
On the Complexity of Two-Player
Attrition Games Played on Graphs

Timothy Furtak and Michael Buro
Department of Computing Science, University of Alberta, Edmonton, Canada.

email: {furtak,mburo}@cs.ualberta.ca

Abstract

The attrition game considered in this study is a graph based
strategic game which is a movement-prohibited analogue of
small-scale combat situations that arise frequently in popu-
lar real-time strategy video games. We present proofs that
the attrition game, under a variety of assumptions, is a com-
putationally hard problem in general. We also analyze the 1
vs. n unit case, for which we derive optimal target-orderings
that can be computed in polynomial time and used as a core
for heuristics for the general case. Finally, we present small
problem instances that require randomizing moves — a fact
that at first glance seems counter-intuitive.

Introduction
The work on the attrition game we present in this paper was
motivated by creating entries for a real-time strategy (RTS)
game programming competition. RTS games are fast-paced
video games in which players create armies that fight over
resources scattered on the terrain with the ultimate goal of
destroying all enemy units and structures. In these popular
games, units regularly combat others. An example is shown
in Fig. 1. Good RTS game players are able to move dozens
of units into advantageous positions quickly, and coordinate
unit attacks effectively. Handling this aspect of RTS games
well is crucial to winning, but also tiresome. It is therefore
natural to ask how AI modules can be constructed to which
time critical tasks such as unit targeting can be delegated, so
that human players have more time to focus on more strate-
gic decisions.

In this paper we establish the theoretical foundation of
this line of research by defining simplified versions of the
RTS game combat subgame and establishing the computa-
tional complexity of solving such games. Our results show
that likely no polynomial time algorithms for the general
problem exist and that in general one has to consider mixed
strategies.

We start by discussing related work and defining the class
of attrition games considered here. We then investigate the
basic “1 vs. n” case in some detail before going on to prove
that solving attrition games is hard in general. After this we
determine the computational complexity of some game vari-
ants and present small game scenarios that show that mixing

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: A typical RTS game combat scene (StarCraftTM 2).

strategies is sometimes required. We conclude the paper by
discussing future research directions in this area.

Related Work

Games of attrition have been studied in military research
in which the main focus has been on modelling warfare
globally by means of differential equations (Gozel 2000;
Taylor 1983). Applications of such models include predict-
ing winners and estimating inflicted damage in battle sim-
ulations. In commercial RTS video games and recent RTS
game AI competitions (Buro et al. 2006) small-scale combat
is usually be addressed by scripting simple behaviors such as
attacking the closest or the weakest target in range. The ad-
vantage of this approach is fast execution speed and focusing
fire implicitely. As we will see later, optimal target order-
ing depends on the attack value–hit point ratio. In artificial
intelligence research, attrition games have been studied in
the setting of popular RTS video games. For instance, (Ko-
varsky & Buro 2005) and (Balla & Fern 2009) apply heuris-
tic search methods such as alpha-beta, Monte Carlo, and
UCT search to small RTS game combat scenarios. These

113

Proceedings of the Sixth AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment



methods attempt to produce approximate solutions, given
that the state and action spaces, even for small problems,
can be huge, and the available time for making tactical de-
cisions in RTS games is usually short. As far as we know,
our paper is the first to address theoretical aspects of discrete
attrition games.

Analysing the computational complexity of games has
a long history (Eppstein 2010). For our proofs we uti-
lize known hardness results for the 0-1 knapsack and the
quantified Boolean formula problems whose proofs can be
found in computational complexity text books (e.g. (Arora
& Barak 2009)).

Attrition Games Played on Graphs

The attrition game (AG) we consider in this paper is a graph-
based simultaneous move game in which two players, black
and white, attempt to destroy each other’s nodes. A player
is said to win if he destroys all opposing nodes while pre-
serving at least one of his nodes. All nodes have two integer
attributes, health and attack power, denoted by a pair 〈h, a〉.
Each node may have distinct health and attack values. The
nodes are arranged in a directed graph in which an edge ex-
ists from node x to node y if and only if node x may attack
node y.

