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Abstract 
In order to cooperate effectively with human players, 
characters need to infer the tasks players are pursuing and 
select contextually appropriate responses. This process of 
parsing a serial input stream of observations to infer a 
hierarchical task structure is much like the process of 
compiling source code. We draw an analogy between 
compiling source code and compiling behavior, and propose 
modeling the cognitive system of a character as a compiler, 
which tokenizes observations and infers a hierarchical task 
structure. An evaluation comparing automatically compiled 
behavior to human annotation demonstrates the potential for 
this approach to enable AI characters to understand the 
behavior and infer the tasks of human partners. 

 Introduction   
Mining data from human players offers a promising new 
solution for authoring character behavior in games. This 
data-driven approach has been proven effective for creating 
computer-controlled players real-time strategy games 
(Ortanon et al 2007; Weber & Mateas 2009), and 
preliminary results show potential for generating behavior 
from data in character-driven games (Orkin & Roy 2009). 
While it is straightforward to record gameplay to a log file 
of time-coded actions, state changes, and chat text, it 
remains an open question how best to process and 
represent this data such that it will be useful to an AI 
character. 
 Many games today implement character behavior with 
hierarchical representations, such as variants of 
hierarchical planners or hierarchical finite state machines 
(Gorniak & Davis 2007; Hoang et al. 2005; Fu & Houlette 
2004); for example, Hierarchical Task Networks in 
Killzone 2 (Straatman 2009), or Behavior Trees in the Halo 
series (Isla 2005). Ideally, we would like to transform the 
sequence of observations recorded in a gameplay log into 
one of these familiar hierarchical structures. This process 
of parsing a serial input stream of symbols to generate a 
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hierarchical structure is much like the process of compiling 
source code (Aho et al. 1986). 
 We compile code for several reasons -- to validate the 
syntax, to compact the size of the code base, and to 
represent a program such that it can be readily executed by 
a machine. The same reasons motivate compiling behavior 
for characters in games. While observing the interactions 
of other human and/or AI agents, characters need to parse 
these observations to recognize valid patterns of behavior, 
and separate the signal from noise. As we collect thousands 
(or even millions) of gameplay traces, the storage memory 
footprint cannot be ignored. While a centralized system 
can execute a hierarchical plan to control a group of AI 
characters, if the team includes human players centralized 
control is no longer an option. In order to cooperate 
effectively with humans (on the battlefield, or in a social 
scenario like a restaurant) characters need understand the 
behavior of others by inferring the tasks they are pursuing, 
and execute appropriate responses in the right contexts. 
 In this paper, we draw an analogy between compiling 
source code and compiling behavior. We propose modeling 
the cognitive system of a character as a compiler, which 
tokenizes observations and infers a hierarchical task 
structure. This structure gives context for understanding 
the behavior of others, and for selecting contextually 
appropriate actions in response. However, the analogy is 
not perfect. There are significant differences between 
compiling code and compiling behavior. Behavior exists in 
a noisy environment, where multiple characters may be 
pursuing multiple, possibly conflicting goals, or engaging 
in exploratory behaviors that do not contribute to any goal 
at all. A source code compiler processes code for a single 
program, and terminates with an error when it encounters 
invalid syntax. Compiling behavior, on the other hand, 
requires the ability to ignore fragments of invalid syntax 
without halting, and simultaneously process tangled 
streams of observations that may contribute to different 
goals. 
 We demonstrate these ideas by describing work with 
data from The Restaurant Game, a corpus of almost 10,000 
logs of interactions between waitresses and customers 
cooperating in a virtual restaurant. First we describe how 
we tokenize actions, state changes, and chat text into a 
lexicon. Next we detail how these tokens can be compiled 
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into a model of behavior at runtime, or as a preprocessing 
step.  Finally, we evaluate how well our system compiles 
behavior as compared to a human, and relate our system to 
previous work. 

The Restaurant Game 
The Restaurant Game is an online game where humans are 
anonymously paired to play the roles of customers and 
waitresses in a virtual restaurant. Players can chat with 
open-ended typed text, move around the 3D environment, 
and manipulate 47 types provides the same interaction 
options: pick up, put down, give, inspect, sit on, eat, and 
touch. Objects respond to these actions in different ways -- 
food diminishes bite by bite when eaten, while eating a 
chair makes a crunch sound, but does not change the shape 
of the chair. The chef and bartender are hard-coded to 
produce food items based on keywords in chat text. A 
game takes about 10-15 minutes to play, and a typical 
game consists of 84 physical actions and 40 utterances. 
Everything players say and do is logged in time-coded text 
files on our servers. Player interactions vary greatly, 
ranging from dramatizations of what one would expect to 
witness in a restaurant, to games where players fill the 
restaurant with cherry pies. Details about the first iteration 
of our planning system for AI-controlled characters are 
available in a previous publication (Orkin & Roy 2009). 

