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Abstract

Autonomous agents in real-time strategy (RTS) games
lack an integrated framework for reasoning about choke
points and regions of open space in their environment.
This paper presents an algorithm which partitions the
environment into a set of polygonal regions and com-
putes optimal choke points between adjacent regions.
This representation can be used as a component for AI
agents to reason about terrain, plan multiple routes of at-
tack, and make other tactical decisions. The algorithm
is tested on a set of popular maps commonly used in in-
ternational Starcraft competitions and evaluated against
answers made by human participants. The algorithm
identified 97% of the choke points that the participants
found and also identified a number of bottlenecks that
human participants did not recognize as choke points.

Introduction

In recent years the domain of real-time strategy (RTS) games
has become a growing area of research due to the complex
challenges such environments present. In RTS games, two
or more players gather resources in order to research up-
grades and construct armies of up to several hundred units
with the goal of defeating the other players. Since play-
ers can control each of their units individually to perform
a number of distinct actions, the number of unique actions a
player can chose from at any point in time can be astronom-
ical making traditional AI search algorithms impractical.

In most RTS games, resources are placed in different areas
throughout the map. As a result, players that control more
territory naturally have access to more resources and can af-
ford to construct larger armies. The player with the most
map control is often able to construct the strongest army and
defeat his opponent. Thus, a key sub-goal to winning an RTS
game is to gain an overwhelming amount of map control.

To gain control of a particular region of the map currently
occupied by the enemy, an autonomous agent must be able to
reason about different avenues of attack and decide the best
directions to attack from. Even if the agent has a superior
army, assaults which fail to take into account the bottlenecks
in the terrain are unlikely to succeed.
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Once a region has been conquered, the agent must defend
the region against possible attacks from the enemy. The
agent must be able to determine where to place defensive
structures and units so as to best fortify its base. Only with a
tactical awareness of choke points can the agent effectively
withstand attacks from players with superior armies.

Thus, a major challenge facing any RTS agent is to recog-
nize the tactical choke points in the terrain, partition the map
based on these choke points into meaningful connected re-
gions, and reason about the graph structure of these regions
and choke points on the map. This paper addresses this chal-
lenge with a novel algorithm which transforms a Voronoi di-
agram of the environment into a representation that consists
of polygon-shaped regions connected by choke points.

Problem Definition

The traversability information of a map can be represented
as a two dimensional boolean array of tiles where each tile
either permits ground unit movement (traversable) or does
not (untraversable). Dynamic obstacles such as units and
buildings are not considered in this paper.

Regions are connected components of traversable tiles
that do not have any bottlenecks or choke points within them
that could impede unit movement. The border of a region
can be represented as a simple polygon and while regions do
not have to be convex, units located inside a region should be
able to travel to other parts of the region with relative ease.
A region can be connected to one or more other regions via
choke points. Mathematically, regions can be represented by
vertices which are connected to each other by edges which
represent the choke points.

Choke points are corridors that connect exactly two re-
gions. Each choke point has a narrowest gap which, if
walled-off, would prevent movement through the choke
point. Each choke point falls into one of two categories:

1. Choke points which, if walled-off, would merge two dis-
tinct obstacles into one larger obstacle.

2. Choke points which, if walled-off, would split a con-
nected component of traversable tiles into multiple com-
ponents, preventing movement between the two discon-
nected components.

The two types of choke points are shown in Figure 1. Ob-
serve that walling-off the left choke point merges the two
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distinct obstacles while walling off the right choke point
splits the free space into an inner component and an outer
component.

Figure 1: The two types of choke points

Thus, the problem is to partition the terrain into regions
via choke points. The accuracy and correctness of the algo-
rithm will be determined by comparing the results against
answers made by human participants.

