
A Comparison of High-Level Approaches for Speeding Up Pathfinding

Nathan R. Sturtevant1
Department of Computing Science

University of Alberta
Edmonton, Alberta, Canada

nathanst@cs.ualberta.ca

Robert Geisberger
Faculty of Informatics

Karlsruhe Institute of Technology
Karlsruhe, Germany
geisberger@kit.edu

Abstract

Most games being shipped today use some form of high-level
abstraction such as a navmesh or waypoint graph for path
planning. These structures can generally be represented in a
form which is compact enough to meet the tight memory con-
straints in a game. But, when such a graph grows too large,
finding paths can still be a complex task. This challenge was
faced in Dragon Age: Origins and solved by adding an ad-
ditional level of abstraction. In the last few years a variety
of novel approaches have been developed for finding opti-
mal paths through graphs with specific design applications
for road networks. Currently these techniques cannot be fea-
sibly applied to the lowest detail of movement possible in a
game map, but can be applied to the high-level abstractions
which are commonly found in games. In this paper we de-
scribe the pathfinding challenge faced before shipping the ti-
tle Dragon Age: Origins and perform a postmortem analy-
sis on the extended abstraction that was used in comparison
to building more advanced heuristics or the use of contrac-
tion hierarchies. We show that contraction hierarchies and
abstractions have similar overhead and performance and are
both useful approaches for high-level planning in games.

Introduction and Background
The problem of finding paths in games is, on one level, well
understood. In particular, while players in the game may
traverse terrain with a fine-grained or even real-value rep-
resentation, planning for movement occurs at a higher level
of abstraction, generally represented by a graph. Such rep-
resentations include navmeshes (Tozour 2002) or waypoint
graphs (Lidén and Valve-Software 2002), but have also been
described algorithmically, such as HPA* (Botea, Müller, and
Schaeffer 2004). These representations may not necessarily
solve underlying issues such as turning constraints (Pinter
2001; Sturtevant 2009), an issue we will not address here.

These representations work well, but there are two possi-
ble shortcomings. First, they can either become so large that
pathfinding within the abstract representation may still take
longer than per-frame constraints. Second, if the abstract
representation is too coarse, it may result in poor pathfind-
ing behavior, as low-level obstacles may not be adequately
represented in the abstraction. These two issues are linked,

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

as creating a finer grained abstraction will result in a larger
abstract graph.

This issue was faced in the pathfinding system for the
game Dragon Age: Origins (DAO) and was solved by
adding a second level of abstraction on top of the exist-
ing abstraction previously described (Sturtevant 2007). But,
no scientific analysis was performed to measure the effect
of this approach, or to compare it with other possible ap-
proaches. The goal of this paper is to do both. In addition
to analyzing the parameters that could have been used to
tune the second level of abstraction, we look at alternate ap-
proaches to address this problem, a special abstraction called
a contraction hierarchy, and better heuristics.

In the last few years a variety of novel approaches have
been designed for finding optimal paths through graphs with
specific applications to road networks; see (Delling et al.
2009) for an overview. Currently these techniques cannot
be feasibly applied to the lowest detail of movement pos-
sible in a game map, but can be applied to the high-level
abstractions which are commonly found in games. These
approaches include contraction hierarchies and ALT (A*,
landmarks and triangle inequality) (Goldberg and Harrel-
son 2005), also called differential heuristics (Sturtevant et
al. 2009).

Our contributions are as follows. We publish for the first
time the two-level approach used for pathfinding in Dragon
Age: Origins and describe in detail why this approach was
necessary. We adapt approaches from road networks to
game constraints, and provide important comparisons for
practically applying these approaches, showing the strength
and weakness of each. We show that abstraction and con-
traction hierarchies can both be implemented efficiently and
have similar performance, however the cases that are hard
for each approach differ considerably. The heuristic ap-
proach we compare has reasonable performance, however
the memory overhead and lack of incremental computation
make it less desirable in practice.

Problem Definition
Assume an input graph G which represents, at some level of
abstraction, the possible paths which can be followed in the

1Supported by Alberta iCore. Current address: Department of
Computer Science, University of Denver, sturtevant@cs.du.edu

76

Proceedings of the Sixth AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment

Figure 1: Overview of approaches.

world. G can be created from a navmesh, waypoint graph,
HPA*, or other approaches. The task is to find paths between
arbitrary nodes in G as quickly as possible while minimiz-
ing the memory overhead, minimizing work overhead, and
maximizing the path quality. Memory and work overhead
can be measured directly. The path quality can be measured
by sub-optimality, however sub-optimality is not guaranteed
to be a useful measure of the visual quality of a path.