In the discrete case the game proceeds in a series of
rounds, such that in every round each node may select at
most one opposing node to attack. Attacks are then made si-
multaneously, with the health of a node being decreased by
the sum of all the attacks made against it that round. After
all attacks have been computed, nodes which have a health
value less than or equal to 0 are removed.

In the continuous case units attack constantly and are im-
mediately removed when their health reaches 0. Also, units
are effectively permitted to divide their attack power (e.g. to-
tal damage dealt per second) amongst their legal targets, us-
ing any non-negative weights whose sum totals 1.

The payoff structure ranges from assigning −1, 0, +1 to
terminal nodes depending on whose units have been com-
pletely eliminated, over accumulating rewards for killing in-
dividual units, to assigning payoffs non-linearly depending
on the composition of the standing units.

Action sets seen in popular RTS video games are often
much more complex. For instance, weapons may have cool-
down periods, units may be repaired, or action effects may
be nullified by opponents’ actions. In addition, in RTS
games units are free to move into or out of attack range,
whereas our model assumes attack graphs to be static. How-
ever, as we will see shortly, the basic setting we consider
here already leads to complex decision problems.

1 vs. n Units

Consider the case of one white unit versus n black units,
with all units able to attack all opponent units. The strategy
for the black player is obvious — direct all attack power to-
wards the lone white target. Depending on the specific win-
ning condition or scoring function we choose to impose on
the scenario, there may be several (or an infinite number) of
equivalent strategies for the white player. Most reasonable

objectives are satisfied by having the white player minimize
the amount of damage taken by its unit. As the following re-
sults show, this can be accomplished by an easy-to-compute
target ordering:

Theorem 1. Let hi and ai be the health and attack power of
the black units, for i = 1..n, and a0 the attack power of the
lone white unit. Then

a) in the discrete case, in which units fire in rounds and only
one target can be selected at any given time, to minimize
white’s total sustained damage it is sufficient to order
its targets by decreasing value of ai/�hi/a0� and never
change targets until they have been destroyed.

b) Similarly, in the continuous case, in which units fire con-
tinuously and are able to distribute their attacks over
multiple targets, to minimize white’s total sustained dam-
age it is sufficient to order its targets by decreasing value
of ai/hi and focus exclusively on single targets until they
are destroyed.

Proof. a) Fix an arbitrary ordering in which the black targets
are being destroyed. Without loss of generality our follow-
ing use of subscripts will refer to a unit’s position within
this ordering, rather than the initial labelling. We first note
that it is sufficient for white to stick to targets, i.e. to attack
single units without focus change until they are destroyed.
To see this, consider time ki at which unit i is killed in a
given attack sequence for i = 1..n and k0 = 0. As unit i
is destroyed at time step ki, there is no need to target it any
longer. Also, if between time steps ki−1 and ki a target other
than unit i is attacked, it is beneficial for white to attack tar-
get i instead. This swap does not influence kj for j > i and
ki is decreased, which lowers the total sustained damage. It-
erating this swapping procedure for all i results in an attack
sequence in which units are targeted in turn until they are

destroyed. Therefore, we can assume ki =
∑i

j=1�hj/a0�,

where �hj/a0� is the time it takes white to destroy unit j,
and concentrate on optimizing target orderings.

Let di = ai · ki be the damage dealt by unit i over its
lifetime, given the target ordering. Now consider swapping
two adjacent units within the target ordering, say, units j and
j + 1. Let k′i and d′i be the values resulting from that swap.