Related Work

An enhanced Space Filling Volumes algorithm named
DEACCON (Hale 2008, Heckel 2009) has been developed
which automatically decomposes free space into a set of
convex polygons. This algorithm generates a navigation
mesh which works well for agent navigation; however, it
may not be the best algorithm to use for choke point detec-
tion. Since the algorithm enforces region convexity, it must
split free space into multiple regions even when no signifi-
cant choke points exist. The simplest example of this is the
case of a concave connected component of free space with
only one local maximum, such as the shape of a crescent
moon. Such a component of free space has no choke points,
yet the DEACCON algorithm must split the component into
two or more parts to enforce region convexity.

For choke point detection, existing image-processing al-
gorithms grow auras of influence outward from each obsta-
cle (Higgins 2002, Obelleiro 2008). When the auras from
two different obstacles come into contact, the point of con-
tact is recognized as a choke point in the environment. These
algorithms are great at detecting choke points between dis-
tinct obstacles; however, type 2 choke points are missed be-
cause they occur between two parts of the same obstacle (see
Figure 1). Obelleiro’s paper also identified a problem where
sometimes no single value for the aura size would yield an
optimal region decomposition for the whole map. The ap-
proach presented in the next section of this paper evolved
from an attempt to extend these algorithms to solve these
problems; however, the tile-based aura approach proved un-
wieldy when additional functionality for detecting type 2
choke points was incorporated.

Another image-processing approach computes a discrete
Voronoi diagram of obstacles (Forbus 2002). A Voronoi
diagram of obstacles consists of a set of points which are
equidistant from two or more distinct obstacles. Forbus’s al-
gorithm uses this to find intersection points (pixels equidis-
tant from three or more distinct obstacles), and from that
grow auras in all directions to form the open regions. Like
Higgins’ and Obellerio’s algorithms, Forbus’s is unable to
detect type 2 choke points, so it misses regions with only
one entrance. Additionally, in some cases an open region
may occur where no Voronoi diagram intersection points oc-
cur, such as in an empty room with only two doorways.

The Voronoi diagram representation of open space has
been used by others as the basis of a framework which pro-
vides agents with a spatial awareness of the environment
(Perkins 2008). This framework provides agents with in-
formation about the intrinsic spatial qualities of the environ-
ment; however, unfortunately it was not developed toward
the goal of choke point detection or region decomposition.

Finally, other methods of providing spatial awareness in
RTS games have been developed such as influence points,
influence maps, and potential fields (van der Sterren 2001,
Tozour 2001, Hagelbäck 2008), but these approaches do not
seem to be useful for an integrated approach to choke point
detection and region decomposition.

Algorithm

The algorithm presented in this paper can be outlined as the
following sequence of eight steps:

1. Recognize Obstacle Polygons
2. Compute Voronoi Diagram
3. Prune Voronoi Diagram
4. Identify Region Nodes
5. Identify Choke Point Nodes
6. Merge Adjacent Regions Based On Thresholds
7. Wall Off Choke Points
8. Recognize Region Polygons

Each step shall now be described in detail. For illustra-
tive purposes, the result of each step will be shown for the
popular Starcraft map Byzantium 3, shown in Figure 2.

Figure 2. A typical Starcraft map

1. Recognize Obstacle Polygons

First the algorithm converts the two-dimensional binary
traversability array into a geometric representation of ob-
stacles. This process, called vectorization, can be imple-
mented in many different ways and in general is a rather
complex problem. In this case the pixels are binary val-
ues (traversable or untraversable), so a simple algorithm will
suffice. First, the map is flood-filled to determine the con-
nected components on the map. Second, the algorithm traces
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Figure 3: Steps one through four (A) Computed Voronoi diagram (B) Pruned Voronoi diagram (C) Identified region nodes

the outline of each connected component to construct a poly-
gon border. Third, polygons of traversable components that
are inside polygons of untraversable components are repre-
sented as holes in those polygons, so that each obstacle on
the map is represented as a polygon with zero or more holes.
Fourth, obstacles that are smaller than a certain threshold are
discarded. Finally, all the obstacles are simplified to reduce
the number of vertices in each polygon, while still approxi-
mating the shape of the actual obstacles to sufficient detail.
The obstacle polygons are shown in grey in Figure 3.

