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Abstract
Players  begin  games at  different  skill  levels  and  develop 
their skill at different rates—so that even the best-designed 
games  are  uninterestingly  easy  for  some  players  and 
frustratingly difficult for others. A proposed answer to this 
challenge  is  Dynamic  Difficulty  Adjustment  (DDA),  a 
general category of approaches that alter games during play, 
in  response  to  player  performance.  However,  nearly  all 
these techniques are focused on basic parameter tweaking, 
while the difficulty of many games is connected to aspects 
that  are  more  challenging  to  adjust  dynamically,  such  as 
level design. Further, most DDA techniques are based on 
designer  intuition,  which  may  not  reflect  actual  play 
patterns. Responding to these challenges, we have created 
Polymorph,  which  employs  techniques  from  level 
generation  and  machine  learning  to  understand  level 
difficulty and player skill,  dynamically constructing levels 
for  a  2D  platformer  game  with  continually-appropriate 
challenge. We present the results of the user study on which 
Polymorph's model of level difficulty is based, as well as a 
discussion of the unique features of the model. We believe 
Polymorph creates a play experience that is unique because 
the changes are both personalized and structural, while also 
providing  an  example  of  a  new  application  of  machine 
learning to aid game design.

 Introduction�

The  classic  2D  side-scrolling  platformer  is  a  genre  of 
games that focuses on jumping dexterity and precise timing 
to get  past  obstacles in fairly linear levels; for  example, 
Super Mario Bros (Nintendo, 1985). The game levels are 
designed to be difficult and unforgiving, so the player is 
only  able  to  complete  a  level  after  playing  it  partway 
through multiple times to learn the exact necessary pattern 
of actions. This genre of game has been very popular, but it 
cannot  be said to  cater  to  every player's  experience and 
abilities. This is one example of the types of problems that 
can  be  addressed  with  Dynamic  Difficulty  Adjustment 
(DDA).

Polymorph is a 2D platformer game that generates and 
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adjusts  its  levels  during  play  as  a  means  of  DDA. 
Specifically,  rather  than  being  authored  by  hand,  game 
levels  are  procedurally  generated  as  the  player  moves 
through  the  level,  one  chunk  at  a  time  as  needed.  The 
generation  of  these  chunks  is  customized  to  create  a 
difficulty curve that matches the player's performance, so 
that each player is presented with a level that provides a 
challenge appropriate to their skill. This is not to say that 
the  player  will  never  die  in  a  tough  section  or  breeze 
through an easy section, but Polymorph corrects for this in 
the next section, in an attempt to avoid difficulty-related 
player frustration and boredom.

We  tackle  the  DDA problem by  creating  a  machine-
learned model of difficulty in 2D platformer levels along 
with  a  model  of  the  player's  current  skill  level.  These 
models are gleaned with a Multilayer Perceptron from play 
traces.  The play traces  were  collected  with a web-based 
tool  that  asks  users  to  complete  multiple  short  level 
segments and rate them by difficulty. Polymorph uses the 
difficulty  models to select  the appropriate level segment 
for a player's current performance. The level segments are 
generated automatically using a variation on the work of 
Smith  et  al.  (2009),  which  is  described  in  more  detail 
below.

This  paper  shows  how  a  game  can  be  designed  to 
accommodate the skill and experience of every individual 
player by incorporating machine learning techniques and 
dynamic level generation. This is an advance on prior work 
in dynamic difficulty adjustment, which has for the most 
part avoided adaptive level design, and in procedural level 
generation,  which  has  mainly  focused  on  creating  full 
levels  for  replayability.  Polymorph  consists  of  a  data 
collection  tool,  a  level  generator,  a  game engine,  and  a 
learned model of level difficulty.

