
Adversarial Navigation Mesh Alteration

D. Hunter Hale and G. Michael Youngblood
The University of North Carolina at Charlotte

Game Intelligence Group, Department of Computer Science
9201 University City Blvd, Charlotte, NC 28223-0001

{dhhale, youngbld}@uncc.edu

Abstract

Game environments are becoming more and more mutable
from the actions of both Players and Non Player Characters
(NPCs). However, current generation AI agents do not take
advantage of the tactical abilities these mutable worlds pro-
vide. We propose a method to make the game agents aware
of the mutability of the world by extending their repertoire
of abilities to include world alteration commands and some
evaluation functions, which determine when and where to
alter the world for the greatest tactical gain. Primarily, our
work focuses on the Adversarial Navigation Mesh Alteration
(ANMA) algorithm, which evaluates potential changes to the
map in adversarial environments from an attacker and de-
fender point of view. We present an empirical evaluation of
the ANMA algorithm in a Capture The Flag (CTF) simula-
tion environment with several teams of agents. One group of
agents (adaptive) lacks the ability to initiate world deforma-
tions, but they can respond and re-plan to take advantage of
world modifications. The second team of agents (builders)
can only generate additional paths through the world using
the attacker portion of ANMA. The third team of agents (uni-
versal) is able to fully deform the world by generating new
paths or removing existing paths using both the attacker and
defender sections of ANMA. We evaluated these teams and
observed that builder agents beat adaptive agents at a rate of
1.33 to 1. The more advanced universal agents beat adaptive
agents at a rate of 2.75 to 1 and builder agents 1.4 to 1.

Introduction

In modern games and simulation environments there has
been a continuous move towards more and more realism.
In particular, there have in recent years been considerable
improvements in the fidelity of physics models and dynamic
interactions occurring between agents and the world geom-
etry throughout both games and simulations. Game engines
now support the ability to dramatically alter the geometry
composing a world or simulation level at runtime without
any appreciable slowdown in rendering (Jurney and Hubick
2007). Large scale changes to the world geometry usually
take the form of physics based interactions (e.g., vehicles
being used to punch a hole in the side of a building to cre-
ate a doorway, or explosives collapsing a large quantity of
rubble into a formerly passable street). Such physics based

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

interactions require very little planning to initiate, but more
planning to have the resultant changes in the world turn out
as expected. There have been several recent and highly suc-
cessful commercial games that utilized highly dynamic en-
vironments (e.g., Battlefield: Bad Company 2, Company of
Heroes, Fracture, and Red Faction: Guerilla). Adapting to
such large scale changes in the environment poses a chal-
lenge to embodied agents moving around in that environ-
ment.

Traditionally, work has focused on addressing two prob-
lems associated with agents in highly dynamic environ-
ments. The first is how the highly dynamic world is rep-
resented to the agent. Generally, most games present some
form of simplified representation of the world to agents (To-
zour 2004). This representation contains a listing of empty
space (negative space) as well as another listing of areas
of the world which are occupied by obstructions (positive
space). Agents use this representation to reduce the com-
putational burden of calculating paths throughout the game
world. Without this representation, an agent would have to
consider every possible point in negative space when creat-
ing a path. Using a navigation mesh (the most common form
of such a representation (McAnils and Stewart 2008)), an
agent can localize its current position into a single negative
space region and its target location to another region. Then
the agent can view the representation of walkable space as
a graph where each negative space region is a node on this
graph and negative space regions that share a common edge
(a gateway) are connected via an edge. The agent can then
quickly calculate paths by searching this graph for the short-
est route from its origin to its destination.

The second problem is one of ensuring that the agent is
still able to accomplish the task it was working on regardless
of changes that occur in the world. Generating agents which
are highly adaptable is the first step in dealing with dynamic
environments. In particular, when navigating along a pre-
planned path or completing another task, an agent needs
to be able to adapt and take advantage of potentially better
ways to accomplish their goals. Conversely, if the planned
path to a goal is no longer viable then they need to be able to
quickly re-plan with a minimum of overhead to accomplish
their original goal in the revised world.

