 2006) in which the
knowledge representation systems of Minstrel were
recreated in W3C’s OWL. While this did a good job of
proving that the knowledge representation can be
successfully recast, without the rest of the system in place
it is far from a complete reconstruction.

Minstrel Remixed

The original Minstrel was created to explore how well
human creativity could be simulated in the space of story
generation while taking advantage of the Case Based
Reasoning theories of the time (Turner, 1994). Our
reconstruction, Minstrel Remixed (MR), is a useful but
necessarily imperfect recreation based on written
descriptions of the original Minstrel—since neither the
source nor a working copy is available today. Our three
goals for MR differ from those of the original: to identify
elements of the original which were crucial to its operation,
to explore possible uses for the system outside of its
original scope, and to provide a version of Minstrel to the
research community for analysis and general use.

Architecture
Like Turner’s Minstrel, MR can be broadly broken down
into two main components. The Transform Recall Adapt
Method (TRAM) system is a case based reasoner which
modifies story details. Working above the TRAM system is
the Author Level Planning system which enforces
constraints and improves stories as they are generated.

Both systems use story subgraphs as their primitives.
Figure 1 shows the high level progression of requests that
make up a single step of the story generation loop. First an
Author Level Plan (ALP) notes that there is a chunk of the
story that is underspecified or in some way requires
attention (e.g., a character appears without an introduction,
major events appear without dramatic support, etc.). This
causes a call to the TRAM system asking for a story detail
with some specific characteristics. Once that is found or

pieced together from the story library, the results are
adapted back to modify the current story.

Story Graphs. Stories in MR are represented exactly like
those in the original Minstrel, as graphs with labeled
directed edges and a number of facts attached to each node.
There are four types of nodes: state, act, goal, and belief.
Each of these can have values assigned to the following
fields: type, actor, object, value, to, and from. When
combined with appropriate edges and a list of nouns, these
graphs have a one-to-one relationship with completely
realized stories. An example story graph can be seen in
Figure 2, which illustrates a very short story describing a
princess who drinks a potion in order to injure herself.

TRAMs. (Transform Recall Adapt Methods) perform all of
the fine-grained story graph edits in both Minstrel and
Minstrel Remixed. TRAMs are small bundles of operations
designed to help recall useful information from the story
library. Each TRAM takes a requirements graph as input
and performs a transformation to produce a new graph. It
then performs a recall from the story library based on the
new graph and attempts to adapt the matches back to the
original query through a reverse transformation. There are
many TRAMs in the library because each one has its own
unique transformation and reverse transformation, giving
the system flexibility. Just as in Turner’s original work, the
TRAM system in its simplest mode of operation is given a
requirements graph which it uses to perform straight recall
from the story library. But the creative power of the
TRAMs is their ability to transform the requirements graph
into something different and then adapt the results back to
a useable story graph. This transformation and adaptation
is done through one or more of a library of individual
TRAMs. The most generic of these TRAMs is called
Generalize Constraint—which simply takes the
requirements graph and makes it more general by
removing one of the constraints.

An example of TRAMs in action is as follows: a graph is
passed in requiring a knight, John, to die by the sword. By
transforming this initial query using a TRAM called
Generalized Constraint, we might end up with a resulting
requirement in which a something dies by the sword. If this
then matched to a story about another knight, Frances who
has a duel with an Ogre and kills it, then the TRAM system
could replace the Ogre with John the knight and return a
story fragment about a duel between John and Frances in
which John dies.