There are a number of ways by which a path p in the ab-
stract graph G can be turned into an followable path in the
world. However, given identical paths, the process will be
the same regardless of what mechanism was used to create
the path. Therefore, we ignore the final refinement step as it
will be the same across all approaches.

Approaches
This paper is built around the comparison between a num-
ber of existing technologies that have been developed within
differing communities. We attempt to provide a unified un-
derstanding of these methods and how they can be applied
to real-time video games. An overview of these approaches
is given in Figure 1. We assume the existence of a low-level
graph and an abstract graph which represents that. We ex-
periment with approaches which can be placed on top of the
level 1 graph to improve the performance of finding paths
in the level 1 abstract graph. In the next three sections we
detail the three approaches.

Abstraction Hierarchies
The Dragon Age: Origins (DAO) pathfinding abstraction
was designed to use as little memory as possible so as to aug-
ment the low-level memory structures which used most of
the memory allocated to pathfinding. In the original schema
a map is divided with a 16 × 16 grid that overlays the maps
creating a series of sectors which can be implicitly indexed
using a low-level x/y coordinate. Each sector is then sub-
divided into regions where two low-level locations are in
the same region if they are in the same sector and there is
a path between them that does not leave the sector. An ex-
ample is shown in Figure 2. There are four sectors which
are divided into a graph with 9 regions and 10 edges. This

Figure 2: Abstract graph created with a 16 × 16 overlay for
Dragon Age: Origins.

abstraction is a one-layer version of the sector abstraction
described in (Sturtevant and Jansen 2007).

Each region is represented by a single point which can
be located anywhere within the region, or moved around to
improve the quality of paths. These points form nodes in an
abstract graph, while edges are found by comparing which
borders can be crossed into neighboring regions.

In order to find a path between an arbitrary start and goal
location, the sector and region of the start and goal are first
computed. The region center is either found through a small
breadth-first search or implicitly when there is only one re-
gion in a sector. Given a sector and region, a search can
take place in the abstract graph, and the resulting abstract
path can be refined into a low-level path. In the game, these
planning steps are interleaved with smoothing, resulting in
responsiveness even with many agents and degradable path
quality as less time is available.

The sector abstraction is memory efficient, generally us-
ing less than 100k of storage for a map. Full details and ex-
perimental results can be found in (Sturtevant 2007). Edge
costs in the game are dynamically weighted both in the low-
level grid and in the abstraction as a result of occupancy
information and high-level events like area effects.

An Additional Level of Abstraction
Before DAO shipped, it was determined that the sector ab-
straction used for the original game needed to be enhanced
to handle a number of situations. On the largest maps
pathfinding requests could run out of time when planning
in the abstraction while on smaller indoor maps the large
abstraction was causing issues because it did not adequately
represent the underlying terrain. If the abstraction were to
be built at a higher granularity to fix these issues, the map
would again become too large to solve hard problems.

As a result, another layer of abstraction was built on top
of the existing abstraction. We demonstrate this in Figure 3.
Sector 0 in this figure is the same as Figure 2. However, that
entire figure is now contained into a single high-level sector.
This extra layer was built using a sector size twice the size
that in the original sector abstraction. In the final game the
original abstraction was based on sectors of size 8 × 8 to
16 × 16, depending on the original size of the map. The
high-level abstraction was then built based on sector sizes of
16 × 16 to 32 × 32. Extra space in the regular abstraction
was used to map nodes in the regular abstraction into nodes

77

Figure 3: Representing an additional level of abstraction.

1 level abstraction 2 levels of abstraction

Figure 4: Comparing map representation with 1 and 2 levels
of abstraction.

in the high-level abstraction. Abstractions for sample maps
before and after the second level was added are shown in
Figure 4.

With the new abstraction, path planning occurs as follows.
Given a start and goal location, the corresponding nodes in
the high-level abstraction are located, and a high-level path
is found. The high level path is used for two purposes. First,
planning in the regular abstraction is restricted to take place
in the sectors that the abstract path passes through. This
greatly restricts the number of nodes expanded when plan-
ning in the regular abstraction. Furthermore, if the high-
level path is long enough it is broken into pieces, and the
refinement for each piece occurs independently. In this way
much of the planning does not have to be immediately com-
puted, but can be delayed until needed.

