
Polymorph: A Model for Dynamic Level Generation

Martin Jennings-Teats Gillian Smith Noah Wardrip-Fruin

Expressive Intelligence Studio
University of California Santa Cruz

1156 High Street, Santa Cruz, CA 95064
{mjennin1, gsmith, nwf}@soe.ucsc.edu

Abstract
Players begin games at different skill levels and develop
their skill at different rates—so that even the best-designed
games are uninterestingly easy for some players and
frustratingly difficult for others. A proposed answer to this
challenge is Dynamic Difficulty Adjustment (DDA), a
general category of approaches that alter games during play,
in response to player performance. However, nearly all
these techniques are focused on basic parameter tweaking,
while the difficulty of many games is connected to aspects
that are more challenging to adjust dynamically, such as
level design. Further, most DDA techniques are based on
designer intuition, which may not reflect actual play
patterns. Responding to these challenges, we have created
Polymorph, which employs techniques from level
generation and machine learning to understand level
difficulty and player skill, dynamically constructing levels
for a 2D platformer game with continually-appropriate
challenge. We present the results of the user study on which
Polymorph's model of level difficulty is based, as well as a
discussion of the unique features of the model. We believe
Polymorph creates a play experience that is unique because
the changes are both personalized and structural, while also
providing an example of a new application of machine
learning to aid game design.

 Introduction�

The classic 2D side-scrolling platformer is a genre of
games that focuses on jumping dexterity and precise timing
to get past obstacles in fairly linear levels; for example,
Super Mario Bros (Nintendo, 1985). The game levels are
designed to be difficult and unforgiving, so the player is
only able to complete a level after playing it partway
through multiple times to learn the exact necessary pattern
of actions. This genre of game has been very popular, but it
cannot be said to cater to every player's experience and
abilities. This is one example of the types of problems that
can be addressed with Dynamic Difficulty Adjustment
(DDA).

Polymorph is a 2D platformer game that generates and

�Copyright © 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

adjusts its levels during play as a means of DDA.
Specifically, rather than being authored by hand, game
levels are procedurally generated as the player moves
through the level, one chunk at a time as needed. The
generation of these chunks is customized to create a
difficulty curve that matches the player's performance, so
that each player is presented with a level that provides a
challenge appropriate to their skill. This is not to say that
the player will never die in a tough section or breeze
through an easy section, but Polymorph corrects for this in
the next section, in an attempt to avoid difficulty-related
player frustration and boredom.

We tackle the DDA problem by creating a machine-
learned model of difficulty in 2D platformer levels along
with a model of the player's current skill level. These
models are gleaned with a Multilayer Perceptron from play
traces. The play traces were collected with a web-based
tool that asks users to complete multiple short level
segments and rate them by difficulty. Polymorph uses the
difficulty models to select the appropriate level segment
for a player's current performance. The level segments are
generated automatically using a variation on the work of
Smith et al. (2009), which is described in more detail
below.

This paper shows how a game can be designed to
accommodate the skill and experience of every individual
player by incorporating machine learning techniques and
dynamic level generation. This is an advance on prior work
in dynamic difficulty adjustment, which has for the most
part avoided adaptive level design, and in procedural level
generation, which has mainly focused on creating full
levels for replayability. Polymorph consists of a data
collection tool, a level generator, a game engine, and a
learned model of level difficulty.

Related Work

Dynamic Difficulty Adjustment
Game designers nearly always strive to create games in
which the difficulty of the obstacles presented to the player
is appropriate for the player's skill level. As a player's skill

138

Proceedings of the Sixth AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment

improves through practice, a well designed game will
present more formidable difficulties so that the player is
never bored by overly easy gameplay or frustrated by
overly difficult gameplay. Both game designers and
scholars have referenced Csikszentmihalyi's concept of
“flow” to describe the player state in this approach to
games (Csikszentmihalyi, 1990; Chen, 2007; Fullerton et
al., 2004; Juul, 2009). This in itself is a very challenging
design task however, and game designers spend great
effort making sure that their game is well balanced so that
challenges will be appropriate for players' abilities. Even
so, designers are usually not able to accommodate every
player's skill level, and frustrating mismatches between a
player's skill and a game's difficulty are common (Hunicke,
2005; Phillips, 2009).