Figure 1. Overview of Minstrel’s Components

193

� The creative power of TRAMs ultimately comes from
their ability to find cases in the story library which aren’t
easily recognizable as applicable. In the original Minstrel,
a search which returns no results will be transformed by a
random TRAM and then restarted. This often leads to a
random sequence of transformations being applied to the
search term before a result is located. In MR however, we
have enabled TRAMs to be chosen intelligently, oftentimes
resulting in fewer transformations being needed to get
search results and thus more similarity between the original
query and the eventual result. To illustrate the ability that
the TRAM approach has to create truly unexpected results,
we can look at other ways for John to die. Let’s say that the
first TRAM applied is Similar Outcomes Partial Change,
which changes the death requirement of John’s story to
some ambiguous change in health. Let’s also say that,
when this failed to match anything in the story library, the
Generalize Noun TRAM was triggered next, which
generalized John to a Generic person. These changes
allowed the requirements to match with the story fragment
from Figure 2 in which John matches to Princess Peach
who uses a potion to hurt (rather than kill) herself. Upon
adaptation back to the current requirements, the resulting
story is that John commits suicide, killing himself
dramatically with a potion (See Figure 3 for the whole
progression).

� Although the original TRAM system functioned well
and created interesting results for Minstrel to work with,
during our reconstruction we decided that the TRAM
system was a ripe place to investigate possible changes. So
we included hooks in the TRAM system of Minstrel
Remixed which enable programmers to change the manner
in which TRAMs are selected and applied. Two selection
algorithms which are discussed below in the rational
reconstruction section of this paper have been included and
can be selected from by toggling a single variable.
Generalized Story Templates. Planning Advice Themes
(PATs) are parable based story templates which are used to
start stories. The original Minstrel exclusively used PATs
and could produce stories to illustrate themes such as “a
bird in the hand is worth two in the bush.” In MR we have
opted for a more generalized target and thus have a wide
array of templates, some of which do not describe adages.
Although they are the same structurally, we call these more

Figure 3. TRAM progression to suicide.

generic PATs Generalized Story Templates (GSTs).
Because all PATs can be translated into the more flexible
GSTs with little or no work, this gives MR more overall
flexibility in its story frameworks. GSTs have the same
structure as a completed story graph but they are generally
full of holes or placeholder variables that need to be filled
in. An example GST is shown in Figure 4, in which a
person asks another person for help and successfully
solicits their aid.

� Because the structure of the GST provides an outline
that is filled in by the other systems in Minstrel Remixed,
the quality of the GSTs is directly linked to the quality of
the resulting stories. As the very first step in any story
creation in MR, any given requirements are used to select
an appropriate GST, which is then installed into the story
graph for the rest of the system to work with.
Author Level Plans. The Author Level Planning system
contains a number of Author Level Plans (ALPs) which
guide story construction at a high level. ALPs are
responsible for looking at the current state of their target
(the current story graph) and planning modifications to it
with the eventual goal of filling in the whole story graph in
a desirable manner. There are three classes of ALP which
operate together: Story Producers, Story Checkers, and
Story Enhancers. Producers are the simplest form of ALP
and operate by handing story subgraphs that have blank
variables to the TRAM system to be filled out. The
Checkers are only slightly more complex in that they each
search over the story graph for very specific subgraphs and
add other ALPs to the queue in order to deal with the
discovered subgraphs. Enhancers are used to add rich
characteristics to a story such as tragedy, suspense, and
characterization. As such, enhancers will often add

Figure 4. Extremely Simple GST

194

additional details to the story outside of its original bounds,
generally in the form of new nodes being added to the
story graph.

� Figure 5 shows the ALP System in action, starting with
an empty story graph in which person A asks person B for
help in becoming more healthy. The first ALP in the queue
that activates in this case will be a Completeness Checker
which looks for question marks or undefined nouns (in this
case A and B). The Completeness Checker, upon finding
the empty variables in the story graph, will put the Story
Producer ALP in the queue with its target set to the nodes
in question. The Story Producer ALP targets ‘Act SIX’
with its question marked entry and pulls ‘Goal FIVE’ and
‘State SEVEN’ in as references and passes the trio of nodes
off to the TRAM system to get a matching story fragment.
It gets back a story in which MrKnight uses a magical
Princess Wand on Roselyn to make her healthy. In cleaning
up, the producer ALP changes all instances of A and B in
the story to match Roselyn and MrKnight and returns the
story shown in figure 5. Once that is complete, a checker
ALP called Accidental Consequences runs over the story in
search of acts which have outgoing intends edges but no
outgoing accidents edges. This checker is designed to find
places where Story Enhancers can be brought to bear to
make the story more interesting or detailed. In this case it’s
trying to find good candidates for side effects of main plot
actions which can be either left alone to provide
background details or which can later be woven back into
the plot. It notes two such places and queues an
enhancement ALP which decides that the extra state, EL:2
should be added to enhance the story by adding an

