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Abstract 
Recent years have seen a growing interest in interactive 
narrative systems that dynamically adapt story experiences 
in response to users’ actions, preferences, and goals. 
However, relatively little empirical work has investigated 
runtime models of user knowledge for informing interactive 
narrative adaptations. User knowledge about plot scenarios, 
story environments, and interaction strategies is critical in a 
range of interactive narrative contexts, such as mystery and 
detective genre stories, as well as narrative scenarios for 
education and training. This paper proposes a dynamic 
Bayesian network approach for modeling user knowledge in 
interactive narrative environments. A preliminary version of 
the model has been implemented for the CRYSTAL ISLAND 
interactive narrative-centered learning environment. Results 
from an initial empirical evaluation suggest several future 
directions for the design and evaluation of user knowledge 
models for guiding interactive narrative generation and 
adaptation.  

 Introduction   

Artificial intelligence technologies for real-time narrative 
generation and adaptation have shown promise for 
dynamically tailoring interactive story experiences (Mateas 
and Stern, 2005). Interactive narrative systems can benefit 
from user models that inform real-time narrative adaptation 
decisions. Over the past several years, the interactive 
narrative community has investigated empirical models of 
canonical player types for dynamic quest selection (Thue et 
al. 2007), models of user behavior for informing proactive 
story mediation decisions (Magerko 2006), and predictive 
assessments of user responses to dilemma scenarios 
(Barber and Kudenko 2007).  
 One area of user modeling that has received 
comparatively little attention by the interactive narrative 
community is modeling user knowledge. User knowledge 
models assess understanding of important narrative events, 
concepts, facts, and strategies. User knowledge is 
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important in several genres of narratives, such as mystery 
and detective scenarios, where interpreting clues and prior 
events is critical. Interactive narratives can employ 
knowledge to drive run-time decisions about story 
adaptations, such as varying non-player character 
dialogues, introducing side quests, or dynamically 
adjusting degree of difficulty. For example, consider an 
interactive mystery where the user has overlooked an 
important clue. A narrative director agent could query a 
user knowledge model to identify gaps in the user’s 
understanding, and then assign a quest that will re-reveal 
the necessary information, or direct a non-player character 
to provide a hint. Similarly, knowledge models are 
valuable for providing run-time assistance in education and 
training applications of interactive narratives. 
 Devising effective models of user knowledge poses 
significant computational challenges. First, models of user 
knowledge must cope with multiple sources of uncertainty 
inherent in the modeling task.  Second, knowledge models 
must dynamically model knowledge states that change 
over the course of a narrative interaction. Third, the models 
must concisely represent complex interdependencies 
among different types of knowledge, and naturally 
incorporate multiple sources of evidence about user 
knowledge.  Fourth, the models must operate under the 
real-time performance constraints of interactive narratives. 
 To address these challenges, this paper proposes a 
dynamic Bayesian network approach to modeling user 
knowledge during interactive narrative experiences.  
Dynamic Bayesian networks offer a unified formalism for 
representing temporal stochastic processes such as those 
associated with knowledge modeling in interactive 
narrative environments. The framework provides a 
mechanism for dynamically updating a set of probabilistic 
beliefs about a student’s understanding of narrative, 
scenario solution, strategic, and curricular knowledge 
components that are accumulated and demonstrated during 
interactions with a narrative environment. An initial 
version of the model has been implemented in CRYSTAL 
ISLAND, a testbed narrative-centered learning environment 
featuring an educational science mystery. An empirical 
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evaluation offers preliminary support for the framework’s 
potential for interactive narrative environments and run-
time knowledge models. 