As described briefly above, Dynamic Difficulty
Adjustment (DDA) is a term for techniques in which
games automatically alter themselves in some way to better
fit the skill levels of the players. This is common in the
genre of racing games with the practice of “rubber
banding”, wherein players in last place are granted an
increased maximum speed (Hunicke, 2005). DDA is rarely
used in other game genres, but there are some notable
exceptions. One of the most complex examples of DDA in
a commercial game is the first-person shooter SiN
Episodes (Ritual Entertainment, 1998). It uses a statistical
model of player performance with “adviser” sub-systems
that adjust attributes such as the number of concurrent
enemies, the damage and accuracy of the enemies'
weapons, and the enemies' tendency toward throwing
grenades (Kazemi, 2008). Hunicke (2005) created the
Hamlet system, which uses sets of probabilities to
determine the appropriate time to intervene in a first-
person shooter by giving the player more ammo or a health
boost. Also, Olesen et al. (2008) created an AI opponent
for a real-time strategy game, using an evolutionary
algorithm to alter the opponent's strategy. What these DDA
approaches all have in common is that the intervention into
the game is primarily through a numeric attribute
adjustment. In contrast, the dynamic changes made by
Polymorph are structural rather than numeric in nature.

An alternative method of intervention, on which this
paper is focused, is the modification of the level design.
For example, Left 4 Dead (Valve Software, 2008) changes
the location and frequency of spawn points for enemies
and items based on player performance, which can have a
significant impact on player experience but is not a
substantial change in the structural design of the levels
(Booth, 2009). Pedersen et al. (2009) created a version of
Infinite Super Mario Bros (Persson) from which they
derived a statistical model of player challenge and
frustration, among other emotional states. Using their
evolutionary algorithms, this model could be used to
generate levels for a particular level of player challenge,
which is the closest work (of which we are aware) to the
approach of Polymorph. However, it is not designed to be
dynamic during play, unlike Polymorph, which generates
sections of a level ahead of the player's movement,

Figure 1 – Several possible mappings of level geometry
onto a particular rhythm of player action.

allowing a level to change in difficulty from start to finish
in response to changes in the player's performance.

Procedural Level Generation
Procedural level generation has been used in games for
decades, with popular RPGs such as Rogue (Toy and
Wichman, 1980) and Diablo (Blizzard Entertainment,
1997), as well as some 2D platformers such as Spelunky
(Yu, 2009). These games typically work by fitting together
hand-authored level chunks into random combinations.
Pedersen et al.'s (2009) variation on Infinite Super Mario
Bros also works on this principle, combining level chunks
to create a level that is measured according to a statistical
model of the emotions it would evoke in a player. This
work, along with Togelius et al.'s (2007) work on
generating tracks for racing games, uses an evolutionary
algorithm to iteratively create similar levels with slight
modifications. These approaches to level generation differ
from Polymorph by generating geometry in larger
granularity—as well as differing from Polymorph's unique
learning features, described later.

Smith et al. (2009) created a generator for 2D platformer
levels based on a model of player action-rhythm, which is
the basis for the level generation done in this project. Their
approach starts with a rhythm of desired player actions,
such as run, jump or wait. This generated rhythm is that
which the player feels with her hands while playing and
describes the pacing of the level. The generator then
chooses from sets of geometry that can fulfill each of these
actions—the same starting rhythm can produce many
distinct level designs depending on the geometry selected
for each action, as shown in Figure 1. Because the
generation is based on player actions and their associated
level geometry, it has a finer granularity of control over the
level design than the previously mentioned techniques
which use hand-authored level chunks. All of these
strategies for level generation have been offline full-level
generation techniques, meaning that they create an entire
playable level as a whole—usually ahead of time, rather

139

than generating parts of the level during play (Togelius et
al., 2010). This is because a primary motivation for
procedural level generation has been to create improved
replayability for a game, which can be accomplished by
giving the player a new level each time through. This is an
effective strategy for creating engaging game experiences,
but online level generation, in which the player's behavior
alters the level as they play, is a much more dynamic
approach to the core challenge to which Polymorph
responds: difficulty adjustment.