Enhanced Heuristics
The standard approach in the heuristic search community to
improved heuristics has been pattern databases (PDB) (Cul-
berson and Schaeffer 1998). PDBs have very successfully
reduced the search overhead in combinatorial puzzles, but
are inadequate for domains which grow polynomially. Ef-
fective heuristics for these domains are based on exact dis-
tances in the search space, as opposed to the abstract dis-
tances used for combinatorial puzzles. There is a broad
class of True-Distance Heuristics (Sturtevant et al. 2009)
that work in a variety of domains.

The algorithm engineering community developed a num-

(a) (b) (c)

Figure 5: Contracting a node in a graph. Dashed edges rep-
resent shortcuts.

ber of true-distance heuristics for application to road net-
works. The simplest of these was ALT (Goldberg and Har-
relson 2005), also called a differential heuristic. A precom-
puted single-source shortest path (SSSP) solution from any
single point in a map, called a landmark, can be used to pro-
vide a heuristic for any two other points in the map using
the triangle inequality. Specifically, given a distance func-
tion d(a, C) where C is a state where the SSSP information
is available, h(a, b) = |d(a, C) − d(b, C)|. Using the max
of multiple landmarks increases both accuracy and memory
usage; each landmark has memory cost O(N) where N is
the number of nodes in the graph.

Contraction Hierarchies
Contraction hierarchies (CH) (Geisberger et al. 2008) take
a different approach to abstraction. Instead of abstracting
groups of nodes together in a single step, single nodes are
abstracted one at a time through a processes called contrac-
tion. Each node in the graph is assigned an importance
level, i.e. I(v) = 1..N and contracted in order from low-
est importance to highest. Contracting a node v means re-
moving v from the graph without changing shortest path
distances between the remaining (more important) nodes.
A trivial way to contract a node v is to introduce a short-
cut edge (u, w) with cost c(u, v) + c(v, w) for every path
u → v → w with I(v) < I(u), I(w). But in order to
keep the graph sparse, we can try to avoid a shortcut (u, w)
by finding a witness – another path p from u to w fulfilling
c(p) ≤ c(u, v) + c(v, w). Such a witness proves that the
shortcut is never needed.

This is demonstrated in Figure 5. In part (a) of this figure
we show the original graph, where the intent is to contract
node 1. The naive contraction is in part (b), where a dashed
edge is added for each possible path through node 1 in the
original graph. In part (c) we show the sparse contraction
where only a single edge is added. It can be easily shown
that there are witnesses for all other dotted edges in part (b).

To compute a shortest path between a source s and tar-
get t, we perform a bidirectional Dijkstra search in the CH.
The special restriction on this CH search is that it only
goes upward, i.e. we only expand a node if that node is
more important than the current node being expanded. Both
search scopes eventually meet at the most important node of
a shortest path. The search is halted when the minimum dis-
tance in the priority queue is not smaller than the tentative
shortest path length. The search can also benefit from using
A* and heuristics which we cannot describe in detail here.

In practice this takes place on a fully contracted graph,

78

d

1 1 1 1 1 1

(a) input graph

1
2

3
4

5
6

7

no
de

or
de

r

1
1

1
1

1
1

(b) CH: no shortcuts needed

1

5

2

7

3

6

4

no
de

or
de

r

1 1
1 1 1 1

2 2

(c) CH: small search space

Figure 6: Two possible CHs from the input graph. The nodes
are labeled with their importance and accordingly vertically
aligned.

but for simplicity we demonstrate this process in the con-
tracted graph in Figure 5(c), where we find the shortest path
between nodes 3 and 5. Node 5 has no neighbors that are
more important, so no neighbors will be expanded in the bi-
directional search. Node 3 has two neighbors, but only node
4 is more important, so only that node will be expanded.
Node 4’s only unexplored neighbor is node 5, so the shortest
path from node 3 to node 5 passes through node 4.

The shortest path from node 2 to node 5 uses the shortcut
edge. Along with this edge is information which allows it to
be unpacked into a full path between nodes 2, 1, and 5. This
means that it only takes a single expansion to find the length
of the shortest path (4), but generating the actual path takes
longer, as shortcut edges must be unpacked.