Related Work

Dynamic Difficulty Adjustment
Game designers  nearly  always  strive  to  create  games  in 
which the difficulty of the obstacles presented to the player 
is appropriate for the player's skill level. As a player's skill 
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improves  through  practice,  a  well  designed  game  will 
present more formidable difficulties so that the player is 
never  bored  by  overly  easy  gameplay  or  frustrated  by 
overly  difficult  gameplay.  Both  game  designers  and 
scholars  have  referenced  Csikszentmihalyi's  concept  of 
“flow”  to  describe  the  player  state  in  this  approach  to 
games (Csikszentmihalyi, 1990; Chen, 2007; Fullerton et 
al., 2004; Juul, 2009). This in itself is a very challenging 
design  task  however,  and  game  designers  spend  great 
effort making sure that their game is well balanced so that 
challenges will be appropriate for players' abilities. Even 
so, designers are usually not able to accommodate every 
player's skill level, and frustrating mismatches between a 
player's skill and a game's difficulty are common (Hunicke, 
2005; Phillips, 2009). 

As  described  briefly  above,  Dynamic  Difficulty 
Adjustment  (DDA)  is  a  term  for  techniques  in  which 
games automatically alter themselves in some way to better 
fit  the skill levels of the players. This is common in the 
genre  of  racing  games  with  the  practice  of  “rubber 
banding”,  wherein  players  in  last  place  are  granted  an 
increased maximum speed (Hunicke, 2005). DDA is rarely 
used  in  other  game  genres,  but  there  are  some  notable 
exceptions. One of the most complex examples of DDA in 
a  commercial  game  is  the  first-person  shooter  SiN 
Episodes (Ritual Entertainment, 1998). It uses a statistical 
model of player performance with “adviser” sub-systems 
that  adjust  attributes  such  as  the  number  of  concurrent 
enemies,  the  damage  and  accuracy  of  the  enemies' 
weapons,  and  the  enemies'  tendency  toward  throwing 
grenades  (Kazemi,  2008).  Hunicke  (2005)  created  the 
Hamlet  system,  which  uses  sets  of  probabilities  to 
determine  the  appropriate  time  to  intervene  in  a  first-
person shooter by giving the player more ammo or a health 
boost. Also, Olesen et al. (2008) created an AI opponent 
for  a  real-time  strategy  game,  using  an  evolutionary 
algorithm to alter the opponent's strategy. What these DDA 
approaches all have in common is that the intervention into 
the  game  is  primarily  through  a  numeric  attribute 
adjustment.  In  contrast,  the  dynamic  changes  made  by 
Polymorph are structural rather than numeric in nature.

An  alternative  method  of  intervention,  on  which  this 
paper is  focused, is the modification of the level design. 
For example, Left 4 Dead (Valve Software, 2008) changes 
the  location  and frequency of  spawn points  for  enemies 
and items based on player performance, which can have a 
significant  impact  on  player  experience  but  is  not  a 
substantial  change  in  the  structural  design  of  the  levels 
(Booth, 2009). Pedersen et al. (2009) created a version of 
Infinite  Super  Mario  Bros  (Persson)  from  which  they 
derived  a  statistical  model  of  player  challenge  and 
frustration,  among  other  emotional  states.  Using  their 
evolutionary  algorithms,  this  model  could  be  used  to 
generate levels for a particular level of player challenge, 
which is the closest work (of which we are aware) to the 
approach of Polymorph. However, it is not designed to be 
dynamic during play, unlike Polymorph, which generates 
sections of a level ahead of the player's movement, 

Figure 1 – Several possible mappings of level geometry 
onto a particular rhythm of player action.

allowing a level to change in difficulty from start to finish 
in response to changes in the player's performance.

Procedural Level Generation
Procedural  level  generation  has  been  used  in  games  for 
decades,  with  popular  RPGs  such  as  Rogue  (Toy  and 
Wichman,  1980)  and  Diablo  (Blizzard  Entertainment, 
1997), as well as some 2D platformers such as Spelunky 
(Yu, 2009). These games typically work by fitting together 
hand-authored  level  chunks  into  random  combinations. 
Pedersen et al.'s (2009) variation on Infinite Super Mario 
Bros also works on this principle, combining level chunks 
to create a level that is measured according to a statistical 
model  of  the emotions it  would evoke in  a player.  This 
work,  along  with  Togelius  et  al.'s  (2007)  work  on 
generating tracks for  racing games, uses an evolutionary 
algorithm  to  iteratively  create  similar  levels  with  slight 
modifications. These approaches to level generation differ 
from  Polymorph  by  generating  geometry  in  larger 
granularity—as well as differing from Polymorph's unique 
learning features, described later.