2. Compute Voronoi Diagram

The second step is to compute the Voronoi diagram of line
segments from the edges of the polygonal obstacles. This
is accomplished using the efficient and robust 2D Segment
Delaunay Graph implementation in the open source Compu-
tational Geometry Algorithms Library (CGAL). This imple-
mentation is based on the work of (Karavelas 2004) among
others and is beyond the scope of this paper. The output of
this step is shown in Figure 3(A).

3. Prune Voronoi Diagram

The third step of the algorithm is to trim off unnecessary por-
tions of the Voronoi diagram. First, the radius of each vertex
in the graph is computed, where the radius of a vertex is de-
fined as the distance from the vertex to the nearest obstacle
or map border. Next, the algorithm iterates over each leaf in
the graph, and if the radius of the vertex is less than the ra-
dius of its parent, the vertex and adjacent edge are removed
from the graph. Removing this edge may result in the adja-
cent vertex becoming a leaf, so this process is repeated until
no more edges or vertices can be removed from the graph.
As a result, the only leaves that remain in the graph have a
greater radius than their parent vertices. Last, the algorithm
removes all isolated vertices that have a radius less than a
certain threshold. In Figure 3(B) it is apparent that this step
greatly reduces the complexity of the Voronoi diagram while
still representing the overall structure of the map.

4. Identify Region Nodes

The fourth step begins the process of partitioning the map
into regions. This begins with marking certain nodes as re-
gion nodes. All nodes of degree other than two are marked
as region nodes because they represent important areas in
the structure of the map such as intersections, leaves, and
isolated components. Nodes of degree two are marked as
region nodes only if they are locally maximal and above a
certain radius. A node A is locally maximal if for every
other node B that is within A’s radius, the radius of B is
less than the radius of A. In Figure 3(C) the region nodes
are depicted as large black dots.

5. Identify Choke Point Nodes

Since all vertices with degree not equal to two are now re-
gion nodes, it follows that all remaining unlabeled vertices
in the graph must have a degree of two and thus must be lo-
cated along some path that connects two region nodes. Thus,
the fifth step of the algorithm walks along each path, finds
the vertex with the smallest radius, labels it as a choke point
node, and links it to the pair of region nodes it connects. It
is possible that the vertex with the smallest radius is one of
the end points of the path (such as when two region nodes
are adjacent) so sometimes a vertex is both a region node
and a choke point node at the same time. The other odd
situation that can occur is when a path forms a loop with
a single region vertex. In this case the algorithm discards
the path, which makes more sense than adding a choke point
node that connects a region node to itself. In Figure 4(A) the
choke point nodes are depicted as black triangles.

6. Merge Adjacent Regions Based On Thresholds

Since the map has more region nodes and choke point nodes
than is necessary to represent the terrain, it is necessary to
merge adjacent regions based on thresholds. If the algorithm
were to proceed directly from step five to step seven, the al-
gorithm would partition the map into an excessive number
of regions and place choke points where no bottlenecks ex-
ist. To rectify this, step six of the algorithm merges adjacent
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Figure 4: Steps five through eight (A) Identified choke point nodes (B) Merged adjacent regions (C) Final result

regions and removes unnecessary choke points. The prob-
lem of deciding which regions to merge currently appears to
be rather complex, and it has yet to be determined what are
the best criteria to use. However, the following criteria have
been shown to produce suitable results.

Two adjacent regions are merged when either of the fol-
lowing two conditions are met. First, two regions are merged
if the radius of the choke point connecting them is larger
than 90% of the radius of the smaller region node, or larger
than 85% of the radius of the larger region node. The second
criterion applies specifically in the case where one of the re-
gions has exactly two choke points. For a region with two
choke points, the region is merged with the adjacent region
that is connected to the larger of the two choke points if the
radius of the larger choke point is greater than 70% of radius
of the original region node.

These criteria appear to work well in many cases; how-
ever, they are not perfect. Furthermore, if adjacent regions
are merged one choke point at a time, the order in which they
are merged can impact the final result. While it has not yet
been determined what order of merge operations is best, to
keep the algorithm deterministic the algorithm currently ex-
amines each choke point in order of decreasing radius. The
result of this step is shown in Figure 4(B), where the Voronoi
diagram has been replaced with line segments to show which
region nodes are linked to which choke point nodes.