Figure 5. A Completely Generated Story

accidental side-effect of the princess wand. Although in
this instance MR was stopped before continuing on from
this point, additional enhancement could have been
brought to bear to further embellish upon the completed
story.

Modernization. Although Minstrel Remixed attempts to
stick to the original designs for Minstrel as much as
possible, improvements have been added to make it easier
to use in a modern setting. MR is coded in Scala which can
operate as a functional language like Minstrel’s LISP
variant but can compile down to Java source or Java byte
code. Additionally, MR will read XML files into its story
library, scripts, and GSTs. This makes it much easier to
author new content, swap entire story libraries in and out,
and exchange specific stories between instances. We also
included an interactive text based shell and an output
routine for story graphs which allows for visual
representations to be generated as PDFs.

Minstrel’s Rational Reconstruction
Traditional rational reconstruction is performed in order to
investigate the importance of various components,
concepts, and algorithms to the functionality of a piece of
software. Through studies of this sort we are able to learn
what is crucial to the underlying operation of the software
and what is merely an implementation detail. We have kept
these goals in mind while building Minstrel Remixed.
Turner’s dissertation (Turner 1993) was used as a starting
point for MR but in keeping with the goals of a rational
reconstruction we have sought alterations that might give
some clues as to the full potential of the system. As a
result, during our reviewing of the code base we have
supplemented the original functionality in a number of
areas to provide insights into what makes Minstrel unique.
While the focus of the project has been on a faithful
recreation, in this section we describe the algorithm-level
changes and alternate applications of Minstrel that we are
exploring. By rationally reconstructing Minstrel, we enable
these explorations of Minstrel’s generative model.
� In Minstrel the TRAMs are a crucial aspect of the
functioning of the system. TRAMs function by being given
a requirement which they then transform and attempt to
match. Minstrel implemented an index tree that spanned
the story library in order to quickly retrieve only those
cases which were relevant for matching. MR deviates from
the original functionality in that it uses the increased
processing power of modern machines to find all subgraphs
in the story library which have the same types of nodes
(i.e., State, Act, Goal, Belief) in the same order as the
requirement graph and then attempts to match against them
all. Additionally, where Minstrel only has one TRAM
application strategy, a depth-limited depth-first search of
sequentially applied random transforms, MR was
implemented with a hook upon which any appropriate
algorithm can be mounted and toggled on or off. As can be
seen in figure 6, Minstrel’s random TRAM application (zig
zag arrows) is inefficient and often requires more

195

transformation to return results than the optimum
transformation. Although transformations are directly
correlated with perceived creativity of results, more
transformations also tends to lead to a higher likelihood of
incompatible returns, leading to nonsensical story
fragments. In contrast to the random selection method, the
currently implemented graph distance algorithm (the direct
line from origin to closest point on figure 6), is able to very
efficiently ascertain which TRAMs would be required in
order to match the requirements graph to the graph in
question. By giving a penalty value to each TRAM and
applying this algorithm to all possible matches, MR is
provided with a sorted list of the closest matches (lowest
penalties) from which it can choose and then perform the
proscribed TRAMs to retrieve a solution. With some
random weighting applied to prevent MR from always
selecting the closest match, this method approximates the
capabilities of the random method without deviating so far
from ideal that nonsensical results are returned.