Smith et al. (2009) created a generator for 2D platformer 
levels based on a model of player action-rhythm, which is 
the basis for the level generation done in this project. Their 
approach starts  with  a  rhythm of  desired player  actions, 
such as run, jump or wait. This generated rhythm is that 
which the player feels with her hands while playing and 
describes  the  pacing  of  the  level.  The  generator  then 
chooses from sets of geometry that can fulfill each of these 
actions—the  same  starting  rhythm  can  produce  many 
distinct level designs depending on the geometry selected 
for  each  action,  as  shown  in  Figure  1.  Because  the 
generation is based on player actions and their associated 
level geometry, it has a finer granularity of control over the 
level  design  than  the  previously  mentioned  techniques 
which  use  hand-authored  level  chunks.  All  of  these 
strategies for level generation have been offline full-level 
generation techniques, meaning that they create an entire 
playable level as a whole—usually ahead of time, rather 

139



than generating parts of the level during play (Togelius et 
al.,  2010).  This  is  because  a  primary  motivation  for 
procedural  level  generation has  been to  create  improved 
replayability for  a  game, which can be accomplished by 
giving the player a new level each time through. This is an 
effective strategy for creating engaging game experiences, 
but online level generation, in which the player's behavior 
alters  the  level  as  they  play,  is  a  much  more  dynamic 
approach  to  the  core  challenge  to  which  Polymorph 
responds: difficulty adjustment. 

The game Charbitat is an example of online, real-time 
level  generation,  where  the  player's  preference  for 
interacting with certain elements will alter the game world 
to increase the prevalence of that element (Nitsche et al., 
2006).  This  focus  on  the  world’s  elements  differs 
substantially from Polymorph’s focus on difficulty.

Data Collection

In order to generate parts of a level to match a player's skill 
level,  Polymorph uses  both  a model  of  difficulty  in  our 
domain of 2D platformer levels and a dynamic model of 
the  player's  current  performance.  To  answer  these  two 
questions—what makes a 2D platformer level difficult or 
easy, and how do we determine if a player is struggling or 
needs more of a challenge—we turn to a strategy of mass 
data collection and statistical machine learning. We created 
a data collection tool that asks a human player to play a 
short (approximately 10 seconds) level segment, collecting 
data on the level and the player's behavior along the way. 
The collected data and its use as machine learning features 
are  discussed  in  more  depth  later.  After  the  player 
completes the level or their character dies, they are asked 
to label the level segment by answering the multiple choice 
question: how difficult was this level segment? The label 
choices presented to the player are 1-Easy through 6-Hard. 
Only  data  from  players  completing  multiple  levels  is 
considered, and the first attempt by each player is ignored 
since  it  is  assumed  that  the  player  is  still  learning  the 
mechanics.

The level segments are generated by an adaptation of the 
action  rhythm-based generator  from Smith et  al.  (2009), 
described in brief previously. The generator was modified 
to create the shorter segments rather than full levels. We 
propose that difficulty in interesting 2D platformer levels 
comes  largely  from  the  combination  of  adjacent 
components and not just from the presence or absence of a 
particular component or from the width and frequency of 
gaps—which has been the focus of past related work. This 
claim  has  been  supported  by  guides  for  level  design 
(Nicollet,  2004)  and  it  is  the  reason  we  limit  the  level 
segments to such a short length. With short level segments, 
which don't contain too many level components,  we can 
control  which  independent  variables  (in  this  case  level 
component interactions) might be resulting in the difficulty 
label  the  player  assigned  to  the  segment.  It  would  be 
impossible to measure the difficulty contributed by a single 
pair of components (such as a gap followed by an enemy) 

by using a large-scale, full-level difficulty label in which 
the challenge is not pinpointed to a particular segment of 
the  level.  We  recognize  that  not  all  aspects  of  level 
challenge are captured by these short segments, but we are 
focusing  on the  micro  level  of  component  combinations 
rather than level-wide patterns or the introduction of new 
mechanics.