These are several solutions available for both of these
problems. Spatial representations in dynamic worlds can

120

Proceedings of the Sixth AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment



be generated using Dynamic Navigation Meshes (Hale and
Youngblood 2009; Axelrod 2008) , Adaptive Voronoi Dia-
grams (Sud et al. 2008), subdividing the world representa-
tion in small deformable cells (Jurney and Hubick 2007), or
Adaptive Roadmaps (Sud et al. 2007). Producing agents ca-
pable of adapting to dynamic changes in the world also has
several commonly used solutions: Planners (Fikes and Nils-
son 1971), Task based systems (Rickel and Johnson 2000),
or On Demand Replanning (Berg 2006). However, we sub-
mit that there is a third problem with agents in highly dy-
namic environments. Namely, at what times and how should
the agent initiate an alteration of the environment?

We propose a solution in adversarial contexts for this
third problem through the use of the Adversarial Navigation
Mesh Alteration (ANMA) algorithm, which builds off work
both in dynamic replanning and navigation mesh regener-
ation. This algorithm contains two simple sub-algorithms
(attacker, defender) that are derived utilizing path planning
algorithms and spatial representations. These sub algorithms
allow agents to initiate some world modifications for the
purposes of improving or degrading the pathfinding abili-
ties of the other agents and players moving around in the
environment. In particular, ANMA focuses on the usage of
world alterations to assist agents with path planning towards
a given goal location, and the destruction of passable areas in
the world representation to assist an agent or team of agents
with the defense of predefined goal locations.

Related Work
This question of how and when an agent should initiate alter-
ations to the world has been traditionally addressed through
the use of planners. In particular, Jeff Orkin’s work to extend
the STanford Research Institute Problem Solver (STRIPS)
planner (Fikes and Nilsson 1971) into the Goal Oriented
Action Planning (GOAP) (Orkin 2004) system has proved
to be especially interesting to us. This system has obvi-
ous applications to games and simulations as it was later
integrated in the agents present in the game F.E.A.R (Orkin
2006). GOAP presents an interesting approach to planning
in dynamic game environments in that every agent has a
goal it wants to accomplish. Objects and locations in the
world have a list of actions the agent can perform on them.
There are pre-conditions that govern when a given action
or item can be utilized, and after activation, all items and
actions yield a result which alters the state of the world. Us-
ing GOAP an agent will search the space of potential ac-
tions and results until it finds the minimal cost chain of them
that would result in the fulfillment of its final goal. For in-
stance, an agent that wants to enter a room could determine
that breaking a nearby window would be faster than enter-
ing through the more distant door. This approach is simi-
lar to the one used by ANMA in that it uses a search-based
approach to generate plans for agents that can then inter-
act with and deform the environment based on these plans,
but unlike ANMA the GOAP planner searches through a list
of pre-defined actions provided by the objects present in the
world. ANMA searches through the automatically generated
representation of world space looking for areas it would be
beneficial to the agents to alter.

The ANMA algorithm also draws heavily from two gen-
eral areas of previous research. The biggest contributor to
ANMA comes from the work to convert navigation meshes
and other spatial data structures from static and immutable
structures into highly dynamic objects that can be updated in
real time to reflect the changes in the world environment. In
particular, the ANMA algorithm works best when executed
on some form of Dynamic Navigation Meshes (Hale and
Youngblood 2009; Axelrod 2008) instead of other spatial
representations, since unlike other spatial representations,
the navigation mesh provides a completing listing of neg-
ative space and positive space that proves helpful to the al-
gorithm. Secondly, the ANMA algorithm is reliant on fast
dynamic searches of the navigation mesh (Stentz 1994) in
order to determine which regions to convert from positive to
negative space to create shortcuts for the agent or which re-
gions to convert from negative to positive space in to better
defend an area.