Node ordering
The node ordering is important for the efficiency of the
CH and allows different tradeoffs between time and space.
Shortcuts increase the required space but can reduce the
search space. In Figure 6, we show an example of the con-
traction of a line graph. Contracting the nodes in the order
of the line, Figure 6(b), requires no shortcuts, but does not
reduce the search space. Consider the query between the
leftmost and rightmost node. The CH query will visit nodes
{1, . . . , 7} in the forward search and node 7 in the backward
search. So all nodes of the graph are visited. Figure 6(c), on
the other hand, requires 2 shortcuts. But the same query will
only visit nodes {1, 5, 7} in the forward search and {4, 6, 7}
in the backward search. For general line graphs, iteratively
contracting every other node requires O(n) shortcuts, result-
ing in a search space of size O(log n).

A heuristic ordering is used to compute the importance of
each node, because the computation of an optimal ordering
(i.e. shortcut minimal or search space minimal) is NP-hard.
We use a priority queue whose minimum element contains

the best node to contract next, and then successively contract
nodes according to the priority of the remaining nodes.

Before defining the heuristic terms, we introduce the edge
property r(u, w) as the number of original edges contracted
below an edge in the graph. It is initialized with 1 for each
edge. If a new shortcut (u, w) is added from the edges (u, v)
and (v, w), we set r(u, w) := r(u, v) + r(v, w). Addition-
ally, let φ(v), be the set of shortcuts that would be added if
node v would be contracted next.

The priority is the linear combination of four terms:

• The first importance term for contraction is δ(v) or the
edge difference. This is the net difference in edges
added to the graph by contracting v next. Formally,
let δ(v) := |φ(v)| − |{(u, v) | v uncontracted}| −
|{(v, w) | v uncontracted}|. This term works to keep the
contracted graph sparse and to improve the distribution of
node contractions.

• The next term is σ(v), which measures the number
of original edges contracted into new shortcut edges
introduced when contracting v. We define σ(v) :=∑

(u,w)∈φ(v) r(u, w). This term works to keep the con-
tracted graph sparse.

• The third term is γ(v), an upper bound on the length of
an upward path. It is initialized with 0 for each node.
After the contraction of node v, we update γ(u) :=
max(γ(u), γ(v) + 1) for each uncontracted neighbor u
of v. This term is used to improve query performance, but
does not have a large impact.

• The final term is λ(v), the number of already contracted
neighbors u of v. This term improves query performance
by improving the distribution of node contractions.

We assign each node v a priority ρ(v) based on how at-
tractive it is to contract it next. Initially, this term is com-
puted for every node in the graph and the nodes are placed
into a priority queue. For the sake of efficiency, after each
new node is contracted, these values are re-computed only
for the neighbors of the contracted node, but not for the en-
tire graph. As a result of this lazy updating, the heuristics are
then recomputed for a node before contracting it, and if the
value increases then the node is re-inserted into the priority
queue instead of being contracted.

Given a weighted coefficient vector ζ, we define the pri-
ority ρ(v) := ζ · (δ(v), σ(v), γ(v), λ(v))T . The choice of
ζ is an important tuning parameter which we look at during
the experimental results. For our fast version (Large Mem)
we use ζ = (25, 60, 20, 2) and for the space-efficient ver-
sion (Low Mem) we use ζ = (0, 1, 0, 0). This version only
contracts based on the σ(v) term.

Reducing Contraction Hierarchy Overhead
There are a number of observations which reduce the mem-
ory required for contraction hierarchies. The first important
observation is that we need to store an edge only with its less
important endpoint, as the search only progresses upwards
in importance. Because shortcuts can span long paths, we
need to store them explicitly and cannot use the data struc-
ture used for DAO. Instead, we use a block representation

79

Figure 7: Graph data structure. Each edges stores a flag
indicating whether it is an external edge leading to a node in
a different block.

developed for mobile systems (Sanders, Schultes, and Vetter
2008) to compress the CH. Each block contains a subset of
nodes and all incident edges. The main idea is to distinguish
between ‘internal’ edges within a block and ‘external’ ones;
this is illustrated in Figure 7. For an internal edge, we only
need to store the offset to the target node within the block.
This saves space as we can arrange nodes so that most edges
are internal. Space is further reduced by using the minimum
necessary bit encoding length per block. This compresses
data by 70% but slows down the query by about 50%.

Experimental Results
We experimented with implementations of the three main
approaches and compare the results here. Experiments were
performed on a dual core 2GHz Opteron with 8GB RAM
and 1MB cache per core, however only one core was used
for each of the experiments, and only a small fraction of
the available RAM was used. This hardware is faster than a
low-end target system for most games.