Related Work 

A majority of interactive narrative work has focused on 
computational models for dynamically adjusting plot and 
discourse during user interactions with narrative 
environments (Mateas and Stern 2005; Riedl and Stern 
2006), as well as driving believable non-player character 
behaviors (Si, Marsella, and Pynadath 2006). 
Comparatively little work has investigated devising and 
validating user models to inform the narrative generation 
process. The Interactive Drama Architecture (IDA) 
implements a rule-based player model to predict future 
user actions in the Haunt 2 virtual environment (Magerko 
2006). Other work has classified players into 
predetermined behavioral categories (Thue et al. 2007), 
structured user models around small sets of possible 
behaviors (Roberts et al. 2006), or has not been empirically 
validated. Prior work on the CRYSTAL ISLAND narrative 
environment used n-grams and Bayesian networks to 
induce models for goal recognition (Mott, Lee, & Lester, 
2006). 
 Student knowledge modeling has been the subject of 
extensive investigation in the intelligent tutoring systems 
community. Student models are critical in intelligent 
tutoring systems’ for dynamically selecting practice 
problems and delivering tailored hints (VanLehn, 2006). A 
number of intelligent tutoring systems utilize probabilistic 
representations in order to cope with the uncertainty 
inherent in student modeling. The Cognitive Tutor family 
of intelligent tutors uses knowledge tracing, a probabilistic 
overlay technique for assessing students’ domain 
knowledge (Corbett and Anderson 1994). Andes is an 
intelligent tutor for introductory college physics, which 
utilizes Bayesian networks to probabilistically model 
students’ domain knowledge and problem-solving plans 
(Conati et al., 2002). Prime Climb is an educational game 
for young students learning number factorization, and has 
produced several iterations of dynamic Bayesian networks 
for modeling student knowledge and affect (Manske & 
Conati, 2005). While intelligent tutoring systems provide a 
useful reference point for effective knowledge modeling, 
interactive narratives pose additional computational 
challenges that merit investigation. 

Representational Requirements 

Knowledge modeling is a problem of partial observability 
and is characterized by multiple sources of uncertainty. 
One source of uncertainty has been described as the 
assignment of credit problem in the intelligent tutoring 
systems literature (VanLehn, 2006). The problem is 
associated with situations in which a single sequence of 
observations corresponds equally well to several 

qualitatively distinct models of the user’s knowledge. For 
example, consider an interactive detective scenario where a 
user decides to accuse a particular non-player character of 
being the mystery’s main culprit. This action could be 
consistent with multiple possible models of the user’s 
knowledge: the user may confidently know of the 
character’s guilt, or the user may have luckily guessed the 
culprit’s identity without the requisite knowledge, or the 
user may suffer from a misconception that fingered the 
correct character but for the wrong reasons. Without 
additional information, it can be difficult to identify the 
type of knowledge evidenced by the user’s action.  
 Another representational requirement is coping with 
student knowledge states that change over the course of a 
narrative interaction. As users successfully explore the 
environment and uncover plot details, their knowledge of 
the scenario and narrative environment is likely to 
increase. Further, these changes often involve complex 
combinations of declarative, procedural, and narrative 
knowledge evidenced across diverse sets of information 
gathering and problem solving actions.  
 Many interactive narratives provide multiple resources 
for learning about important narrative events and concepts 
(e.g., conversations with non-player characters, 
environmental props such as posters or televisions), as well 
as methods for demonstrating knowledge (e.g., narrative 
actions, solutions to diegetic puzzles). A knowledge model 
should be able to integrate these different sources of 
evidence of student knowledge, differentiate the degree of 
evidence provided by each source, and support parameters 
to represent individual users’ knowledge abilities.  
 Further, the real-time performance constraints of 
interactive narratives require that any computational 
formalism for modeling user knowledge support efficient 
algorithms for updating and querying the model. A 
knowledge model need not necessarily update during each 
clock cycle of an interactive narrative’s underlying game 
engine, but it must update quickly enough to be useful for 
real-time narrative decision making. 