Methodology

The Adversarial Navigation Mesh Alteration (ANMA) algo-
rithm contains two basic sub algorithms. The first subcom-
ponent (attacker) of the ANMA algorithm slots into most
huristic-based path finding algorithms to improve agent nav-
igation through negative (open) space via the conversion of
positive (obstructed) space into additional negative space re-
gions when it would benefit the agent. The second sub al-
gorithm (defender) is a higher level extension to the agent’s
reasoning ability that highlights and suggestion regions in a
navigation mesh or navigation graph representation, which
it would be advantageous to the agent to remove. This
is removal is designed to reduce the number of potential
approaches to a position the agent is supposed to protect.
These algorithms work best, and in the case of the defender
sub algorithm require, an adversarial context for the agents
to fully utilize them in planning.

Path Planning Through Positive Space

The first part of the ANMA algorithm (attacker) attempts to
answer the question of “When should an agent plan to use its
ability to destroy positive space to assist with path planning.”
To answer this question the ANMA algorithm provides a
simple extension to popular path planning algorithms such
as A* or D* which allows them to consider the effects of al-
tering the navigation space representation when determining
the optimal path the agent should take to reach his goal. Do-
ing so allows the agent to create new paths which are often
shorter than paths entirely in existing negative space regions.

Consider the example of a building that the agent wants to
enter, which the agent is standing next to. The area around
the building is fully described in the agent’s navigational
representation, so it is rather trivial to plan a path around
the building to the door and then enter it. However, consider
what would happen if the building is rather large and the
agent is on the other side of the building from the only door.
In that case, the agent would take considerable longer to en-
ter the building. However, what if the agent did not have to
go around the building, but had some capability to create its

121



own doorway in the building near where it currently is (e.g.,
a sledge hammer to take out a wall, a brick to break a win-
dow, or an explosive charge to put a bigger hole in the build-
ing). Now the question becomes whether it would be faster
to walk around the building to an existing door or to install
a new door (this is also what tends to limit this algorithm to
adversarial games or simulations since non-adversarial con-
texts tend to frown on impromptu doorway installations via
explosives).

Algorithm 1: The ANMA algorithm looking for poten-
tial positive space regions to convert to negative space
during a search. The example is in the context of a node
expansion in an A* search.
// Sorted List of Regions to consider
List OpenList;
// List of Regions that have already

been considered for path planning
List ClosedList;
// Standard checking of the first

node in the open list
FirstNode in OpenList;
for Neighbor of FirstNode do

if Neighbor.isPositiveSpace then
// Calculate the cost to convert

this node to negative space
float CostToConvert =
Neighbor.findConversionCost();
// Generate normal heuristic

costs to traverse this node
Neighbor.f = FirstNode.f +
Neighbor.findH();
Neighbor.f += CostToConvert;
OpenList.append(Neighbor);

else
// The node is negative space

treat it normally

Our algorithm to accomplish this task of path planning
through positive space is quite simple and can be included
as a few extra function calls in most existing search algo-
rithms as shown in Algorithm 1 in the context of A* search
(for a good survey of search techniques see Artificial Intel-
ligence: A Modern Approach (Russell and Norvig 2003)).
When a search algorithm is evaluating a potential path to a
goal, it calculates the benefits of moving to any given region
using a heuristic. This heuristic generates an approxima-
tion of how far a potential move would leave the agent from
its destination, and when added to a stored value indicat-
ing the cost to get to that potential location, allows an agent
to rank potential paths through the environment. This sys-
tem works very well for movement through negative space,
and it makes sense to extend it to movement through pos-
itive space. There are two parts to this extension: the first
is calculating the raw cost of moving through the positive
space region as if it were negative space—this can be done
using the same calculation as for negative space. The sec-

ond, harder part comes from calculating the cost of con-
verting a positive space region into negative space. This is
where having a navigation mesh spatial representation (or
some other representation with a listing of positive space) is
very useful. Using this representation, the size and compo-
sition of the target positive space region can quickly be de-
termined. These factors combined with the agent’s ability to
manipulate positive space (agents with explosives can per-
form faster manipulations than agents with wrecking bars)
can be used to generate a cost to convert for any given re-
gion of positive space. This cost of conversion is then added
to the cost of movement through the positive space region,
and this total value can then be used in the path planning
algorithm like a normal negative space region.