The game Charbitat is an example of online, real-time
level generation, where the player's preference for
interacting with certain elements will alter the game world
to increase the prevalence of that element (Nitsche et al.,
2006). This focus on the world’s elements differs
substantially from Polymorph’s focus on difficulty.

Data Collection

In order to generate parts of a level to match a player's skill
level, Polymorph uses both a model of difficulty in our
domain of 2D platformer levels and a dynamic model of
the player's current performance. To answer these two
questions—what makes a 2D platformer level difficult or
easy, and how do we determine if a player is struggling or
needs more of a challenge—we turn to a strategy of mass
data collection and statistical machine learning. We created
a data collection tool that asks a human player to play a
short (approximately 10 seconds) level segment, collecting
data on the level and the player's behavior along the way.
The collected data and its use as machine learning features
are discussed in more depth later. After the player
completes the level or their character dies, they are asked
to label the level segment by answering the multiple choice
question: how difficult was this level segment? The label
choices presented to the player are 1-Easy through 6-Hard.
Only data from players completing multiple levels is
considered, and the first attempt by each player is ignored
since it is assumed that the player is still learning the
mechanics.

The level segments are generated by an adaptation of the
action rhythm-based generator from Smith et al. (2009),
described in brief previously. The generator was modified
to create the shorter segments rather than full levels. We
propose that difficulty in interesting 2D platformer levels
comes largely from the combination of adjacent
components and not just from the presence or absence of a
particular component or from the width and frequency of
gaps—which has been the focus of past related work. This
claim has been supported by guides for level design
(Nicollet, 2004) and it is the reason we limit the level
segments to such a short length. With short level segments,
which don't contain too many level components, we can
control which independent variables (in this case level
component interactions) might be resulting in the difficulty
label the player assigned to the segment. It would be
impossible to measure the difficulty contributed by a single
pair of components (such as a gap followed by an enemy)

by using a large-scale, full-level difficulty label in which
the challenge is not pinpointed to a particular segment of
the level. We recognize that not all aspects of level
challenge are captured by these short segments, but we are
focusing on the micro level of component combinations
rather than level-wide patterns or the introduction of new
mechanics.

Another reason for using these short level segments is
that they seem an ideal granularity for custom, player
performance-based, generated level chunks. As the player
progresses through a Polymorph level, each time they
successfully pass through a segment of this length (or die),
another segment of the same length is generated and placed
in front of them, extending the level.

One potential drawback to this method of data collection
is that players have differing levels of mastery over the
game mechanics and an inexperienced player might
therefore spend the first level segment learning to play. To
compensate for this initial player disorientation, we discard
each player's first level from the data analysis. After
learning the game mechanics and controls in the first level,
the differing skill of the players allows Polymorph to
model difficulty for an average player based on the wide
range of data.

The data collection tool, along with the Polymorph game
proper, is Flash-based so that it can be easily distributed
and used through most web-browsers by many
simultaneous players. Using this tool we collected data
from 211 unique players completing 2258 level segment
playthroughs. Data collection is ongoing as of the writing
of this paper.

Figure 2 – Part of a level segment in Polymorph's data
collection tool with the player character on the left. The
segment includes a jump up over a gap, a coin and an
enemy that moves left and right along the platform.

Learning Features

The first statistical model that Polymorph has learned from
the collected data is a ranking of level segments according
to their difficulty. As mentioned previously, we claim that
difficulty in 2D platformer levels is related to the
combinations of adjacent level components more than to
the presence of a particular level component. Using the
example shown in Figure 2, a gap by itself is easy to
overcome and a slow plodding enemy is not much of a
difficulty, but by placing the enemy on the landing

140

platform of the gap, the level designer has created a much
larger challenge for the player, requiring more exact timing
and prediction of the enemy's movements. Therefore we
have included as learning features not only the number of
occurrences of a particular level component, but also the
occurrences of any two-component adjacency in the level
segment. Using the example depicted in Figure 2 once
again, the feature regarding the number of upward-rising
gaps in the segment is incremented, as is the feature
regarding the number of gap-enemy adjacencies. Other
level segment-related features of interest include the
average gap width, the total change in altitude of the
platforms in the level and the width of the largest and
smallest platforms.