Note that di = d′i for units i �∈ {j, j + 1}. For k = kj−1

(with k0 := 0) and tj = �hj/a0� we have:

dj = aj(k + tj) d′j = aj(k + tj+1 + tj)

dj+1 = aj+1(k + tj + tj+1) d′j+1 = aj+1(k + tj+1)

and elementary arithmetic yields:

dj + dj+1 ≤ d′j + d′j+1 iff

aj+1tj ≤ ajtj+1 iff

aj+1

tj+1
≤

aj

tj
,

which gives the desired result.

b) In the continuous case white selects a series of time points
when new sets of targets together with the corresponding at-
tack value distributions are chosen. As before, we fix a tar-
get ordering and let ki denote the time unit i is destroyed.

114



By a swapping argument analogous to a) it is easy to see
that the sustained total damage is not increased by stick-
ing to single targets until they are destroyed. The final re-
sult of applying this procedure is a sequence of time points

ki =
∑i

j=1 hj/a0, i = 0..n at which unit i has been de-

stroyed (if i > 0) and the next target will be chosen (if
i < n). Setting ti = hj/a0 and following the same steps
shown above proves the claim. �

There is room to generalize these results so that they directly
apply to real-time strategy video games in which attacks
usually proceed in rounds and attack values are independent
and uniformly distributed:

Theorem 2. Let hi be the health and ai the expected at-
tack power of the black units, for i = 1..n, and p(x) the
probability of the lone white unit inflicting damage x. Then
to minimize white’s expected damage it is sufficient to order
targets by decreasing value of ai/ti and never change tar-
gets until they have been destroyed. Here, ti is the expected
lifetime of unit i which only depends on p and hi.

Proof sketch due to space limitation. We follow the same
proof steps as before, now using tj = E(t : unit j dies after
exactly t steps when attacked) and the fact that the expected
lifetime damage unit j deals is the product of its expected
attack power and its expected life time. tj only depends on
p and hj and can either be determined analytically if p has a
simple form, or estimated using simulation. �

The above results can be used to decide whether the white
unit can survive by sorting the n targets according to their
health over (expected) survival time ratios and then com-
puting the damage inflicted on the white unit. If this value
meets or exceeds white’s health, the unit dies. Otherwise, it
survives.

If the white unit is unable to survive we shall concentrate
on minimizing the long-term ability of the black units to in-
flict damage (say in the case in which another possibly iden-
tical singleton white unit will arrive after the current battle).
This can be modelled by a non-negative reward for white for
destroying each of n black units. Clearly if the singleton
unit can destroy all opposition the maximum profit may be
obtained. If the white unit cannot do this then it must select
a subset that it can destroy, so as to maximize the reward.
Once a subset is selected the order in which to destroy those
units (assuming they can all be destroyed) is well-defined
by our previous argument. We can show that this problem is
hard in general:

Theorem 3. Given a discrete AG scenario with n black units
with health hi, attack ai, and kill reward ri ≥ 0 for white,
and a single white unit with health h0 and attack a0, it is
NP-hard for white to decide what the reward-maximal target
ordering is, in case white does not survive.

Proof. We show the result by the following reduction to a 0-1
knapsack problem. Intuitively, we will create a collection of
black units with minimal attack (such that the order in which
they are destroyed does not affect the white unit’s lifetime)
each representing a good to be placed in the knapsack, plus

one indestructible black unit to enforce the budget. Specifi-
cally, given a 0-1 Knapsack instance:

maximize

n∑

j=1

pjxj subject to

n∑

j=1

wjxj ≤ c

xj ∈ {0, 1}, j = 1, . . . , n,

we construct black units 〈wj , 0, pj〉 for j = 1, . . . , n and
〈∞, 1, 0〉, where the elements in the triple are health, attack
power, and the opposing player’s reward for destroying the
unit respectively. The white unit is 〈c, 1〉. The equivalence
between the two problems is straightforward. �

The construction of units with zero attack power in the proof
may be somewhat unsatisfying. Note, however, that these
zeros may be replaced with an appropriately small epsilon
and then rescaled to integer values.