Planning for the Obstruction of Negative Space

The second, defensive half of the ANMA algorithm deals
with a slightly higher level problem which occurs somewhat
less often. This portion of the algorithm answers the ques-
tion “How can an agent tasked with defending an area from
other agents or players alter his local environment to restrict
the number of potential access points?” Our approach to this
problem uses conventional search algorithms on the world
space representation to locate potential entry ways into the
area the agent is in charge of defending and then prioritizing
the order in which these negative space regions should be
converted into positive space regions through the introduc-
tion of obstructions.

Consider the example of a building which an agent has
been assigned to defend from other agents and players. In
particular, there is a single room on the second floor of the
building which the agent must defend at all cost. By exam-
ining the navigation representation of the environment, the
agent can determine the listing of entry ways into the area
they need to defend, in this case, let us say there is a ladder
connecting to a second floor window from outside, the ob-
vious front door entrance to the building, and finally a hole
some impatient person blew in a wall instead of coming in
the front door. Now the agent needs to determine which
of these potential enemy attack routes they should close off
first (patching the hole in the wall, locking the front door, or
hiding the ladder leading to the second floor entry).

In order to the use the defensive sub-algorithm of ANMA,
we first require three pieces of information. First, we need
to know the extents of the area the guard should remain in.
Secondly, we need to know which direction the other agents
or players we will be defending against will be approach-
ing from. Finally, we need to know the main point we are
supposed to be protecting. Using this information, we are
able to determine which sections of the navigation represen-
tation it would make the most sense to alter and invalidate
to prevent or delay the enemy moving through them. These
requirements are also what limit the defensive portion of the
algorithm to adversarial situations. While the attacker por-
tion of ANMA can be used to create non-adversarial path
planning agents (albeit ones who have little respect for the
condition of the world as they move through it) it is un-
likely a non-adversarial scenario could supply the three re-
quirements to implement defensive-ANMA in an agent. The

122



Algorithm 2: This is the defensive half of the ANMA
algorithm which determines the most important negative
space nodes to seal to protect an area.
// Initially the algorithm starts

with its 3 requirements
Region regionToDefend;
Region attackerOrigin;
List PossibleRegions;
// We will also assume we have path

finding algorithms on hand
PossibleRegions = findPath.(regionToDefend,
attackerOrigin);
// Validate the target region is in

the assigned guard area
repeat

// Select the most connected
region using distance from
agent as a tie breaker

DestroyRegion =
PossibleRegions.getHighestDegree();

until !DestroyRegion.isInArea() ;

defensive sub-algorithm works by calculating the optimal
path(s) from the location the agent is supposed to defend
to the areas the enemy is expected to advance from using a
search algorithm as shown in Algorithm 2. It then finds the
negative space region along this path(s) with the lowest de-
gree in the navigation graph representation of world space
(the negative space region with fewest neighboring regions).
If two or more regions have equal degree then the closer one
to the defender is selected. Additionally, this search for a
target region is restricted to the areas of the world where the
agent is supposed to be guarding. This is to ensure that our
defensive agent does not go running off to try and block the
exits of the enemy base and in fact stays inside the area he
is supposed to be defending. After locating this target re-
gion, the agent will move to it and attempt to use its ability
to alter the world geometry to block passage from this node
towards the enemy approaches by introducing new obstruct-
ing positive space areas. A final restriction on the possible
target regions for the agent to alter is that the agent needs
to have the ability to introduce sufficient positive space to
block off an area. This can be determined in advance by
comparing the data on the negative space region stored in
the spatial representation of the world to the agent’s ability
to manipulate negative space regions (e.g., does the agent
have concrete barriers it can deploy to block roads, plywood
it can nail up to block doorways or windows, or just some
rope it can string across a path). The agent then repeats this
process of finding a low degree negative space region on the
approach to the area it is supposed to guard and sealing the
area off until there are no open approaches or it runs out
of blocking materials, at which point it can fall back to it’s
non-ANMA behavior.