Polymorph also collected data for a model of the player's
current performance. The data collection tool keeps track
of features representing the player's behavior while
playing. Some of the more interesting features are the
amount of time the player spends standing still or moving
backwards, the total completion time of the level segment,
the number of coins collected, and whether the player died
or completed the segment. The data collection tool does
not ask the player how well they think they were
performing, but we assume that this is implicit in their
answer to how difficult they think the level segment was.

Given the level-descriptive features, we have applied a
Multilayer Perceptron algorithm to rank all of the
generated level segments as a model of difficulty, a process
described in more detail in the following section. During
play, Polymorph evaluates player behavior features on the
model trained from the collected data. Then, before the
player progresses into the next segment of the level a new
segment is chosen that is ranked either higher or lower as
necessary for the player's behavior. This way, as the player
learns to play the game better and improves their personal
skill, the level increases in difficulty to compensate and
maintains an appropriate challenge. Alternatively, if it
becomes clear that the player is struggling, the next
segment of the level is chosen to reduce challenge.

Results

The data instances received from the level segments with
the data collection tool are labeled by the individual player
according to how difficult they deem the segment to be.
Coming from over 200 different players, this difficulty
rating is of course subjective. Not all players will use the
same range of ratings or the same average rating, even
given the same levels. A conservative player might only
rate a particularly hard level as four out of six, while a
more liberal player might rate a difficult level as six out of
six. We used Gaussian normalization (Jin and Si 2004) to
convert the player-specific ratings to a usable, comparable
distribution.

The collected data was used to train and test a Multilayer
Perceptron algorithm with 10-fold cross validation. Many
classifiers were tested, but the best performance was
achieved by the Multilayer Perceptron, a feedforward

neural network that builds a model of the training data for
instance evaluation. The model is intended to be able to
order level segments by difficulty, so it was tested by
taking all pairs of instances (level segments) in the test set,
classifying them and ordering the pair by difficulty. The
model ordered 66.4% of the instance pairs correctly (the
same as the player ratings). Pedersen et al. (2009) were
able to order pairs of levels by “challenge” more accurately
(77%) in their work on Infinite Mario Bros. by focusing
their model on features related to gap width and frequency.
However, the levels generated by Polymorph are classified
by a model of how different combinations of components
affect the level's difficulty, which allows us to examine
these combinations as aspects of difficulty in themselves.

Feature Correlation coefficient

Gap_Kill 0.7749

JumpUp 0.7095

Gap_Gap 0.6765

Gap_Avoid 0.6177

FlatGap –0.5316

KillEnemy –0.5222

Avoid 0.3818

JumpDownGap 0.3219

JumpUpGap –0.0842

Avoid_Thwomp 0.0709
Table 1 – Ten most highly correlated features.

Underscores indicate adjacent components.
We can see from Table 1 that several of the component

combination features are significantly correlated with the
difficulty of the generated level segments. Gap_Kill, the
most highly correlated feature, is a gap followed by a
moving enemy on the landing platform, such as the level
segment shown in Figure 2. Similarly, Gap_Gap is the
feature for two adjacent gaps with a short platform in
between and Gap_Avoid is a gap followed by spikes on the
landing platform. This seems to indicate the intuitive level
design notion that a good way of increasing the difficulty
is by placing another level component immediately after a
gap, requiring better jumping precision and timing from
the player. On the other hand, the negative entries in Table
1 show that a lone gap or killable enemy is easy to
overcome on its own. One surprising result from Table 1 is
the correlation of a JumpUp component with difficulty.
Certainly we would expect a JumpUp component to be
more difficult than a JumpDown component, but we also
suspect that this is in part an artifact of Polymorph's game
mechanics, which allow the player character to jump
farther the longer the jump button is pressed. This is
common to a lesser extent in many classic 2D platformers,
but it still may be a source of difficulty for some players
when attempting a long upward jump.