Solving Basic Attrition Games

In this section we consider discrete time and attack attrition
games whose payoffs are limited to −1, 0, and +1 (loss,
draw, win) depending on which player is still alive at the
end. We call such games “basic attrition games” and de-
note their set by BAG. Computing the minimax value of
attrition games is straight-forward, but slow (Kovarsky &
Buro 2005): as 2-player zero-sum games with simultaneous
moves but no state component hidden from either player,
each state constitutes a matrix game whose payoff matrix is
populated recursively with the minimax values of the suc-
cessor states. Given a payoff matrix the standard linear pro-
gramming formulation can be used to determine the mini-
max value in each state. Thus, the total runtime of this ad-
hoc method is polynomial in the game tree size, which by
itself can potentially be super-exponential in the input size.

The following results establish that minimax value com-
putation for basic attrition games in general is computation-
ally hard, and the proof of part b) describes a faster way of
computing the minimax value:

Theorem 4.

a) The decision problem of determining the existence of
pure winning (i.e. minimax value 1) strategies for white
(BAG-WIN) is PSPACE-hard, and

b) BAG-WIN ∈ EXPTIME

As an immediate consequence we obtain the following com-
plexity result for general minimax value computations:

Corollary 5. The problem of deciding whether the minimax
value for white in a given basic attrition game instance is
≥ v is PSPACE-hard.

Proof. Set v = 1 and apply Theorem 4 a). �

Proof of Theorem. a) Our plan is to reduce the Quantified
Boolean Formula (QBF) problem, which is known to be
PSPACE-complete (Arora & Barak 2009), to BAG-WIN.
First we define a small delaying widget shown in Fig. 2.
This widget forces some white node or a set of nodes (not
shown), to deal at least t points of damage to node 1 within
the first t rounds. If this does not happen then an isolated

115



black node (3) will remain, preventing white from winning.
For our purposes the white node being forced to attack will
have an attack power of one. Thus, the white node will not
be able to attack any other nodes for the first t rounds with-
out white losing the game.

Next we present two widgets which we will use in our
QBF reduction. These widgets allow the “choosing” player
to determine, out of three nodes, which one will survive.
Moreover, this choice may be made at any time up to a given
round i, with no penalty for delaying the choice until that
round (i.e., no information about the choosing player’s strat-
egy is revealed before the choice is made). In the figures de-
picting both widgets it may be the case that the white nodes
have outgoing edges which are not shown (specifically from
those labelled x and/or ¬x, but there are no omitted incom-
ing edges to any of the nodes.

Existential Quantifier Widget. To emulate an existential
quantifier we create the widget shown in Fig. 3. The previ-
ously defined delaying widget is depicted as a box, with the
delaying time shown in brackets. A more compact existen-
tial quantifier widget exists, but this version is perhaps more
interesting in that it lets us make the entire QBF reduction
attack graph acyclic.

This widget allows the white player to save either the node
corresponding to x or the node corresponding to ¬x. At-
tempting to save both will result in a surviving black node in
the delaying widget, and thus in an inability for white to win.
Before the unchosen white node is destroyed, each of nodes
3 and 5 will be able to deal at most i + 1 points of damage
(via outgoing edges which are not shown). The remainder
of the graph shall be constructed so as to make this damage
unimportant. All nodes in this widget (except perhaps 3 and
5) either have only one target or have their actions forced —
the corresponding strategy for these nodes is obvious.

Universal Quantifier Widget. To emulate a universal
quantifier we use the widget shown in Fig. 4. This widget
allows black to kill at most two of nodes 5, 6, and 7 (corre-
sponding to x, ¬x, and x ∧ ¬x). This can be seen by noting
that nodes 5, 6, and 7 have a combined 2i+ 1 hit-points, but
black will be able to deal no more than 2i points of dam-
age, since nodes 1 and 2 will kill the black nodes on step
i. As in the other widget, the white nodes corresponding to
truth assignments will each be able to deal at most i points
of damage before the black nodes are killed.