Lexical Analysis 
In order to compile a sequence of observations, we first 
need to tokenize the input stream. When compiling source 
code, a lexical analyzer such as the Unix tool Lex is 
employed to match regular expressions in the input, and 
export tokens in their place (Levin et al. 1992). Tokens 
may represent a single symbol in the input, or a pattern 
composed of several adjacent symbols. For example, the 
Lex specification for analyzing Java code might include: 
 

"if"     { return IF; } 
"else"   { return ELSE; } 

 
"="      { return EQ; } 
"!="     { return NE; } 
[0-9]+   { return NUMBER; } 

 
Guided by this specification, Lex generates a program that 
transforms human-authored source code into a sequence of 
tokens that are more easily interpreted by a machine. Our 
 gameplay data consists of a variety of keywords for 
actions and state changes, names of objects, and arbitrary 
strings of chat text. We would like to tokenize this 
sequence of heterogeneous symbols into a common 
currency of tokens that can be uniformly processed by the 
behavior compiler.  
 Tokenizing actions and chat text is more complex than 
tokenizing source code, due to the fact that actions refer to 
objects  which  change  state  over  time,  and  open-ended  

Figure 1. Screenshot from The Restaurant Game. 

natural language chat text is infinitely varied, yet must be 
categorized into a minimal number of functionally 
meaningful dialogue acts. Below we detail our approach to 
tokenizing physical acts and dialogue acts. 

Tokenizing Physical Acts 
We learn a lexicon of context-sensitive, role-dependent 
physical acts through a bottom-up procedure. The state of 
each object in the game (such as steak, coffee, menus, pots, 
pans, and appliances) is represented by a small vector of 
variables including ON, ATTACHED_TO, and SHAPE. 
(Some objects change shape as a result of an action  steak 
diminishes with each bite). Our lexical analysis procedure 
tracks the state of each object over the course of each 
gameplay session. When the lexical analyzer encounters an 
action (e.g. PICK_UP), we assume that the current state of 

state changes that immediately follow the action represent 

cha
target object (e.g. pie). We store every unique observed 
action in the lexicon. For example, we have one entry in 
the lexicon for a waitress picking up pie from the counter.  
 Recognizing that many objects serve the same function 
within the game, we automatically cluster objects by their 
observed affordances. For each type of object, we count 
how many times the object is the target of each possible 
action. From these counts, we compute the likelihood of 
taking each action with each object, and ignore actions 
with a likelihood below a hand-tuned threshold. Objects 
that share the same list of likely actions (affordances) are 
clustered. For example, we learn that customers tend to sit 
on chairs and stools, and both steak and salmon tend to be 
picked up by waitresses and eaten by customers. Clustering 
objects greatly decreases the size of the action lexicon, 
which refers to these objects. After processing 5,000 
gameplay logs, our lexicon contains 11,206 unclustered 
actions, and 7,086 clustered. 
 Once  we  have  learned  the  lexicon,  we  can  use  it  to 

163



tokenize gameplay logs. Each action in a log can be 
replaced with an index into the action lexicon, which 
serves as a unique token. The behavior compiler can then 
recognize tasks based solely on token sequences, without 
having to track the details of state changes. 

Tokenizing Dialogue Acts 
The effects of physical acts are directly observable in the 
gameplay logs -- when a waitress picks up a steak, the log 
records that the steak is now ATTACHED_TO the 
waitress. The same cannot be said of chat text. When a 

representation in the log of the effect this utterance has had 
on the interaction. Taking inspiration from the 
philosophical observation that "by saying something, we 
do something" (Austin 1962) we recognize that utterances 
can serve as speech acts (Searle 1969) that serve a function 
similar to physical acts, effecting the interaction going 
forward. However, there are many ways to say the same 
thing, using entirely different words to serve the same 
function. 
 Our approach to tokenizing the chat text relies on a 
classification scheme that clusters utterances semantically, 
so that we can represent the infinite variety of ways to say 
the same thing with an identical token. We classify each 
line of chat text into a {speech act, content, referent} triple, 
where speech act refers to the illocutionary force (e.g. 
question, directive, greeting), content refers to the 
propositional content (what is the utterance a question 
about?), and referent identifies an object referenced by the 
utterance (e.g. beer, menu, bill, waitress). For example, 