Experimentation

We performed a series of experiments using our agents run-
ning the Adversarial Navigation Mesh Alteration (ANMA)
algorithm to determine their effectiveness against more tra-
ditional forms of agent behavior. To do this evaluation in
an adversarial context, we decided to use the Capture The
Flag (CTF) game type with two teams of agents. Our im-
plementation of the CTF game was as follows: A CTF game
is played on a field containing some randomly distributed
quantity of open space which players can move around in,
as well as obstructions which block line of sight and move-
ment. This space is broken down into two evenly distributed
halves, with each team having “control” of one half. Ad-
ditionally, each team possesses a base inside the area they
control that contains a flag. Each team was composed of 10
agents. Of these 10 agents half of them were assigned to
attempt to capture the enemy’s flag. The other half of the
team was tasked with defending their own flag. A flag cap-
ture occurred if an agent picked up the other team’s flag. If
an agent entered the same negative space area as an opposing
agent on the side of the field the other team controlled, then
they were captured. Captured agents were removed from the
game and after a short delay returned to a random location
on their own side of the playing field. Games were con-
cluded after a single capture was scored. In order to prevent
stalemates, agents were required to move from one area to
another each turn if possible.

Instead of spending time implementing a fully fledged
graphical CTF game to test our agents in, we designed and
built an agent test bed to simulate CTF games that allows
us to perform agent testing and comparison very quickly. In
this simulator, we use a representation of the world instead
of an actual world model; this allowed us to rapidly and pro-
cedurally generate many random worlds. In this representa-
tion, negative space regions are represented as nodes. The
gateways between negative space regions are represented in
this simulator as edges between the nodes. In this manner
the simulator represents and maintains the navigation graph
of the playing field in question without having to worry
about perfectly updating the underlying navigation mesh.
Additionally, positive space obstructions between any two
given areas of negative space were also maintained and rep-
resented in the simulation. These positive space obstructions
were represented as inactive links, which are not traversable
to agents. Using this simulator, we are able to procedurally
construct random levels to evaluate our agents in. Our pro-
cedural world generation algorithm works as follows. First,
eighty to one hundred negative space regions are seeded ran-
domly in the world with a bias to ensure that they are not
clumped too closely together. Then all of the neighboring
negative space regions are determined using a simple dis-
tance metric. After this determination, neighboring regions
are randomly determined to be either connected one to an-
other with a gateway, or adjacent but obstructed one from
another by positive space. The results of this determina-
tion are then stored as links for the simulation. Finally, the
two bases are selected, one for each team from the available
pool of negative space regions, such that the base is within
the back 10 percent of each team’s territory (remember that

123



each team is considered to be in control of half the map) and
the chosen base has at least three adjacent negative space
regions connected to it via gateways to help ensure it is ac-
cessible. This simulation representation allowed us to evalu-
ate our proposed agent design on a larger number of worlds
than would have been possible if we were using a full fledge
CTF game engine. In particular, we were able to evaluate
our agents on 180 unique test levels. One of the test levels
generated by our tool is shown in Figure 1.

Figure 1: This image shows one of the procedurally gener-
ated levels used in our simulated CTF game. Negative Space
areas the agent can occupy are shown as black squares, ac-
tive gateways are shown in green, blocked gateways are
shown in red, and the bases with each team’s flags are shown
as circles.

We evaluated two types of environmentally manipulative
agents as well as one non-manipulative adaptive agent. The
first type (the Builder) is able to employ the path planning
through positive space algorithm to create new gateways
and regions in order to facilitate quicker movement through
the level. However, the Builder is unable to generate new
positive space regions to close off potential routes through
the level. The second type of environmentally manipula-
tive agent we call the Universal agent. This agent is capable
of both planning paths through and removing positive space
obstructions and dynamically placing new positive space ob-
structions into the world. This allows the Universal agent to
close off potential access routes to its flag and set up choke
points on approaches to the territory it is defending. We did
not evaluate agents who were able to destroy connections
between nodes but not build them, due to the fact that these
agents trap themselves in their base. The final agent type
we tested was designed to be highly adaptable to changes
in a dynamic game world. This agent was coded to use D*
for path planning (Stentz 1994) through the world represen-
tation so that it could take advantage of changes to the un-
derlying navigation graph produced by the more advanced
agents, or adapt as best it could to obstacles thrown in it’s
path by the world manipulative agents which can destroy
pathways.