QBF Reduction. We will proceed to show that a QBF
problem instance may be transformed in polynomial time
into a BAG instance such that the white player has a pure
winning strategy if and only if the QBF existence player

〈t, 1〉
1

〈t + 1, 1〉
2

〈t + 2, 1〉
3

Figure 2: A delaying widget. A white node (not shown)
must deal t points of damage within the first t rounds. If
the incoming node has attack power 1, then this node cannot
attack elsewhere until round t + 1, lest node 3 survive.

〈i + 1, 1〉
3

〈1, 1〉
4

〈i + 1, 1〉
5

〈1, 1〉
1

〈1, 1〉
2

x ¬x

[i − 1]

Figure 3: ∃ widget. The white player may save either the x
or the ¬x node by attacking node 1 or 2 during round i. The
node not saved will be killed the next round. The black box
represents a delay widget with t = i − 1.

〈1, 1〉 1 〈1, 1〉2

〈i, 1〉 3 〈i, 1〉4

〈1, 1〉
5

〈2i − 1, 1〉
6

〈1, 1〉
7

x x ∧ ¬x ¬x

Figure 4: ∀ widget. Black may determine which of x or ¬x
will die by attacking node 5 or 7 at any time up to step i.
Making more than one such attack results in node 6 surviv-
ing, which is a dominated action in the constructed game.

has a winning strategy. We assume that the QBF problem
is written in conjunctive normal form, with all variables be-
ing governed by a quantifier, and all quantifiers being at the
beginning of the formula.

At a high level, we will create black nodes corresponding
to clauses and white nodes corresponding to variable assign-
ments (true or false), as in the widget node labels. The white
variable nodes will be able to attack only those black clauses
in which they appear.

The reduction proceeds as follows. For each QBF exis-
tential/universal quantifier, create a corresponding existen-
tial/universal attrition widget, shown in Figs. 3 and 4 re-
spectively, where “x” in the widget corresponds to the par-
ticular variable governed by that quantifier. The value of i
in each widget should be equal to the position (from left to
right) of the respective quantifier, starting at 1. In this way
a player may delay choosing within a particular widget until
the choice of the previous widget/quantifier is known. Mak-
ing a choice early is never more beneficial than waiting until
step i.

In this manner, white nodes now exist corresponding to
each QBF variable and its negation. Now create one black
node for each QBF clause, with incoming edges from all
white nodes whose label occurs in the clause. In the case
of “x ∧ ¬x” nodes, treat the node as having both x and ¬x
labels. The clause nodes have no outgoing edges, so their
attack power is arbitrary (say 1), but set their health to some
large number such that it is impossible to kill them before
the quantifier widgets are stable. That is, until any potential
sacrifices within the widgets have been played out and the

116



sacrificed nodes are dead (assuming optimal play). To ac-
complish this it is sufficient to use (n + 2) times the number
of incoming edges on the clause node, where n is the num-
ber of QBF quantifiers. It is thus apparent that (supporting
our previous assertion) sacrificing nodes in the existential
widgets is not beneficial for white.

If the existence player has a winning QBF strategy, white
may simply choose to save the correspondingly labelled
nodes, delaying each choice as long as possible. It is clear
that white may kill all black nodes in the quantifier widgets
while making this choice. This leaves only the clause nodes,
which by construction must all have a live white node able to
attack them. Thus, all black nodes will eventually be killed
and white will win. Conversely, if the forall player has a
winning QBF strategy, black may choose to save only those
white nodes in the universal widgets which correspond to
its QBF strategy. By construction there must thus be some
clause node which is unable to be killed, corresponding to
an unsatisfied clause in the QBF variable assignment.