represented by DIRECTIVE_BRING_BEER. Our scheme 
has 8 possible speech act labels, 23 content labels, and 16 
referent labels. Members of the triple may be labeled 
OTHER when no existing labels fit. Elsewhere we have 
described a dialogue act classifier that can be trained to 
automatically label utterances (Orkin & Roy 2010). For 
this study, we hand-annotated the utterances in the 100 
games, in order to evaluate behavior compilation in 
isolation in a best-case scenario. We observed 312 unique 
dialogue act triples in the 100 annotated games. 
Augmenting the action lexicon with these dialogue act 
triples, we can now represent the physical and linguistic 
interactions in a gameplay log as a sequence of tokens that 
can be processed uniformly by the behavior compiler. 

Syntactic Analysis 
Having tokenized the gameplay logs, we can now proceed 
with compiling behavior in a more conventional manner. 
Guided by a grammar specification, a compiler infers 
structure by parsing token sequences. Tokens are the 
terminals of the grammar. Syntactic rules define non-
terminals (on the left-hand side) as any combination of 
terminals and non-terminals (on the right-hand side), 
forming a hierarchical structure. If a token sequence cannot 

be fully explained by the grammar, the compiler halts with 
a syntax error. YACC (Yet Another Compiler-Compiler) is 
a Unix tool that generates a parser given a grammar (Levin 
et al 1992). The generated parser may include user-
provided code to compile recognized patterns into a 
machine-interpretable intermediate representation. The 
YACC grammar specification for Java syntax might 
include: 
 

If_Statement  
: IF '(' Expression ')' Statement 
| IF '(' Expression ')' Statement ELSE  

Statement 
While_Statement 
: WHILE '(' Expression ')' Statement 

 
Note that there may be multiple valid sequences 
representing the same non-terminal. In the grammar 
fragment above, there are two sequences provided for an 
If_Statement. This is the approach we take to 
recognizing structure in behavior  providing the behavior 
compiler with a grammar of task decompositions, where 
each task may be decomposed into any number of token 
sequences. For example, our grammar for restaurant 
behavior might include: 
 

W_Serves_Food 
: W_PICKSUP_FOOD_FROM_COUNTER  

W_PUTSDOWN_FOOD_ON_TABLE 
| W_PICKSUP_FOOD_FROM_COUNTER 

W_GIVES_FOOD_TO_C 
C_EXPRESSIVE_THANKS_NONE 

| W_PICKSUP_FOOD_FROM_COUNTER 
W_ASSERTION_GIVE_FOOD 

  W_PUTSDOWN_FOOD_ON_TABLE 
 
In this example, tokens are presented in plain English for 
readability, while in actuality the grammar terminals are 
stored as numerical indices into the action lexicon. What 
we have described so far employs the exact same approach 
to compiling source code and behavior. However, there are 
some complications related to the syntax of behavior that 
prevent us from directly applying a tool like YACC, and 
require an alternative approach. 
 The first complication arises from the spontaneous 
nature of gameplay data, which may include syntactically 
invalid action sequences related to player exploration, 
indecision, or intentional misbehavior. Invalid sequences 
may be composed of valid tokens  ordinary actions and/or 
utterances executed in abnormal contexts, such as a 
waitress ordering 50 beers and stacking them on the bar 
instead of serving them to customers. Rather than halting 
with a syntax error, we would like our behavior compiler 
to be able to separate the signal from the noise, and to 
disregard invalid sequences while continuing to process 
valid observations. 
 The second complication relates to the fact that there are 
multiple human players interacting, who may be pursuing 

order while cleaning the table, as the customer drinks wine. 
The  actions  belonging  to  these  tasks  may  be arbitrarily 
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Figure 2. Gameplay trace in EAT before (top) and after (bottom) annotation. 
 
intertwined, and may contribute to unrelated top-level 
goals  (e.g.  satisfying  hunger,   earning  money,   getting 

as if the compiler is faced with code from multiple 
programs that have been arbitrarily combined into one 
input file, and needs to compile them all simultaneously. 
Below we describe our approach to behavior compilation 
that addresses these complications. 