Interactivity. An interesting potential change between
Minstrel and Minstrel Remixed is made possible by the
dramatic improvement in processing power that has taken
place in the past two decades. While MR has not been
tested with thousands of stories in its library to search over,
initial tests of story creation happen instantaneously rather
than in tens of minutes (as was the case for Minstrel).
Using the new speed inherent in MR, interactivity can be
achieved in realtime. Although the thrust of the current
work has been towards recreating a functioning version of
Minstrel, care was taken to enable new functionality in the
ALP system such that all actions that are taken are
recorded in a manner that enables the system to roll back
story creation to a specific point and continue construction
along a different path. We have successfully performed
proof of concept tests in which a story has been generated,
rolled back to a specific point, modified by a user, and then
regenerated, incorporating the story prefix (the part that has
already happened) and the modification. The potential to
support interaction opens a number of research directions
that were previously closed to the Minstrel system.

Figure 6. TRAM Matching. Minstrel’s original random
TRAM selector (zig-zag) compared to graph distance

TRAM selector (slanted path).

N
ou

n
D

iff
er

en
ce

s

Value Differences

Evaluation

Since the original Minstrel is not available for comparison,
the only evaluative steps possible are to look at the
examples included in Turner’s book and dissertation. When
compared with these examples, MR appears to work as
intended. One example of a successful creative
transformation and recall by the original Minstrel is given
in figure 2. It was later reproduced by MR. Many of
Turner’s other examples were tested and shown to work as
well, including one example which has been often used to
demonstrate one of the major flaws with Minstrel in which
a knight attempts to curry favor with a princess by giving
her a hunk of meat (created by transforming a story about a
knight giving a hunk of meat to a dragon in order to
appease it). Although there are obvious reasons for this
outcome, it demonstrates that MR shares its progenitor's
limitation of not understanding any of the common sense
of the worlds behind the stories that it tells. It’s reasonable
to assume that both dragons and princesses like many of
the same things (gold, gems, etc.) but there’s no way for
MR to tell whether a gift for a dragon, horse, or hermit
would be of any interest to a princess. There is obvious
potential for work to be done in this area and we plan to
investigate means of providing some domain-appropriate
common sense knowledge MR as needed for projects in
the future.

Although we have no way of knowing how many story
fragments were incorporated into the original, we do know
that Minstrel’s story library was roughly equivalent to the
content of a few short stories. MR now has forty stories of
varying length (in two domains) along with eleven of the
original twenty-four TRAMs. The current contents of the
system have proved rich enough to procedurally generate
many viable story fragments from the original Arthurian
domain that Turner used. For completeness’ sake, we have
included a new domain of storytelling that revolves around
conspiracy theories. In this domain we had MR generate
150 story fragments and of those, some (ten to twelve)
appear to be interestingly unexpected (e.g., assassination
by alien abduction) and only 7 appear nonsensical. While
we acknowledge that a fantastic domain such as conspiracy
theories lowers the bar for fragments being useful, these
results indicate that MR is capable not only of reproducing
much of the original results of Minstrel but also of
generating stories in a completely novel domain.

Future Work

There are many future challenges and opportunities for
Minstrel Remixed. To begin with, problems due to MR’s
inability to understand common sense in its domain (such
as princesses being gifted meat) are unacceptable for many
uses. We believe that integrating some form of knowledge
base (such as ConceptNet (Liu & Singh 2004)) for use in
the TRAMs might allow us to improve the results of the
TRAMs without impacting the creative space too greatly.

196

� Additionally, the story library for MR is currently small.
An authoring tool is currently in development, which
allows users to rapidly create stories and fill MR’s library.
By use of this tool, we hope to flesh out the Arthurian and
Conspiracy domains and enable other users to create and
rapidly fill their own domain libraries as well. In addition
to filling the story library, a secondary task that needs to be
accomplished is to implement a system by which MR can
output English text in a manner equivalent to that
employed by the original Minstrel. A prototype for this
system is currently in production, but more work is needed
before it will be helpful in translating MR’s graphs into
English.
� Aside from connecting to common sense reasoning,
work to fill out the story library, and developing the ability
to report stories in English, additional rational
reconstruction would still be fruitful. Although hooks were
embedded into the TRAM system to allow us to investigate
the effects of alternate searching algorithms, additional
investigations could no doubt be made into the ALP
system. Finally, we believe that there are many ways in
which MR could be made to be interactive.