BAG-WIN ∈ EXPTIME. To see that a pure winning
strategy for white can be computed in exponential time, let L
be the input length and H be the maximum number of health
values any unit can take (i.e., the maximum unit health plus
one), and let h := �log2 H� be the size of its encoding. For
convenience assume that H = 2h. Then the number of pos-
sible worlds is bounded by Hn+m, since (given a fixed tar-
geting graph) the world is uniquely described by the health
of each of the n+m units. Note that n and m are effectively
encoded in unary form, since each unit requires a separate
integer describing its health (and another for its attack).

We will compute the value of each world recursively, us-
ing a memoizing lookup table (one entry for each possible
world) to avoid repeated work. To prove the (non-)existence
of a (first player) pure winning strategy in a given world
we need only find a row in the strategy matrix where all
the entries are 1, or show that such a row does not exist.
The value of each matrix entry is determined in the obvious
manner — by computing the successor world correspond-
ing to each player’s row/column action, and then computing
whether this successor has a pure winning strategy. The base
case of this recursion are those states where no unit may at-
tack an opponent, in which case the winner is determined by
which player, if any, still has standing units.

Because the number of worlds is bounded by an exponen-

tial function of the input length, 2h(n+m) ≤ 2L2

, we need
only show that the amount of work in each of those worlds
(excluding any recursion, since we are memoizing) is also
at most exponential. The number of joint actions in a given

world is bounded by nm · mn = 2m log n+n log m ≤ 22L2

,
which is obtained when each unit may attack every oppo-
nent unit. As such, the time required to loop over each row in
the strategy matrix is clearly at most exponential. Comput-
ing each successor state involves only a polynomial number
of poly-time subtractions and comparisons (to prevent neg-
ative values). This procedure is repeated for all table entries
until there are no more changes. Thus, the entire computa-
tion (including initializing the lookup table) is performed in

time O(2p(L)) for a low-degree polynomial p, and therefore

BAG-WIN ∈ EXPTIME. �

Corollary 6. Determining the existence of pure winning
strategies for white in basic AG instances in which attack
graphs are acyclic and the maximum health value is polyno-
mial in the size of the encoding is PSPACE-complete.

Proof. The attack graphs in the QBF reduction we presented
in the proof of Theorem 4 a) are acyclic. Moreover, the max-
imum health value across all nodes is polynomial in the en-
coding size of the graph. Therefore, determining the exis-
tence of pure winning strategies for white in such graphs is
PSPACE-hard. Revisiting the algorithm presented in part b)
with a polynomial health bound shows that above decision
problem lies in PSPACE, because at each recursion level
only row and column indexes have to be maintained whose
length is bounded by log max{nm, mn} ≤ log II = I log I .
The decision problem is therefore PSPACE-complete. �

Attrition Games with Attack Partitioning

If we discretize kill times but still allow each unit to parti-
tion its attack power amongst all of its potential targets, we
are left with a problem formulation somewhere between the
continuous case and the fully-discrete description (in which
attacks are all-or-nothing). Specifically we do not have to
consider overkill in the sense that a unit is never forced to
commit excess attack power to any target. Let APAG denote
the set of all encodings of basic game scenarios in which at-
tack partitioning is allowed, and APAG-WIN the subset of
APAG in which white has a pure winning strategy. Then the
following statement is true:

Theorem 7. APAG-WIN is NP-hard.

Proof. We reduce the subset sum problem, which is a stan-
dard NP-complete problem (Arora & Barak 2009), to APAG
in polynomial time. Let S be a set of positive integer values
and n a non-negative target value, such that the subset sum
decision problem is true if and only if there exists a subset
S′ ⊆ S such that

∑
x∈S′ x = n. Given such a subset sum

instance, we construct a corresponding APAG instance as
follows: let σ :=

∑
x∈S x, N := 3σ+1, and consider white

unit 〈N + σ + (σ − n) + 1, σ〉 and black units 〈s, s〉 for
s ∈ S and 〈σ − n, N〉. Without loss of generality, σ > n.
Otherwise, the subset sum problem has the trivial solution
of selecting all elements of S.