All of the evaluated agents had the same basic behavior
patterns depending on the role of the agent. The defending
agents regardless of type patrolled their side of the map and

attempted to move into and capture enemies they observed
in adjacent regions. Additionally, agents of the Universal
type used their ability to place positive space objects in the
world to barricade off gateways between regions such that
in whatever region they are in, the most optimal path back
to their own flag will be sealed. Adding this simple logic
to take advantage of placing positive space yields a set of
agents that automatically build mazes and choke points of
narrow or obstructed corridors which approach their flag.
Conversely, the attackers all were rather single minded in
that they took the best available path to the goal. How-
ever, both of the advanced agents (Builder and Universal)
will construct paths which require them to cut holes in pos-
itive space obstructions or build bridges over empty areas
if such a detour would result in a more optimal path to the
other team’s flag.

We set up test scenarios featuring all possible unique par-
ings of these agents (Universal vs. Adaptive, Universal vs.
Builder, and Builder vs Adaptive). Each pairing of agents
played sixty matches on our CTF simulator. The results of
these matches are given in Table 1 shown below. After 30
of the 60 matches, we switched the side of the map each
team was on. We also included the results of running each
agent type against itself an additional thirty times as a logi-
cal check to verify the integrity of the simulation and show
that neither side has a positional advantage, since if the same
type of agents compose both teams then the win/loss ratio
should be approximately even.

Table 1: Comparing the performance of different types of
agents on randomly generated CTF levels (showing wins to
loses). Matches vs. the agents own type are provided to
verify the integrity of simulation.

vs Adaptive Builder Ultimate
Adaptive 31 to 29 - -
Builder 34 to 26 30 to 30 -
Ultimate 44 to 16 35 to 25 28 to 32

When examining our results, we see that our hypothesis
verifies that agents that can manipulate the environment do
perform better in CTF games than basic adaptive agents.
Looking through the data, we see that Builder agents win
matches against Adaptive agents at a rate of 1.33 to 1. This
is a slight performance improvement, and it can be explained
by the fact that the only advantage that the Builder agents
possess is that they have a shorter path to the opposing
team’s flag. However, this advantage is somewhat transi-
tory, as the new paths the builder agents create can then be
utilized by the simple adaptive agent to attack the Builder
agent’s flag.

The more advanced Universal agent performs even better
against the straight adaptive agent, winning games at a rate
of 2.75 to 1. This is in line with expected performance, as
the Universal agent design should dominate a purely adap-
tive agent. However, the possibility does exist that Adaptive
agents would be able to capture the flag the Universal agents
are guarding before the Universal agents can seal off all of

124



the approaches to it. This is seen in the occasional Adap-
tive agent’s victories. But most of the time, the Universal
agents are successful in blocking all approaches to their base
(e.g. Figure 2). The Universal agent also fares well when
compared to the Builder agent, with a win ratio of 1.4 to
1. These agents are more evenly matched, but the Universal
agent gains a slight edge since the Builder agent has to stop
and open passageways through blocked paths before travers-
ing them to attack the Universal agent’s flag each time they
attack. Conversely, when attacking the Builder agent’s flag
after the first wave of agents goes in, the Universal agents
will not have to open or reopen any passageways, since there
are no agents creating blockages or obstructions on that side
of the map.

Figure 2: This image shows one of our procedurally gen-
erated levels after two teams of Universal agents have ob-
structed many of the potential gateways between regions,
notice all of the red inactive links in the image.