A Dynamic Bayesian Network Approach to 
Modeling User Knowledge 

Dynamic Bayesian networks (DBNs) provide a natural 
representation to meet the requirements of user knowledge 
modeling in interactive narratives. Dynamic Bayesian 
networks are an extension of Bayesian networks, which 
provide a concise, graphical representation for quantifying 
and reasoning about uncertainty. A Bayesian network is a 
directed acyclic graph with nodes representing individual 
random variables, and directed links representing 
dependencies between variables  (Pearl, 1988). Each node 
is annotated with a conditional probability distribution over 
possible states given all possible combinations of its parent 
nodes’ states.  Parent nodes influence child node values in 
the direction of their connecting links. The absence of a 
directed link between any two nodes indicates an 
independence relationship between the respective random 
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variables. Whenever a direct observation is made of the 
system being modeled, the associated node in the Bayesian 
network is clamped to the appropriate value, and the 
evidence is propagated through the network via Bayesian 
inference.  Several exact and approximate Bayesian 
inference techniques have been devised, and are adequately 
efficient for practical use. 
 Dynamic Bayesian networks extend static Bayesian 
networks by dynamically inserting and removing nodes 
over the course of a modeling task (Dean & Kanazawa, 
1989). Temporal DBNs typically follow the form of a first-
order Markov process, which assumes that future states are 
independent of the model’s prior history, given its current 
state. A significant advantage of DBNs over static 
networks is their ability to explicitly represent changes in a 
model’s belief state over time. By structuring 
contemporaneous state variables into discrete time slices, 
and progressively appending new slices to the network, 
DBNs maintain a growing history of the process being 
modeled.  Figure 1 provides a conceptual illustration of 
such a DBN structure.  
 A DBN knowledge-tracing model functions as a 
probabilistic overlay model, monitoring the user’s actions 
during the narrative scenario and updating values 
representing her mastery over a set of target knowledge 
components.  As the user’s knowledge changes over the 
course of an interaction, those changes are reflected 
through dynamic updates of the knowledge model.  
Knowledge values are represented as probabilities, which 
indicate the model’s beliefs about the user’s understanding 
of the associated knowledge components. 
 DBN model parameters can be hand engineered, or they 
can be machine learned from data. The size and complexity 
of a user knowledge model can significantly impact the 
efficacy of techniques for automatic parameter learning; 
for this reason, an investigation of automated techniques 
for parameter learning is left for future work. This work 
presents a four-stage procedure for hand authoring a DBN 
knowledge-tracing model for an interactive narrative. First, 
a set of relevant knowledge components is identified as the 
subject of modeling. Second, the relationships between 
different knowledge components are specified, 
characterizing a template network structure. Third, a set of 
observable user actions is identified, as are relationships 
between the observable actions and the model’s knowledge 
components.  Fourth, the model’s parameters are defined in 
terms of conditional probability tables for each of the 
hidden and observable nodes in the network.  
 Identification of knowledge components. The first 
phase of the DBN model’s construction requires 
identifying a relevant set of knowledge components.  
Knowledge components are represented as binary random 
variables, each designating the probability that the student 
understands a particular concept or fact.  Several categories 
of knowledge may need to be included in the model, such 
as narrative knowledge, interaction strategy knowledge, 
and scenario solution knowledge. Narrative knowledge 
consists of scenario-specific facts that are gathered during 

the interaction. Strategic knowledge represents a student’s 
understanding of the activities necessary for completing 
the interactive narrative scenario. Scenario solution 
knowledge consists of scenario-specific propositions that 
are deduced by the student as she works toward completion 
of the narrative, and are relevant to its ultimate resolution. 
In the case of educational narratives, it may be necessary to 
also define Content knowledge components, which consist 
of facts and concepts from a learning domain. 
 Specification of network structure. After identifying a 
set of relevant knowledge components, the network’s 
directed link structure must be defined. Connections 
between knowledge components within a single slice 
(contemporaneous) follow precondition relations. Child 
nodes represent knowledge components that can be 
deduced from mastery of the parent nodes’ knowledge 
components. For example, if a student knows the 
symptoms of one sick character, as well as the symptoms 
of another sick character, she is equipped to deduce the 
shared symptoms of the two ill characters. Network 
connections across adjacent slices (non-contemporaneous) 
connect subsequent instances of the same knowledge 
component. For example, the node representing knowledge 
of a sick patient’s symptoms in slicet is the source of a 
directed link whose destination is the corresponding 
symptom node in slicet+1. This structure permits the 
model’s values for a given component to be conditioned on 
its prior values, in addition to newly available evidence. 
 Incorporation of observable features. The third stage 
of model construction specifies a set of in-game actions 
that provide evidence of user knowledge. The relationships 
between these observable features and the model’s 
knowledge components are also defined during this stage. 
It should be noted that each type of observation offers a 
distinct amount of evidence of the student’s underlying 
knowledge. Furthermore, some types of in-game actions 
may be diagnostic of student knowledge, while other 
actions may actually modify student knowledge. Each of 
these distinctions requires adjustments to the choice of 
directed links and conditional probabilities associated with 
observation nodes and their neighbors. 

Figure 1. Conceptual illustration of three slices from a dynamic 
Bayesian network. 
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Specification of network parameters. During the 
fourth stage of model construction, conditional probability 
tables (CPTs) are manually defined for each of the 
network’s nodes. In conjunction with directed links, the 
CPTs specify the relationships among adjacent hidden 
knowledge components, as well as between hidden and 
observable variables, encoding policies for propagating 
evidence through the network. When conditional 
probability tables describing knowledge precondition 
relationships are manually specified, knowledge 
components may be individually weighted based on their 
perceived importance in the associated deduction, or more 
systematically weighted using a consolidated set of model-
wide parameters.  