As the code used to compare these techniques comes from
several different code bases, each with different levels of op-
timization, we will measure both time and work, with work
measured in nodes expanded (also called nodes settled in
the algorithmics community). The costs measured here are
cheaper than in practice, because in practice we re-weight
edges based on underlying properties of the map.

The maps we used are taken from Baldur’s Gate and are
scaled to 512× 512. The maps in DAO can be 4 to 16 times
larger. We partially account for this by generating graphs
only based on 8×8 underlying sectors, while the underlying
sectors in DAO are up to 16 × 16. As a result, memory and
speed estimates may be slightly underestimated across the
experiments reported here.

We experimented on 120 maps. The average map has
1335 nodes, with total sizes ranging between 316 and 3787
nodes. On each map we construct a set of 10,000 problems
chosen at random. It is possible that no path will exist be-

Table 1: Memory Usage

Avg Min Max
Baseline (uncompressed) 28k 16k 52k

Differential 55k 22k 126k
CH Full Large Mem 111k 24k 462k

CH Full Low Mem 95k 23k 287k
CH Mobile Large Mem 29k 8k 116k

CH Mobile Low Mem 25k 7k 64k
Sector Abs (16 × 16) 35k 20k 66k
Sector Abs (24 × 24) 31k 18k 57k
Sector Abs (32 × 32) 30k 17k 55k

tween the points, in which case the cost of discovering this
is included in the results. The average length of a path is 228
with edge weights between 2 and 16.

Memory Usage
We begin by measuring the total memory usage of each ap-
proach in Table 1. The first line is the memory required to
store the (8× 8 sector abstraction) graph. Without compres-
sion this takes 28k on average. Compressing similar sectors
can reduce this to around 20k (Sturtevant 2007). Adding 10
differential heuristics approximately doubles the total mem-
ory usage to 55k on average. A full-memory contraction
hierarchy takes around 100k of memory on average, depend-
ing on the heuristic ordering scheme used. The mobile im-
plementation uses approximately the same amount of mem-
ory as the uncompressed baseline graph on average, but in
the worst case, uses more. Adding an additional level of the
sector abstraction only increases the memory usage slightly.

Planning Costs
We next evaluate the cost of planning with each approach.
For ease of comparison, we have put all results in Table 2,
but we will cover each result in detail.

Results planning on the initial graph using A* can be
found at the top of Table 2. The average problem requires
128 nodes and takes 228μs to solve. This result includes un-
solvable problems from the test set. Removing these does
not significantly affect the average work. We then report the
average of the 10% longest problems on each map, which re-
quires significantly more node expansions (348.6) and time
(595μs). The longest 1% of all problems require almost one
thousand node expansions and 1.4ms. Finally, the hardest
1% (measured by nodes expanded) requires 2.4ms on aver-
age and almost 1400 nodes.

The next result in Table 2 is for A* and differential heuris-
tics. These results are with 10 landmarks (each storing the
single-source shortest path to a single point). With the im-
proved heuristics A* expands three times fewer nodes, but
is only twice as fast on average. On the longest 10% from
each map it expands 4 times fewer nodes and is almost 3
times faster. On the longest 1% of all problems it expands 6
times fewer nodes and is just over 3 times faster. But, on the
hardest problems, almost 850 nodes are expanded on aver-
age and the time increases to 1.7ms.

The improved heuristics provide a significant reduction

80

Table 2: Results for path planning.

All 10% long 1% hard 1%
nodes [μs] nodes [μs] nodes [μs] nodes [μs]

A* 128.0 228.0 348.6 595.0 937.6 1400 1395.5 2400
A* + 10 heuristics 40.5 110.0 77.2 209.0 146.2 390.0 848.9 1700

Sector Abs (16 × 16) 44.3 75.8 115.4 183.0 318.4 404.1 452.5 609.8
Sector Abs (24 × 24) 25.3 43.2 63.7 98.0 183.6 214.5 250.5 302.3
Sector Abs (32 × 32) 17.2 30.5 42.0 64.3 121.4 137.5 165.5 187.8

CH Large Mem 32.3 36.4 70.3 68.6 61.6 49.4 152.9 144.5
CH Low Mem 59.8 59.3 137.8 150.4 130.3 101.7 374.9 334.3

in nodes expanded with a lower reduction in speed except
on the hardest problems, where performance is still poor.
The worst-case results would improve with the use of more
heuristics, however this would increase the memory and
node expansion overhead as well. This approach returns
optimal paths through the abstract graph, but the paths are
not usable until the entire path is completed, a disadvantage
when compared to the other approaches.