Conclusion

In conclusion, we have shown that through the use of the
Adversarial Navigation Mesh Alteration (ANMA) algorithm
we can generate agents which can initiate logical alterations
to the game geometry in support of their own goals. These
geometric deformations are primarily supported and engi-
neered using searches through the navigation space repre-
sentation instead of more complex procedures and rules in
the agent design. This results in very simple agents which
can still perform complex actions. These agents are able
to dynamically remove world space objects in an intelligent
manner to find the shortest path between two points. Ad-
ditionally, ANMA-enabled agents in a defensive context are
able to automatically generate obstructions and choke points
in the world, greatly reducing the potential approaches into
the agents’ defensive area. We showed with our simulator
testing that agents running the full ANMA algorithms win
against otherwise identical agents without ANMA at a rate
of 2.75 to 1 through multiple rounds of Capture The Flag.
Overall, we feel that ANMA agents are a good step towards
addressing the problem of agent-dynamic environment in-
teraction.

Acknowledgments
This material is based on research sponsored by the US
Defense Advanced Research Projects Agency (DARPA).
The US Government is authorized to reproduce and dis-
tribute reprints for Governmental purposes notwithstanding
any copyright notation thereon. The views and conclusions
contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies
or endorsements, either expressed or implied, of DARPA or
the US Government.

References
Axelrod, R. 2008. AI Game Programming Wisdom 4.
Charles River Media. chapter 2.6 Navigation Graph Gen-
eration in Highly Dynamic Worlds, 125–141.
Berg, J. V. D. 2006. Anytime path planning and replanning
in dynamic environments. In Proceedings of the Interna-
tional Conference on Robotics and Automation, 2366–2371.
Fikes, R. E., and Nilsson, N. J. 1971. Strips: A new ap-
proach to the application of theorem proving to problem
solving. Artificial Intelligence 2(3-4):189–208.
Hale, D. H., and Youngblood, G. M. 2009. Dynamic updat-
ing of navigation meshes in response to changes in a game
world. In Florida Artificial Intelligence Research Society
Conference.
Jurney, C., and Hubick, S. 2007. Dealing with destruction:
Ai from the trenches of company of heroes. In Proceedings
of the Game Developer’s Conference (GDC).
McAnils, C., and Stewart, J. 2008. AI Game Programming
Wisdom 4. Charles River Media. chapter 2.4 Intrinsic Detail
in Navigation Mesh Generation, 95 – 112.
Orkin, J. 2004. Symbolic representation of game world
state: Toward real-time planning in games. In AAI Workshop
on Challenges in Game AI. AAAI Press.
Orkin, J. 2006. Three states and a plan: The ai of f.e.a.r. In
Proceedings of the Game Developer’s Conference (GDC).
Rickel, J., and Johnson, W. L. 2000. Task-oriented collabo-
ration with embodied agents in virtual worlds. 95–122.
Russell, S., and Norvig, P. 2003. Artificial Intelligence: A
Modern Approach. Pearson Education, Inc.
Stentz, A. 1994. Optimal and efficient path planning for
partially-known environments. In IEEE International Con-
ference on Robotics and Automation. New York, NY, USA:
IEE.
Sud, A.; Gayle, R.; Andersen, E.; Guy, S.; Lin, M.; and
Manocha, D. 2007. Real-time navigation of independent
agents using adaptive roadmaps. In VRST ’07: Proceedings
of the 2007 ACM symposium on Virtual reality software and
technology, 99–106. New York, NY, USA: ACM.
Sud, A.; Andersen, E.; Curtis, S.; Lin, M.; and Manocha, D.
2008. Real-time path planning for virtual agents in dynamic
environments. In SIGGRAPH ’08: ACM SIGGRAPH 2008
classes, 1–9. New York, NY, USA: ACM.
Tozour, P. 2004. AI Game Programming Wisdom 2. Charles
River Media. chapter 2.1 Search Space Representations, 85–
102.

125


	AIIDE10
	Contents
	Index
	Help
	Terms
	AIIDE 2010