Another reason for using these short level segments is 
that  they  seem  an  ideal  granularity  for  custom,  player 
performance-based, generated level chunks. As the player 
progresses  through  a  Polymorph  level,  each  time  they 
successfully pass through a segment of this length (or die), 
another segment of the same length is generated and placed 
in front of them, extending the level.

One potential drawback to this method of data collection 
is  that  players  have differing levels  of  mastery  over the 
game  mechanics  and  an  inexperienced  player  might 
therefore spend the first level segment learning to play. To 
compensate for this initial player disorientation, we discard 
each  player's  first  level  from  the  data  analysis.  After 
learning the game mechanics and controls in the first level, 
the  differing  skill  of  the  players  allows  Polymorph  to 
model difficulty for an average player based on the wide 
range of data.

The data collection tool, along with the Polymorph game 
proper, is Flash-based so that it can be easily distributed 
and  used  through  most  web-browsers  by  many 
simultaneous  players.  Using  this  tool  we  collected  data 
from 211 unique players completing 2258 level segment 
playthroughs. Data collection is ongoing as of the writing 
of this paper.

Figure 2 – Part of a level segment in Polymorph's data 
collection tool with the player character on the left. The 
segment includes a jump up over a gap, a coin and an 
enemy that moves left and right along the platform.

Learning Features

The first statistical model that Polymorph has learned from 
the collected data is a ranking of level segments according 
to their difficulty. As mentioned previously, we claim that 
difficulty  in  2D  platformer  levels  is  related  to  the 
combinations of adjacent level components more than to 
the  presence  of  a  particular  level  component.  Using  the 
example  shown  in  Figure  2,  a  gap  by  itself  is  easy  to 
overcome and a slow plodding enemy is  not  much of  a 
difficulty,  but  by  placing  the  enemy  on  the  landing 
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platform of the gap, the level designer has created a much 
larger challenge for the player, requiring more exact timing 
and prediction of  the enemy's  movements.  Therefore we 
have included as learning features not only the number of 
occurrences of a particular level component, but also the 
occurrences of any two-component adjacency in the level 
segment.  Using  the  example  depicted  in  Figure  2  once 
again, the feature regarding the number of upward-rising 
gaps  in  the  segment  is  incremented,  as  is  the  feature 
regarding  the  number  of  gap-enemy  adjacencies.  Other 
level  segment-related  features  of  interest  include  the 
average  gap  width,  the  total  change  in  altitude  of  the 
platforms  in  the  level  and  the  width  of  the  largest  and 
smallest platforms.

Polymorph also collected data for a model of the player's 
current performance. The data collection tool keeps track 
of  features  representing  the  player's  behavior  while 
playing.  Some  of  the  more  interesting  features  are  the 
amount of time the player spends standing still or moving 
backwards, the total completion time of the level segment, 
the number of coins collected, and whether the player died 
or  completed the segment.  The data collection tool does 
not  ask  the  player  how  well  they  think  they  were 
performing,  but  we  assume that  this  is  implicit  in  their 
answer to how difficult they think the level segment was.

Given the level-descriptive features, we have applied a 
Multilayer  Perceptron  algorithm  to  rank  all  of  the 
generated level segments as a model of difficulty, a process 
described in more detail in the following section. During 
play, Polymorph evaluates player behavior features on the 
model  trained  from the  collected  data.  Then,  before  the 
player progresses into the next segment of the level a new 
segment is chosen that is ranked either higher or lower as 
necessary for the player's behavior. This way, as the player 
learns to play the game better and improves their personal 
skill,  the  level  increases  in  difficulty  to  compensate and 
maintains  an  appropriate  challenge.  Alternatively,  if  it 
becomes  clear  that  the  player  is  struggling,  the  next 
segment of the level is chosen to reduce challenge.

Results

The data instances received from the level segments with 
the data collection tool are labeled by the individual player 
according to how difficult they deem the segment to be. 
Coming  from  over  200  different  players,  this  difficulty 
rating is of course subjective. Not all players will use the 
same range  of  ratings  or  the  same average  rating,  even 
given the same levels.  A conservative player might only 
rate a  particularly hard level as four out  of  six,  while a 
more liberal player might rate a difficult level as six out of 
six. We used Gaussian normalization (Jin and Si 2004) to 
convert the player-specific ratings to a usable, comparable 
distribution. 