The next three lines of Table 2 evaluate the performance
of the second level of abstraction as the sector size changes.
For both the sector abstraction and CH, we evaluate the cost
of finding the initial path here, and then measure the refine-
ment cost separately. The A* performance is based on a 8×8
abstraction, so using a high-level 16×16 abstraction would,
in the best case, provide a 4 times reduction in nodes ex-
panded, while we see a 3 times reduction across each set of
problems. The 24 × 24 abstraction results in approximately
a 5 times reduction in node expansions, and the 32 × 32
abstraction results in approximately an 8 times reduction in
node expansions, even on the hardest problems. Thus, the
abstraction can effectively reduce node expansions. Addi-
tional work is required to incrementally refine this result into
a followable path.

Finally, we look at contraction hierarchies at the bottom of
Table 2. We compare only the mobile implementation, as the
other implementation uses too much memory. We compare
one contraction ordering which takes more memory and re-
sults in more efficient planning to another ordering that uses
less memory but has less efficient planning. As with abstrac-
tion, the contraction hierarchies return paths that must be re-
fined in order to use them. We report just the time to find the
path and not to refine it, as this can be done incrementally.

The low-memory approach is about 2 times slower than
the higher memory approach. The performance of the CH
is worse than a 24 × 24 or 32 × 32 abstraction on average,
and for the 10% hardest problems. But, a peculiar things
happens when we look at the longest 1% of all problems.
Contraction hierarchies here are actually faster than on the
10% longest from each map. This shows the strength of
contraction hierarchies and why they have been so success-
ful in road networks. Longer paths are likely to have more
shortcuts resulting in very short paths. For these paths the
refinement process will be more expensive, but optimal dis-
tances can be computed very quickly. If we instead look
at the hardest 1% of problems, we see that there are many
problems that are hard for contraction hierarchies, with an

(a) (b)

Figure 8: Map (a) is easy for abstraction but hard for CHs.
Map (b) is hard for abstraction but easier for CHs.

average solution time of 144μs, about 23% faster than the
32 × 32 sector abstraction.

We illustrate these differences in Figure 8. We ranked
maps by difficulty for abstraction and CHs and looked for
the maps with the largest difference in ranking between the
two approaches. Map (a) has a difference in ranking of 36
(out of 120) and is easier for abstraction as all paths are
short. Map (b) has a difference in ranking of 65 and is hard
for abstraction because paths are long, where CHs can re-
duce the abstract planning cost with many shortcut edges.

Refining Abstract Paths
We report the total cost of refinement for the sector abstrac-
tion in node expansions and total suboptimality in Table 3.
This refinement is done via an A* search which is con-
strained to stay within the same sectors as the abstract path.
As the cost of refinement is length-dependent, we report the
average number of node expansions required for each high-
level path node that is refined. The best and worst columns
give a general range of values that the refinement cost might
fall in between, although these are not absolute worst and
best cases for all maps. The average cost of refinement is
smaller for smaller sector sizes. We measured several re-
finement lengths, as we have a choice of how many edges
to refine at each step. Shorter refinement lengths decrease
the average work but increase suboptimality. In general, this
data serves to show that refining the abstract paths is much
easier than finding paths in the first place.

We report the cost of path refinement for CHs in Table 4.
Refinement in CHs is just a matter of unpacking edges. We
report the number of edges which must be refined to gener-
ate a complete path, although fewer edges must be refined
in practice to actually start moving. None of these numbers
is particularly large, meaning that refinement in CHs will be
cheaper than in sector abstractions. It is interesting to note

81

Table 3: Node expansions per each refined node.

Sector size Refine Best Actual Worst Subopt

16 × 16
5 2 2.3 4 1.05
∞ 2 2.6 4 1.05

24 × 24
5 3 3.7 9 1.09
∞ 3 4.5 9 1.08

32 × 32
2 4 4.5 16 1.14
5 4 5.4 16 1.11
∞ 4 6.5 16 1.10

that on the hardest 1% of problems refinement is easy, while
on the longest 1% of problems it is hard. This is the opposite
of the CHs planning results, and makes sense, as on the long
problems there will be more shortcuts to refine.