An Implemented DBN User Knowledge Model  

A preliminary dynamic Bayesian network for modeling 
user knowledge has been implemented in the CRYSTAL 
ISLAND interactive narrative environment. After describing 
CRYSTAL ISLAND, as well as an initial implementation of 
the DBN knowledge model, results from an empirical 
study using data collected from user interactions with the 
CRYSTAL ISLAND environment are presented. 

CRYSTAL ISLAND narrative environment 
Now in its third major iteration, CRYSTAL ISLAND 
(Figure 2) is an interactive narrative-centered learning 
environment built on Valve Software’s Source™ engine, 
the 3D game platform for Half-Life 2. Students play the 
role of the protagonist, Alyx, who is attempting to discover 
the identity and source of an infectious disease plaguing a 
newly established research station. Several of the team’s 
members have fallen gravely ill, and it is the student’s task 
to discover the nature and cause of the outbreak.  
 CRYSTAL ISLAND’s narrative takes place in a small 
research camp situated on a recently discovered tropical 
island. Students investigate the island’s spreading illness 
by forming questions, generating hypotheses, collecting 
data, and testing hypotheses. Throughout their 
investigations, students interact with virtual characters 
offering clues and microbiology facts via multimodal 
“dialogues” delivered through student menu choices and 
spoken language. The dialogues’ content is supplemented 
by virtual books, posters, and other resources encountered 
in several of the camp’s locations. To solve the mystery, 
students complete a diagnosis worksheet to manage their 
working hypotheses and record findings about patients’ 
symptoms and medical history, as well as any findings 
from tests conducted in the camp’s laboratory.  

Implementation 
The dynamic Bayesian network for knowledge tracing has 
been implemented in C++ using the SMILE Bayesian 
modeling and inference library developed by the 
University of Pittsburgh’s Decision Systems Laboratory 
(Druzdzel, 1999).  The model maintains approximately 135 

binary nodes, 100 directed links, and more than 750 
conditional probabilities.  As the knowledge-tracing model 
observes student actions in the environment, the associated 
evidence is incorporated into the network, and a Bayesian 
update procedure is performed. The update procedure, in 
combination with the network’s singly-connected structure, 
yields updates that complete in less than one second. Initial 
probability values were fixed across all students; 
probabilities were chosen to represent the assumption that 
students at the onset had no understanding of scenario-
specific knowledge components and were unlikely to have 
mastery of curriculum knowledge components. 

Preliminary Empirical Evaluation 

A human participant study was conducted in Fall 2007 
with 116 eighth-grade students from a North Carolina 
middle school interacting with the CRYSTAL ISLAND 
environment. During the study, students interacted with 
CRYSTAL ISLAND for approximately fifty minutes. Logs of 
students’ in-game actions were recorded, and have been 
subsequently used to conduct a preliminary evaluation of 
the DBN knowledge-tracing model. The evaluation aims to 
assess the model’s ability to accurately predict students’ 
performance on a content knowledge post-experiment test. 
While the evaluation does not inspect the user knowledge 
model’s intermediate states during the narrative 
interaction, nor students’ narrative-specific knowledge, an 
evaluation of the model’s final knowledge assessment 
accuracy provides a useful starting point for refining the 
model and evaluating its accuracy. 
 The DBN knowledge-tracing model used the students’ 
recorded trace data as evidence to approximate students’ 
knowledge at the end of the learning interaction. This 
yielded a set of probability values for each student, 
corresponding to each of the knowledge-tracing model’s 
knowledge components. The resultant data was used in the 
analysis of the model’s ability to accurately predict student 
responses on post-experiment content test questions.  The 
mapping between the model’s knowledge components and 