The collected data was used to train and test a Multilayer 
Perceptron algorithm with 10-fold cross validation. Many 
classifiers  were  tested,  but  the  best  performance  was 
achieved  by  the  Multilayer  Perceptron,  a  feedforward 

neural network that builds a model of the training data for 
instance evaluation. The model is intended to be able to 
order  level  segments  by  difficulty,  so  it  was  tested  by 
taking all pairs of instances (level segments) in the test set, 
classifying them and ordering the pair by difficulty.  The 
model ordered 66.4% of the instance pairs correctly (the 
same as  the player  ratings).  Pedersen et  al.  (2009) were 
able to order pairs of levels by “challenge” more accurately 
(77%) in their work on Infinite Mario Bros. by focusing 
their model on features related to gap width and frequency. 
However, the levels generated by Polymorph are classified 
by a model of how different combinations of components 
affect  the  level's  difficulty,  which  allows  us  to  examine 
these combinations as aspects of difficulty in themselves.

Feature Correlation coefficient

Gap_Kill 0.7749

JumpUp 0.7095

Gap_Gap 0.6765

Gap_Avoid 0.6177

FlatGap –0.5316

KillEnemy –0.5222

Avoid 0.3818

JumpDownGap 0.3219

JumpUpGap –0.0842

Avoid_Thwomp 0.0709
Table 1 – Ten most highly correlated features. 

Underscores indicate adjacent components.
We can see from Table 1 that several of the component 

combination features are significantly correlated with the 
difficulty  of  the generated level segments.  Gap_Kill,  the 
most  highly  correlated  feature,  is  a  gap  followed  by  a 
moving enemy on the landing platform, such as the level 
segment  shown  in  Figure  2.  Similarly,  Gap_Gap  is  the 
feature  for  two  adjacent  gaps  with  a  short  platform  in 
between and Gap_Avoid is a gap followed by spikes on the 
landing platform. This seems to indicate the intuitive level 
design notion that a good way of increasing the difficulty 
is by placing another level component immediately after a 
gap,  requiring  better  jumping precision and  timing from 
the player. On the other hand, the negative entries in Table 
1  show  that  a  lone  gap  or  killable  enemy  is  easy  to 
overcome on its own. One surprising result from Table 1 is 
the  correlation  of  a  JumpUp component  with  difficulty. 
Certainly  we  would  expect  a  JumpUp component  to  be 
more difficult than a JumpDown component, but we also 
suspect that this is in part an artifact of Polymorph's game 
mechanics,  which  allow  the  player  character  to  jump 
farther  the  longer  the  jump  button  is  pressed.  This  is 
common to a lesser extent in many classic 2D platformers, 
but it still may be a source of difficulty for some players 
when attempting a long upward jump.
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The player behavior related features were less strongly 
correlated with the difficulty of the level segment. Only the 
player  character's  death  had  a  very  strong  (positive) 
correlation  with  difficulty,  though  the  number  of  coins 
collected also had a weak (negative) correlation. Given this 
revelation,  until  a  further  user  study  is  performed  to 
determine more player behavior features that are strongly 
correlated  with  level  difficulty,  Polymorph  is  using  a 
somewhat  simplified  model  of  player  performance. 
Possibly a larger game with more player-actions would be 
necessary for a better player performance model. When the 
player character dies it  is taken as an indication that the 
player is struggling, more strongly if they die twice within 
a short time period. The number of coins collected is also 
taken  as  a  weak  indicator  of  performance:  the  higher 
percentage of available coins that the player collects, the 
better they are doing. 

It  is  a  well  known game design principle that  players 
should face increasing difficulty as they advance through 
the  game,  gradually  honing  their  mastery  of  the  game 
mechanics  (Juul,  2009).  Falstein  (2005)  has  added  that 
game difficulty should increase irregularly and that some 
amount  of  unpredictable  challenge  enhances  player 
enjoyment.  As  such,  Polymorph  attempts  to  gradually 
increase  the  difficulty  of  the  level  design  as  the  player 
progresses  further  into  the  level,  varying  the  amount  of 
increase for an irregular difficulty curve. Polymorph only 
halts the difficulty increase or starts a difficulty decrease 
when  the  player's  performance  has  drastically  declined, 
indicated by the death of the player character. 