7. Wall Off Choke Points

Once the region and choke point nodes have been estab-
lished, the final goal is to compute the exact polygon shape
of each region and compute the two sides of each choke
point. To do this, the algorithm iterates over each choke
point and looks up the set of nearest points that lie on the
neighboring obstacle polygons. CGAL’s 2D Segment De-
launay Graph implementation facilitates this step by caching
the pairs of obstacle line segments that define each edge in
the Voronoi diagram. Once the two end points are retrieved,
a line segment connecting them is inserted into the 2D ar-
rangement. Figure 4(C) shows the obstacle polygons along
with these new choke point walls.

8. Recognize Region Polygons

Once the choke points are walled off, each region node is in a
unique face in the arrangement of obstacles and choke point
walls, so the algorithm looks up the corresponding face for
each region node and iterates over the edges of the face to
determine the polygon border of the region. This completes
the process of region decomposition and the final result is
shown in Figure 4(C) where each white polygon is a region,
and the black lines between two adjacent white polygons
represent the choke points.

Implementation

This algorithm has been implemented as a free open source
C++ library which can be used by other AI researchers and
developers under the General Public License, version 2. The
library, called the Brood War Terrain Analyzer (BWTA),
reads map data using the Brood War Application Program-
ming Interface (BWAPI) and thus currently only works for
the Starcraft: Broodwar RTS game. BWTA uses CGAL to
handle the construction of the Voronoi diagram of line seg-
ments and the processing of the 2D arrangement of obsta-
cles and choke point walls. Additionally, BWTA uses the
Qt framework to draw the results of each step as well as
the final region decomposition. Figures 3, 4, and 5 were
generated by the BWTA library. Source code, user docu-
mentation, and binary releases of this library are available at
http://code.google.com/p/bwta/.

Results

The BWTA library has been evaluated on a set of RTS maps
known as the iCCup Map Pack which is freely available
from http://www.iccup.com. The iCCup Map Pack is a com-
pilation of 48 Starcraft maps that are commonly used in in-
ternational Starcraft competitions. In the interest of space
only six of the 48 maps have been included in Figure 5; how-
ever, the full results of the algorithm for all 48 maps in both
graphical form and XML form as well as raw map data for
future research on the iCCup Map Pack data set are archived
at http://code.google.com/p/bwta/.
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Figure 5: (A) Destination 1.1 (B) Enarey 1.3 (C) God’s Garden (D) Longinus (E) Rush Hour 3.1 (F) Return of the King

Since there is no known mathematical formula that can
objectively and quantitatively evaluate the accuracy of these
results, they have been compared to a majority rule analy-
sis assembled from seven independent human participants.
In the majority analysis, if at least four of the seven partici-
pants found a choke point between two particular obstacles
or points of the same obstacle, then that choke point was
inserted into the majority rule analysis for the map.

The two main types of errors to look for when comparing
the results of the algorithm against the human majority rule
analysis are false positives and false negatives. False posi-
tives occur when the algorithm inserts a choke point where
the majority of human participants did not, and false nega-
tives occur when the algorithm fails to insert a choke point
where the majority of human participants did. The total
number of correct choke point matches, false positives, false
negatives, and running time of the algorithm in seconds on
each map are shown in Table 1:

Map Match False + False - Time
Destination 1.1 23 1 0 19
Enarey 1.3 23 12 0 31
God’s Garden 16 4 0 27
Longinus 15 2 0 28
Rush Hour 3.1 15 2 0 26
Return of the King 20 11 4 43

Table 1: Algorithm Accuracy and Running Time (seconds)

With the exception of Return of the King, the algorithm
found every choke point that human participants found;
however, it also identified a number of additional choke
points. Each of the six maps will now be examined.

The false positive in Destination 1.1 is marked with an
X in Figure 5 (A). This choke point is only very slightly
smaller than the regions it connects, so its easy to see why
most participants would not consider it significant.