Conclusion

This paper has described Minstrel Remixed, a
reconstructed and working version of the original Minstrel
system created by Scott Turner. We have discussed a
number of improvements to the original design as well as
some of the potential applications for Minstrel Remixed
which lie well outside of the originally intended uses of
Minstrel. We believe that future work on Minstrel Remixed
will provide interesting insights into the nature of the
creativity demonstrated by the TRAM system, the
flexibility of the system as a whole, and the utility that
Minstrel Remixed will have in Interactive Narrative
applications.

Acknowledgements

This material is based upon work supported by the
National Science Foundation under Grant No. 0747522.

References

Appling, D. and Riedl, M. 2009. Representations for
Learning to Summarize Plots. In Proceedings of the 2009
AAAI Symposium on Intelligent Narrative Technologies II.

Drachen, A., Hitchens, M., Aylett, R., and Louchart, S.
2009. Modeling Game Master-based story facilitation in
multi-player Role-Playing Games. In Proceedings of the
2009 AAAI Symposium on Intelligent Narrative
Technologies II, 24–32.

Fairclough, C. and Cunningham, P. 2003. A multiplayer
case based story engine. In 4th International Conference
on Intelligent Games and Simulation, 41–46.

Gervas, P., Diaz-Agudo, B., and Hervas, R. Story plot
generation based on cbr. Applications and Innovations in
Intelligent Systems XII, 33–46.

Lebowitz, M. 1985. Story-telling as planning and learning.
Poetics, 14(6).

Liu, H. and Singh, P. 2004. ConceptNet—a practical
commonsense reasoning toolkit. BT Technology Journal,
22(4):211–226.

Meehan, J. 1977. Tale-spin, an interactive program that
writes stories. In Proceedings of the Fifth International
Joint Conference on Artificial Intelligence.

Musen, M., Gennari, J., and Wong, W. 1995.�A rational
reconstruction of INTERNIST-I using PROTEGE-II. In
Proceedings of the Annual Symposium on Computer
Application in Medical Care

Peinado, F., Gervas P. 2006. Minstrel reloaded: from the
magic of lisp to the formal semantics of OWL. in
Technologies for Interactive Digital Storytelling and
Entertainment, 93–97.

Propp, V. 1968. Morphology of the Folktale, trans.
Laurence Scott (Austin: University of Texas Press).

Roberts, D., Narayanan, H., and Isbell, C. 2009. Learning
to Influence Emotional Responses for Interactive
Storytelling. In Proceedings of the 2009 AAAI Symposium
on Intelligent Narrative Technologies II.

Skorupski, J., Jayapalan, L., Marquez, S., and Mateas, M.
2007. Wide ruled: A friendly interface to author-goal based
story generation. LECTURE NOTES IN COMPUTER
SCIENCE, 4871:26.

Sullivan, A., Mateas, M., and Wardrip-Fruin, N. 2009.
QuestBrowser: Making Quests Playable with Computer-
Assisted Design.

Tate, A. 1995. Integrating Constraint Management into an
AI Planner. Artificial Intelligence in Engineering, 9(3):
221–228.

Turner, S. (1993). MINSTREL: a computer model of
creativity and storytelling.

Turner, S. (1994). The creative process: a computer model
of storytelling and creativity.

W. Aha, D., Molineaux, M., and Ponsen, M. 2005.
Learning to win: Case-based plan selection in a real-time
strategy game. Case-Based Reasoning Research and
Development, 5–20.

Weber, B. and Mateas, M. 2009. Conceptual
Neighborhoods for Retrieval in Case-Based Reasoning. In
Proceedings of the 8th International Conference on Case-
Based Reasoning: Case-Based Reasoning Research and
Development, 357.

197

	AIIDE10
	Contents
	Index
	Help
	Terms
	AIIDE 2010