Note that the “large” black unit 〈σ − n, N〉 has sufficient
attack power to kill the single white unit in two steps, be-
cause 2N = N + 3σ + 1 > N + σ + (σ − n) + 1. Thus,
any winning strategy for white must involve killing that large
unit on the first step. That leaves σ − (σ − n) = n damage
to allocate amongst the other black units.

On the first step black will deal N + σ damage, leaving
the white unit with σ−n+1 health at the start of the second
round. Therefore, if the remaining black units have more
than σ − n firepower then the white unit will die on the sec-
ond step. This can only be the case if, on the first step, white
is unable to kill a subset of the non-large black units hav-
ing total health/attack power n, i.e., if a subset of S totalling
n does not exist. Thus, in summary, the given subset sum

117



problem has a solution if and only if in the corresponding
APAG instance white has a pure winning strategy. Because
the described transformation is clearly computable in poly-
nomial time, APAG-WIN is NP-hard. �

Other Objective Functions

We may want to choose winning criteria based on realistic
assumptions about game mechanics (if any) which are ab-
stracted away by the graph representation. If we consider the
case of real-time strategy games, replacement/repair cost of
the units that are destroyed/damaged may be important, or
we may seek to only delay the enemy units until reinforce-
ments can arrive. We do not even consider the complex-
ity introduced by allowing unit motion, i.e. changing attack
graphs. In what follows we will consider two basic addi-
tional objectives which both lead to hard decision problems:

Theorem 8. If the AG decision problem is modified to in-
clude either a maximum number of rounds in which to de-
stroy the opposing units, or the number of survivors, then
deciding whether white can accomplish either of these goals
is NP-hard.

Proof. This can be seen by reducing from subset sum. Sim-
ilar to the attack partitioning case, consider a set S of pos-
itive integers with target sum n. Let σ :=

∑
x∈S x, X =

{〈n, 1〉, 〈σ − n, 1〉}, and Y = {〈3, s〉|s ∈ S}.

A subset sum exists iff the AG instance can be won by Y
in one round, or the AG instance can be won by Y without
losing any units. In both cases Y clearly attempts to find a
partition of its units such that each partition’s attack power
exactly matches the health of one of the two X units, killing
them both in the first round. �

To see that minimizing the total number of rounds does not
necessarily maximize the number of survivors, consider the
example in Fig. 5. In this scenario the labelled white node
must decide in the first round whether to destroy the left or
the right black node. If the left, then the right black node
will destroy one white node each round, for �n/2� rounds.
If the right node is destroyed, then the left black node will
not cause any damage, but cannot be killed until n rounds
have passed.

〈1, 1〉

〈1, 1〉

〈1, n〉
X

〈1, 1〉 〈n, 1〉 〈n, 1〉

〈1, 2〉

〈1, 1〉

〈1, 1〉

.

.

.

Figure 5: Example showing the non-equivalence of mini-
mizing total time and maximizing the number of survivors.

Mixed Strategies

In this section we provide small examples to show that in
general in discrete attrition games and those with attack par-
titioning mixed strategies may be necessary for optimal play.
At first this seems counter-intuitive, because here, unlike say
the game of rock-paper-scissors, chosen actions always suc-
ceed in that they inflict damage irrespective of the oppo-
nent’s choice. However, one can imagine cases in which
there exist multi-step counter strategies with distinct first
moves for each of the opponent’s choices.

As an example, consider the 2 versus 2, fully-connected
AG graph shown in Fig. 6. For each player we consider all
possible first moves and show the resulting final game values
in view of row player black who is attempting to maximize.