Behavior Compilation 
The grammar provided to the behavior compiler could be 
authored by hand, but to maximize coverage of possible 
valid sequences we learn the grammar from human-
annotated gameplay transcripts. We have previously 
published details about the implementation and evaluation 
of EAT & RUN (Orkin et al. 2010). EAT (the Environment 
for Annotating Tasks) is an online annotation tool for non-
experts and RUN (not an acronym) is an algorithm for 
recognizing tasks at runtime, trained on annotations from 
EAT. We summarize this previous work here. 
 EAT presents each gameplay session as a timeline, 
where nodes represent physical acts and dialogue acts. The 
annotator encloses node sequences in labeled boxes 
representing tasks, and assigns a task label. When nodes 
from multiple tasks are interleaved, the annotator can move 
nodes up or down on the screen to disentangle the tasks, 
allowing tasks that overlap temporally to enclose only the 

relevant nodes. Bigger boxes can enclose smaller task 
boxes, to annotate higher levels of the hierarchy. We 
annotated the first level of the task hierarchy in 100 games, 
from which we generated a grammar by exporting each 
unique token sequence as a syntactic rule. Our grammar 
has 28 task labels (e.g. W_DEPOSITS_BILL, 
W_SERVES_FOOD, C_GETS_SEATED, C_DRINKS), 
serving as non-terminals, plus an OTHER label for 
unclassifiable token sequences. Based on a ten game 
subset, we found substantial agreement between the 
annotations of an expert and five annotators who were not 
involved with the development of EAT (average kappa of 
0.81). Annotating higher levels of the hierarchy remains 
for future work, and we will represent these higher-level 
tasks by exporting the sub-tasks (which may temporally 
overlap) as a sequence of tokens representing task start and 
end points. 
 RUN is a simple, greedy algorithm that recognizes tasks 
at runtime as observations arrive, or can be run as a 
preprocessing step to process a corpus of gameplay logs. 
The algorithm extends multiple observation sequences in 
parallel by maintaining incomplete sequences on an Open 
list. A sequence can be validly extended by appending an 
observation, as long as it remains a subsequence of the 
right-hand side of a syntactic rule. When a sequence in the 
Open list grows to match a complete sequence on the right-
hand side of a syntactic rule in the grammar, a task label is 
assigned (the left-hand side of the matching syntactic rule) 
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// Process all new observations. 
Iterate over new observations 
   Try to append obs to seq in Open 
   Else try to add obs as new seq in Open 
   Else try to append obs to seq in Closed 
 
   // Detect completed rules. 
   If a seq in Open was added or extended 
      If seq matches a complete rule 
         Move seq to Closed and apply label 
 
// Salvage fragments left in Open. 
Iterate over seqs in Open 
   Try to append to seq in Closed 

Figure 3. Outline of the RUN algorithm. 
 
and the sequence is moved to the Closed list. In cases 
where an observation cannot extend a sequence or start a 
new sequence in the Open list, sequences in the Closed list 
may continue to be extended.  This captures the fact that 
the grammar includes sequences that may be subsequences 
of longer syntactic rules. At any point in time, the 
sequences in the Closed list represent the recognized task 
history so far. Sequences not found in the Closed list are 
assigned a task label of OTHER. RUN processes tokens at 
one level of the task hierarchy at a time, initially 
processing only the terminal tokens. The output of RUN at 
one level serves as the input tokens for the next level. 
 Compiling the corpus of gameplay logs with RUN 
generates a library of thousands of hierarchical plans, 
executable by a character. Compiled logs are stored in text 
files where each line contains a token, time code, task 
instance ID, and plain English description of a physical act 
(for debugging) or the line of quoted human chat text 
corresponding to the dialogue act. We are currently 
building on previous work (Orkin & Roy 2009) to develop 
a planning system driven by the RUN algorithm. 
Characters employ RUN to process observations, and infer 
which tasks have been completed and which are in 
progress. Retrieving compiled logs with similar task 
histories from the library provides the means to select an 
appropriate next action in the context of current 
observations. 

Evaluation 
We evaluate our approach to behavior compilation based 
on the criteria of correctness and compactness of the 

syntactically invalid behavior; produce a task hierarchy 
that closely resembles human annotation for the same 
gameplay log; and the exported files will be significantly 
smaller than the original logs. 
 We evaluated our compiler with a 10-fold cross-
validation test of recognizing tasks in the 100 human 
annotated gameplay traces, where each fold was trained on 
90 traces and tested on 10. Our results show that RUN 
works well on our dataset, achieving a 0.744 precision and 
0.918 recall. Precision measures how often RUN and the 
human assigned the same task label to a token. Recall 