When Polymorph determines that  the difficulty of  the 
next level segment should be increased or decreased, the 
level generator creates a list of level segments, which are 
evaluated  on  the  Multilayer  Perceptron  model.  These 
segments are then ordered by difficulty in relation to the 
current  'in  play'  segment.  Then  a  segment  with  the 
appropriate  difficulty  relation  to  the  'in  play'  segment, 
easier  if  the  player  is  dying  or  harder  according  to  the 
gradual difficulty curve, is selected and added onto the end 
of  the  current  level.  Thus  Polymorph's  levels  adjust 
themselves dynamically to fit an individualized difficulty 
level for the player.

In  addition  to  personalized  difficulty,  Polymorph's 
dynamic  level  generation  also  achieves  the  traditional 
procedural  content  generation goal  of  replayability.  Two 
Polymorph players performing identically will still have a 

different experience as the level unfolds differently before 
each of them.

Example Segments

Figure 3 shows two of the level segments that were created 
by Polymorph's level generator, played by a human player 
with the web-based data collection tool and rated according 
to difficulty. The first segment was given a 1 (easy) player 
rating,  while  the  second  was  rated  6  (hard).  The  first 
segment includes the JumpUp and Gap_Kill features, and 
the  second  includes  the  JumpUp,  Gap_Avoid  and 
Avoid_Thwomp features. In this case, the addition of the 
thwomp component  on the final  platform seems to have 
substantially  added  to  the  challenge  of  the  player's 
experience. This is the kind of level design knowledge that 
Polymorph  encodes  in  its  learned  model  of  component 
difficulty.

Conclusion & Future Work

This  paper  has  described  the  implementation  of  the  2D 
platformer  Polymorph.  The  game's  goal  is  to  create  a 
unique  player  experience  in  which  Dynamic  Difficulty 
Adjustment  is  performed on  the  structural  design  of  the 
game  levels,  giving  players  the  appropriate  level  of 
challenge  while  trying  to  minimize  difficulty-related 
frustration or boredom. This is achieved through a model 
of level difficulty learned from a web-based data collection 
user study, wherein over 200 players rated generated level 
segments  according  to  difficulty.  Our  results  show 
correlation between many of  the features  and the  player 
rating of difficulty for the level segment. The features of 
this  level-difficulty  model  are  unique  because  they  take 
into  account  the  combinations  of  level  components 
confronting the player. This model is used dynamically in 
Polymorph to maintain a gradual difficulty curve until the 
player shows signs of struggling, when the difficulty of the 
level is reduced to compensate.

This paper's contributions are the description of a new, 
machine  learning-based  strategy  for  dynamic  level 
generation  and  the  creation  of  a  unique  gameplay 
experience  in  Polymorph,  which  gives  the  player 
individualized game level structures and challenges.

Areas  of  future  work  may  include  user  studies  to 
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validate  the  effectiveness  of  the  game  at  achieving  its 
stated  goal  of  personalized  Dynamic  Difficulty 
Adjustment. One difficulty with this is the possibility that 
DDA is 'invisible'  to the player when it  is  doing its  job 
correctly. We would also like to develop a stronger model 
of player performance to determine if a player is struggling 
before they die,  though it  is  not desirable to prevent the 
player from ever losing (Juul, 2009). 

The same techniques applied in this paper could be used 
for  other  game  designs  and  genres,  providing  that  the 
appropriate tools were available:  data collection for  how 
difficulty is impacted by combinations of level components
—including structural  differences—and a  level  generator 
to create short segments that can be strung-together in real 
time  into  playable  levels.  Some  existing  commercial 
middleware might assist in collecting player behavior data 
in different game genres.

Game Availability
Polymorph  can  be  played  online  at 
http://users.soe.ucsc.edu/~mjennin1/polymorph/polymorph
.html. The data collection device is still online as of this 
writing at
http://users.soe.ucsc.edu/~mjennin1/segments/PlayTestLev
elSegment.html.
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