〈4, 1〉

1

〈5, 3〉

2

〈4, 1〉

3

〈6, 3〉

4

0 1 0 1

-1 1 1 1

1 1 0 1

0 1 1 1

〈3, 1〉 1 〈2, 3〉2

〈6, 3〉4

〈3, 1〉 1 〈2, 3〉2

〈3, 1〉 3 〈3, 3〉4

〈4, 1〉 1 〈1, 3〉2

〈6, 3〉4

〈4, 1〉 1 〈1, 3〉2

〈3, 1〉 3 〈3, 3〉4

Figure 6: 2 versus 2 example showing the need for mixed
strategies: the start state at the top left, followed by the pay-
off matrix in view of the row player (black), and the succes-
sor states for all non-dominated action pair choices, which
are highlighted in the payoff matrix.

〈8, 3〉

1

〈3, 1〉

2

〈7, 3〉
3

〈4, 1〉
4

-0,-4 -1,-3 -2,-2 -3,-1 -4,-0

-0,-4 0 0 0 0 -1

-1,-3 0 1 1 1 -1

-2,-2 -1 0 0 -1 -1

-3,-1 -1 0 0 -1 -1
-4,-0 -1 1 1 0 0

Figure 7: 2 versus 2 example with attack partitioning show-
ing the need for randomized strategies. The column player
(white) is attempting to minimize the game value, while the
row player (black) is attempting to maximize.

118



An entry of +1 indicates a win for black, −1 a win for white,
and 0 a draw — namely both players destroying each other.
In this scenario mixing is only required for the first move.
The expected score for black increases from 0 (playing a
known pure strategy) to 0.5 if one or both players choose
from their two non-dominated actions uniformly.

It is also the case that mixed strategies may be necessary
for optimal attack partition play. To see this, consider the 2
versus 2 case shown in Fig. 7.

Conclusion and Future Work
In this paper we have established computational complexity
results for playing attrition games on graphs which model
combat mechanics seen in popular real-time strategy games.
Our main results indicate that computing winning strate-
gies for this class of games is computational hard in gen-
eral. Moreover, playing optimally sometimes requires using
mixed strategies. In practice, we therefore have to resort to
approximations. As a starting point for the development of
heuristics we considered the basic 1 vs. n case for which we
identified optimal target orderings that are based on attack
value over hit point ratios. We propose replacing simpler
measures – such as focusing on the weakest or most power-
ful unit — in existing RTS game AI systems by above ratio
to improve combat performance.

Although we have shown that computing the existence of
deterministic winning strategies for the basic attrition game
in general is PSPACE-hard and in EXPTIME, it remains
unclear for which class the problem is complete. Because
attrition games, as we defined them, can last an exponen-
tial number of rounds in case of large health and small at-

tack values, showing PSPACE-completeness could perhaps
be achieved by establishing optimality of macro operators
that collapse long action chains. Another interesting the-
oretical question is where exactly the transition from P to
NP-hard occurs, i.e. what is the smallest k for which the k
vs. n problem NP-hard?

References

Arora, S., and Barak, B. 2009. Computational Complex-
ity: A Modern Approach. New York, NY, USA: Cambridge
Univ. Press.

Balla, R.-K., and Fern, A. 2009. UCT for tactical assault
planning in real-time strategy games. In Proceedings of
the 20th International Joint Conference on Artificial Intel-
ligence (IJCAI-2009).

Buro, M.; Bergsma, J.; Deutscher, D.; Furtak, T.; Sailer,
F.; Tom, D.; and Wiebe, N. 2006. Ai system designs for the
first rts-game ai competition. In Proceedings of the GameOn
Conference, pp.13-17.

Eppstein, D. 2010. Game complexity overview. http://
www.ics.uci.edu/˜eppstein/cgt/hard.html.

Gozel, R. 2000. Firepower score attrition algorithms in
highly aggregated combat models. RAND 47–60.

Kovarsky, A., and Buro, M. 2005. Heuristic search applied
to abstract combat games. In Proceedings of the The Eigh-
teenth Canadian Conference on Artificial Intelligence.

Taylor, J. 1983. Lanchester models of warfare. In Opera-
tions Res. Soc. Vol 1+2.

119


	AIIDE10
	Contents
	Index
	Help
	Terms
	AIIDE 2010