measures how many of the human-annotated task instances 
were recovered by RUN. The baselines for precision and 
recall are 0.362 and 0.160 respectively. While these results 
are encouraging, we need to evaluate our system on a 
dataset of gameplay traces from another domain for 
comparison. The fact that RUN scores higher recall than 
precision indicates that the system is doing a good job of 
getting the gist of the interaction, but is sometimes 
omitting tokens within a sequence. 
 Unlike a source code compiler, which terminates with a 
syntax error when encountering invalid syntax, our 
compiler needs to filter out invalid behavior while 
continuing to process subsequent observations. We can 
measure how well the compiler filters invalid behavior by 
scrutinizing the number of tokens assigned to task OTHER 
by a human and by the compiler. We found the compiler 
has 89% precision and 82% recall for task label OTHER, 
meaning that a human agreed with 89% of the tokens that 
the compiler filtered out, and the compiler caught 82% of 
the tokens filtered out by a human.  
 The file sizes of the compiled log files are considerably 
smaller than the original gameplay logs. We compiled a 
directory of 9,890 log files, and the size of the directory 
decreased dramatically from 2.87 GB to 165 MB. 
Currently log files are compiled into a text-based format, 
which includes a plain English description of a physical act 
for debugging or the line of quoted human chat text 
corresponding to the dialogue act. Further compression is 
possible by compiling into a binary format, omitting the 
debug information, and storing references into an external 
dictionary of phrases rather than storing the raw dialogue 
text (which is often repeated). 

Related Work 
Behavior compilation is closely related to plan recognition 
(Kautz & Allen 1986), but requires the ability to recognize 
multiple plans simultaneously, in cases where temporally 
overlapping tasks contribute to different top-level goals. 
Furthermore, gameplay data is typically not logged in a 
tokenized format amendable to plan recognition, requiring 
lexical analysis as a preprocessing step. Gorniak and Roy 
employed plan recognition to disambiguate directives 
issued to an AI-controlled partner while solving a puzzle in 
Neverwinter Nights (2005). Their system employed a 
probabilistic parser guided by a hand-crafted behavior 
grammar. Our system learns a grammar from annotated 
data, and tries to recognize tasks contributing to multiple 
top-level goals in parallel, which incorporate a wider 
variety of speech acts than directives.  
 Our approach to learning hierarchical plans from 
annotated gameplay data is similar to work on Case-Based 
Planning for strategy games (Ortanon et al 2007). Their 
system extracts cases from a small number of annotated 
games. In our system, a small number of human-annotated 
games train the behavior compiler to automatically 
annotate a corpus of thousands, generating a large case 
base that captures subtle variations between gameplay logs. 
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In addition, we do not assume anything about the 
hierarchical structure from the temporal overlaps of tasks, 
and instead rely on human annotation of higher-level tasks 
to determine which tasks encompass lower-level sub-tasks. 
Unlike a strategy game, where all player interactions 
ultimately contribute to the high-level goal of winning the 
game, there is no notion of winning The Restaurant Game. 
Plus, we are modeling the interactions between two 
players. Thus we cannot make assumptions about 
hierarchical structure based on temporal relationships  
ordering food while the waitress cleans the table does not 
mean that ordering is a sub-task of cleaning. These tasks 
contribute to unrelated top-level goals of having a meal, 
and keeping the restaurant clean. 

Conclusion 
Our evaluation compared the output of the behavior 
compiler to human annotation of the same gameplay logs, 
and demonstrated that the compiler does well at inferring 
tasks from observations and filtering out invalid behavior, 
when tested on our data set. Future work remains to show 
that these results generalize to other data sets, and that the 
compiled logs work well to drive character behavior at 
execution time. We are currently developing a planning 
system driven by the compiled logs to test execution, and 
will soon begin developing a new game to test 
generalization of the approach to a completely different 
scenario. 
 When tokenizing observations from our current 
scenario, we benefit from the fact that actions are discreet. 
For example, clicking the PICK_UP button on the interface 
results in the character immediately grasping the object. 
While interaction in other games may not be as discreet, 
we are optimistic that similar tokenization should be 
possible. The intuition for this optimism is that if behavior 
can be represented with a hierarchical plan or state 
machine, there must be some means of recognizing the 
completion of actions in order to proceed. In theory, these 
completion points can be transformed into tokens for 
behavior compilation. 
 Executing the plan compiled from one gameplay log 
works no differently than currently existing systems in the 
game industry, which execute behavior represented in a 
hierarchical plan or state machine. More complex is a 
system that dynamically pivots between thousands of 

with another autonomous human or AI-controlled partner. 
Running the behavior compiler at execution time, as a 
character processes observations, will provide the means to 
recognize the task history of the interaction, and use this 
history to find similar episodes in the corpus. 
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