141

The player behavior related features were less strongly
correlated with the difficulty of the level segment. Only the
player character's death had a very strong (positive)
correlation with difficulty, though the number of coins
collected also had a weak (negative) correlation. Given this
revelation, until a further user study is performed to
determine more player behavior features that are strongly
correlated with level difficulty, Polymorph is using a
somewhat simplified model of player performance.
Possibly a larger game with more player-actions would be
necessary for a better player performance model. When the
player character dies it is taken as an indication that the
player is struggling, more strongly if they die twice within
a short time period. The number of coins collected is also
taken as a weak indicator of performance: the higher
percentage of available coins that the player collects, the
better they are doing.

It is a well known game design principle that players
should face increasing difficulty as they advance through
the game, gradually honing their mastery of the game
mechanics (Juul, 2009). Falstein (2005) has added that
game difficulty should increase irregularly and that some
amount of unpredictable challenge enhances player
enjoyment. As such, Polymorph attempts to gradually
increase the difficulty of the level design as the player
progresses further into the level, varying the amount of
increase for an irregular difficulty curve. Polymorph only
halts the difficulty increase or starts a difficulty decrease
when the player's performance has drastically declined,
indicated by the death of the player character.

When Polymorph determines that the difficulty of the
next level segment should be increased or decreased, the
level generator creates a list of level segments, which are
evaluated on the Multilayer Perceptron model. These
segments are then ordered by difficulty in relation to the
current 'in play' segment. Then a segment with the
appropriate difficulty relation to the 'in play' segment,
easier if the player is dying or harder according to the
gradual difficulty curve, is selected and added onto the end
of the current level. Thus Polymorph's levels adjust
themselves dynamically to fit an individualized difficulty
level for the player.

In addition to personalized difficulty, Polymorph's
dynamic level generation also achieves the traditional
procedural content generation goal of replayability. Two
Polymorph players performing identically will still have a

different experience as the level unfolds differently before
each of them.

Example Segments

Figure 3 shows two of the level segments that were created
by Polymorph's level generator, played by a human player
with the web-based data collection tool and rated according
to difficulty. The first segment was given a 1 (easy) player
rating, while the second was rated 6 (hard). The first
segment includes the JumpUp and Gap_Kill features, and
the second includes the JumpUp, Gap_Avoid and
Avoid_Thwomp features. In this case, the addition of the
thwomp component on the final platform seems to have
substantially added to the challenge of the player's
experience. This is the kind of level design knowledge that
Polymorph encodes in its learned model of component
difficulty.

Conclusion & Future Work

This paper has described the implementation of the 2D
platformer Polymorph. The game's goal is to create a
unique player experience in which Dynamic Difficulty
Adjustment is performed on the structural design of the
game levels, giving players the appropriate level of
challenge while trying to minimize difficulty-related
frustration or boredom. This is achieved through a model
of level difficulty learned from a web-based data collection
user study, wherein over 200 players rated generated level
segments according to difficulty. Our results show
correlation between many of the features and the player
rating of difficulty for the level segment. The features of
this level-difficulty model are unique because they take
into account the combinations of level components
confronting the player. This model is used dynamically in
Polymorph to maintain a gradual difficulty curve until the
player shows signs of struggling, when the difficulty of the
level is reduced to compensate.

This paper's contributions are the description of a new,
machine learning-based strategy for dynamic level
generation and the creation of a unique gameplay
experience in Polymorph, which gives the player
individualized game level structures and challenges.

Areas of future work may include user studies to

142

validate the effectiveness of the game at achieving its
stated goal of personalized Dynamic Difficulty
Adjustment. One difficulty with this is the possibility that
DDA is 'invisible' to the player when it is doing its job
correctly. We would also like to develop a stronger model
of player performance to determine if a player is struggling
before they die, though it is not desirable to prevent the
player from ever losing (Juul, 2009).

The same techniques applied in this paper could be used
for other game designs and genres, providing that the
appropriate tools were available: data collection for how
difficulty is impacted by combinations of level components
—including structural differences—and a level generator
to create short segments that can be strung-together in real
time into playable levels. Some existing commercial
middleware might assist in collecting player behavior data
in different game genres.