In Enarey 1.3, the three largest choke points adjacent to
each of the four regions marked with an X were not present
in the human majority rule analysis. However, to call these
choke points erroneous may be overly simplistic since leav-
ing out these 12 choke points would make the center region
very large, highly concave, and thus arguably more difficult
to reason about from a tactical view point.

Most of the participants did not place the four radial choke
points in God’s Garden that touch the four obstacles in the
center of the map, making them false positives in Figure 5
(C). However, leaving these four choke points out results in
a single outer region with a hole in it. This ring topology
would likely add unnecessary complexity to tactical algo-
rithms with little benefit, if any. These four choke points
are also significantly narrower than the regions they connect,
which means they would still prove to be a bottleneck once
a player’s army reached sufficient size.

In Longinus, the two false positives are each marked with
an X. While the lower left false positive is almost certainly
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useless given the slightly narrower choke point right below
it, the choke point next to the upper X could potentially be
used in certain situations, such as when an opponent is trying
to gain control of the center region. This map also has a
type-2 choke point which is correctly identified.

Each of the two false positives in Rush Hour 3.1 are
marked with an X. These choke points are clearly unnec-
essary because they each have a much smaller choke point
right next to them which walls off the same path.

In Return of the King, most participants placed no radial
choke points to the four obstacles in the center of the map,
resulting in another outer region with a ring topology. Partic-
ipants also placed two choke points rather than one in each
of the 4 major corridors, technically resulting in 4 false neg-
atives. However, when participants placed two choke points
in a single bottleneck they appeared to do so in order to
mark the end-points of the corridor, rather than the narrow-
est cross-section of the gap. From this it is clear a more de-
scriptive representation of these terrain features is needed in
order to be able to express the end points of long corridors.

These results have shown that overall the algorithm works
well on a variety of popular competitive Starcraft maps, yet
may also have room for improvement in future research.

Future Research
Several directions for future research have been identified.

First, the optimal criteria for merging adjacent regions
have yet to be determined. The criteria presented in step
six of the algorithm have been shown to produce suitable re-
sults; however, these criteria were chosen by randomly try-
ing different thresholds, so the criteria are most liked not op-
timal. If future research developed a method that could an-
alyze and numerically score a given region decomposition,
then region merging criteria could be evaluated by determin-
ing the average score of the results obtained a wide variety of
maps. With the ability to evaluate a given set of region merg-
ing criteria, optimization algorithms could be employed to
determine the optimal criteria.

Next, the algorithm in its current form only represents
long corridors as choke points which span the narrowest
cross-section of each corridor. Autonomous agents would
likely benefit from a more descriptive representation of this
terrain feature such as a polygon which includes a start edge
at one end of the corridor and an end edge at the other
end. Obelleiro’s algorithm has already solved this so heuris-
tics inspired from a geometric interpretation of his image-
processing approach could be applied here.

Last, while the algorithm has been presented in the con-
text of RTS games, it may prove useful in a wide variety
of other domains. For example, choke points often play a
major role in first person shooters and other action games.
If the algorithm were extended to analyze the traversability
of these 3D environments, computer-controlled opponents
could work together to block off the player’s escape routes.
Similarly, the algorithm could give indoor mobile robots an
awareness of choke points and prevent the robots from stop-
ping in door ways and other bottlenecks. Finally, the regions
generated by this algorithm are bottleneck-free so the algo-
rithm may be useful for pathfinding algorithms.

Conclusion

This paper has presented a novel algorithm and accompa-
nying open source framework for choke point detection and
region decomposition. An analysis of the results has shown
that the algorithm detects choke points in locations that
closely match that of human participants. This algorithm ad-
dresses a major challenge that most autonomous agents face
in the complex environment of modern RTS games. With the
representation of the terrain produced by this algorithm, AI
agents are able to reason about the terrain and make tactical
decisions that take into account and exploit the significant
choke points on the map, enabling AI researchers to create
more formidable autonomous agents.
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