Figure 2. CRYSTAL ISLAND narrative environment. 
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individual posttest questions was generated by a 
researcher, and used the following heuristic: if a posttest 
question or correct response shared important content 
terms with the description of a particular knowledge 
component, that knowledge component was designated as 
necessary for providing an informed, correct response to 
the question. According to this heuristic, several questions 
required the simultaneous application of multiple 
knowledge components, and a number of knowledge 
components bore on multiple questions. This yielded a 
many-to-many mapping between knowledge components 
and posttest questions.   
 The evaluation procedure required the definition of a 
threshold value to discriminate between mastered and un-
mastered knowledge components: knowledge components 
whose model values exceeded the threshold were 
considered mastered, and knowledge components whose 
model values fell below the threshold were considered un-
mastered. The model predicted a correct response on a 
posttest question if all of the question’s associated 
knowledge components were considered mastered. The 
model predicted an incorrect response on a posttest 
question if one or more associated knowledge components 
were considered un-mastered. The use of a threshold to 
discriminate between mastered and un-mastered 
knowledge components mirrors how the knowledge model 
might be used in a runtime environment to inform 
interactive narrative decision-making. 
 Rather than choose a single threshold, a series of values 
ranging between 0.0 and 1.0 were selected. For each 
threshold, the DBN knowledge model was compared to a 
random model, which assigned uniformly distributed, 
random probabilities for each knowledge component. New 
random probabilities were generated for each knowledge 
component, student, and threshold. Both the DBN model 
and random model were used to predict student posttest 
responses, and accuracies for each threshold were 
determined across the entire test.  Accuracy was measured 
as the sum of successfully predicted correct responses plus 
the number of successfully predicted incorrect responses, 
divided by the total number of questions. The results of 
this analysis are displayed in Figure 3. 
 The DBN model outperformed the random baseline 
model across a range of threshold values.  The DBN model 
most accurately predicted students’ posttest responses at a 
threshold level of 0.32 (M = .594, SD = .152).  A 
Wilcoxon-Mann-Whitney U test verified that the DBN 
knowledge-tracing model was significantly more accurate 
than the random model at the 0.32 threshold level, z = 4.79, 
p < .0001.  Additional Mann-Whitney tests revealed that 
the DBN model’s predictive accuracy was significantly 
greater than that of the random model, at the α = .05 level, 
for the entire range of thresholds between .08 and .56.  

Discussion  

An evaluation of the implemented user knowledge model’s 
predictive accuracy on the post-experiment content test 

shows initial promise. The DBN model significantly 
outperformed a baseline model at predicting student 
responses on the content test across a range of mastery 
threshold levels. The predictive accuracy gains were 
modest, but the findings provide a meaningful floor against 
which future models of user knowledge in interactive 
narratives can be compared. Although the range of 
thresholds for which the knowledge-tracing model 
outperformed the random model may appear low, the 
majority of the model’s knowledge component values in 
fact fell between .15 and .40.  The model was most 
effective at predicting student test responses at thresholds 
between .08 and .56, which is the same range in which the 
majority of knowledge component values fell. 
 The range of observed values could be attributed to 
several factors. The values might stem from an underlying 
issue in the model’s parameters.  Hand-authoring Bayesian 
network structures and conditional probabilities can be 
challenging and resource intensive; machine learning 
model parameters, using techniques such as expectation 
maximization, is a promising direction for future work. An 
alternative explanation is inherent weakness in the trace 
data’s bandwidth. Weak evidence would elicit 
correspondingly low probability values for the model’s 
knowledge components, and would be consistent with the 
modest but significant boost in predictive accuracy 
encountered in the evaluation. Identifying gameplay 
actions that both support the narrative and provide 
increased evidence of user knowledge is an important 
direction for future investigation. 

Conclusions and Future Work 

 This work represents an initial step toward devising 
accurate user knowledge models to inform runtime story 
adaptations in interactive narrative environments. A 
preliminary dynamic Bayesian network knowledge model 
has been implemented for the CRYSTAL ISLAND narrative-
centered learning environment. The model maintains 
probabilistic assessments of students’ knowledge as they 
navigate a story-centric problem-solving scenario. An 

Figure 3. Comparison of DBN knowledge model accuracy vs. 
Random model accuracy for post-test answer prediction across 
mastery threshold values. 
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empirical evaluation indicates that the model assesses 
users’ content knowledge more accurately than a baseline 
approach, and introduces opportunities for further 
improvements in user knowledge modeling for interactive 
narratives. 
 Several directions for future work appear promising.  
First, enhancements to the narrative environment, logging 
facilities, and user knowledge model can address 
shortcomings in the model’s knowledge components and 
network structures, as well as increase the bandwidth of 
trace data elicited from student interactions. Second, 
machine learning techniques for inducing DBN conditional 
probabilities from data can be investigated to address the 
considerable hand authoring requirements of the current 
methodology. Finally, the knowledge model can be 
directly incorporated into an interactive narrative planner 
to drive story decisions in a runtime environment. The 
model could be incorporated into a runtime narrative 
planner by extending rule-based and plan-based drama 
managers to query user knowledge models when 
considering candidate narrative adaptations. Alternatively, 
DBN knowledge-tracing models lend themselves to 
integration in decision-theoretic director agent 
architectures, particularly those that use dynamic decision 
network approaches. 
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