Game Availability
Polymorph can be played online at
http://users.soe.ucsc.edu/~mjennin1/polymorph/polymorph
.html. The data collection device is still online as of this
writing at
http://users.soe.ucsc.edu/~mjennin1/segments/PlayTestLev
elSegment.html.

References

Blizzard Entertainment 1997. Diablo.

Booth, M. 2009. The AI Systems of Left 4 Dead. Keynote,
Fifth Artificial Intelligence and Interactive Digital
Entertainment Conference (2009).

Chen, J. 2007. Flow in games (and everything else).
Commun. ACM 50, 4 (Apr. 2007), 31-34.

Csikszentmihalyi, M. Flow: The Psychology of Optimal
Experience. Harper Perennial, London, 1990.

Falstein, N. 2005. "Understanding Fun—The Theory of
Natural Funativity". Introduction to Game
Development, ed. Steve Rabin. Charles River Media,
Boston, 71-98.

Fullerton, T., Swain, C., and Hoffman, S. 2004. Improving
player choices. Gamasutra (March 2004).
http://www.gamasutra.com/features/20040310/fullerton
_01.shtml. Online Feb. 1, 2005.

Hunicke, R. 2005. The case for dynamic difficulty
adjustment in games. In Proceedings of the 2005 ACM
SIGCHI international Conference on Advances in
Computer Entertainment Technology (2005). ACE '05,
vol. 265. ACM, New York, NY, 429-433.

Jin, R. and Si, L. 2004. A Study of Methods for
Normalizing User Ratings in Collaborative Filtering.
The 27th Annual International ACM SIGIR Conference

(SIGIR 2004), pp. 568-569.

Juul, J. 2009. Fear of Failing? The Many Meanings of
Difficulty in Video Games. The Video Game Theory
Reader 2, B. Perron and M. Wolf, Ed. Routledge,
London.

Kazemi, D. 2008. Metrics and Dynamic Difficulty in
Ritual's SiN Episodes. OrbusGameWorks.com.
http://orbusgameworks.com/blog/article/70/metrics-
and-dynamic-difficulty-in-rituals-sin-episodes-part-1

Nicollet, Victor. 2004. Difficulty in Dexterity-Based
Platform Games. GameDev.net (March 2004).
http://www.gamedev.net/reference/articles/article2055.
asp

Nintendo 1985. Super Mario Bros.

Nitsche, M., Ashmore, C., Hankinson, W., Fitzpatrick, R.,
Kelly, J., and Margenau, K. 2006. Designing
Procedural Game Spaces: A Case Study. In
Proceedings of FuturePlay (2006).

Olesen, J., Yannakakis, G., and Hallam, J. 2008. Real-time
challenge balance in an RTS game using rtNEAT.
Proceedings of the 2008 IEEE Symposium on
Computational Intelligence and Games (2008).

Pedersen, C., Togelius, J., and Yannakakis, G. 2009.
Modeling Player Experience in Super Mario Bros.
Proceedings of the 2009 IEEE Symposium on
Computational Intelligence and Games (2009).

Persson, M. Infinite Mario Bros.

Phillips, B. 2009. Staying Power: Rethinking Feedback to
Keep Players in the Game. Gamasutra.com.
http://www.gamasutra.com/view/feature/4171/staying_
power_rethinking_feedback_.php

Ritual Entertainment 1998. SiN Episodes.

Smith, G., Treanor, M., Whitehead, J., Mateas, M. 2009.
Rhythm-Based Level Generation for 2D Platformers.
Proceedings of the 2009 Int'l Conference on the
Foundations of Digital Games (2009).

Togelius, J., De Nardi, R., and Lucas, S. 2007. Towards
automatic personalised content creation for racing
games. Proceedings of the 2007 IEEE Symposium on
Computational Intelligence and Games (2007).

Togelius, J., Yannakakis, G., Stanley, K., and Browne, C.
2010. Search-based Procedural Content Generation. To
be presented at Evostar (2010).

Toy, M. and Wichman, G. 1980. Rogue.

Valve Software 2008. Left 4 Dead.

��������		
����
������

143

	AIIDE10
	Contents
	Index
	Help
	Terms
	AIIDE 2010