Discussion and Conclusions
We summarize our results in Table 5. The results show that
state abstraction and contraction hierarchies are competitive
approaches to finding paths in game maps when the abstract
representation grows too large to quickly support the neces-
sary pathfinding operations. Improved heuristics have worse
performance than both of these approaches.

Returning to one of our original motivations, we can now
ask whether we would make different decisions in the design
of the high-level abstraction for Dragon Age: Origins. DAO
used a second level of abstraction with a sector size twice the
underlying sector size. For the results here, this corresponds
to 16 × 16 sectors. The results of this paper suggest that
a larger high-level abstraction, either 24 × 24 or 32 × 32,
would have improved performance.

The comparison between abstraction and contraction hi-
erarchies is difficult. Abstraction is attractive as it is easy
to use and understand, and the high-level planning tasks are
recursively similar to the low-level planning tasks. Abstrac-
tions can also be computed quickly and can be dynamically
changed with the map. The downside of abstraction is that
it returns suboptimal paths.

Contraction hierarchies offer the potential of higher per-
formance for long tasks and are guaranteed to return opti-
mal results. Contraction hierarchies can also answer dis-
tance queries about a map quickly, something that is often
needed for other AI tasks in a game. They also represent a
different performance profile with longer paths being easier
to compute that shorter paths. Contraction hierarchies rely
on a heuristic which ranks the order of contraction, but sim-
ple heuristics have suitable performance. Finally, although
we have not discussed it in detail here, they are more dif-
ficult to adapt when edge costs change drastically, although
small changes do not present a large challenge (Schultes and
Sanders 2007).

Thus, it is difficult to say that one approach “beats” the

Table 4: Average edges unpacked to refine a CH path.

All 10% long 1% hard 1%
Large Mem (nodes) 13.6 29.7 73.5 9.2

Low Mem (nodes) 6.5 14.1 49.8 7.5

Table 5: Advantages and disadvantages of approaches.

Approach Memory Optimal Dynamic CPU
Baseline small yes yes high
Heuristics larger yes no medium
Abstraction small no yes low
Contraction small yes some low

other. Instead, they each have their own strengths and weak-
nesses. Any particular individual would need to balance
these to make the final decision of what approach to use. Re-
gardless, these are all techniques that should be understood
by experts in the industry, as they are an integral part of the
toolbox needed for building a high-quality motion planner,
which is an important piece of any high-quality AI system.

References
Botea, A.; Müller, M.; and Schaeffer, J. 2004. Near optimal hier-
archical path-finding. J. of Game Develop. 1(1):7–28.
Culberson, J. C., and Schaeffer, J. 1998. Pattern databases. Com-
putational Intelligence 14(3):318–334.
Delling, D.; Sanders, P.; Schultes, D.; and Wagner, D. 2009. Engi-
neering Route Planning Algorithms. In Lerner, J.; Wagner, D.; and
Zweig, K. A., eds., Algorithmics of Large and Complex Networks,
volume 5515 of Lecture Notes in Computer Science. Springer. 117–
139.
Geisberger, R.; Sanders, P.; Schultes, D.; and Delling, D. 2008.
Contraction Hierarchies: Faster and Simpler Hierarchical Routing
in Road Networks. In McGeoch, C. C., ed., Proceedings of the 7th
Workshop on Experimental Algorithms (WEA’08), volume 5038 of
Lecture Notes in Computer Science, 319–333. Springer.
Goldberg, A. V., and Harrelson, C. 2005. Computing the Short-
est Path: A* Search Meets Graph Theory. In Proceedings of
the 16th Annual ACM–SIAM Symposium on Discrete Algorithms
(SODA’05), 156–165.
Lidén, L., and Valve-Software. 2002. Strategic and tactical rea-
soning with waypoints. AI Game Programming Wisdom, Charles
River Media 211–220.
Pinter, M. 2001. Toward more realistic pathfinding. In gamasu-
tra.com.
Sanders, P.; Schultes, D.; and Vetter, C. 2008. Mobile Route Plan-
ning. In Proceedings of the 16th Annual European Symposium on
Algorithms (ESA’08), volume 5193 of Lecture Notes in Computer
Science, 732–743. Springer.
Schultes, D., and Sanders, P. 2007. Dynamic Highway-Node Rout-
ing. In Demetrescu, C., ed., Proceedings of the 6th Workshop on
Experimental Algorithms (WEA’07), volume 4525 of Lecture Notes
in Computer Science, 66–79. Springer.
Sturtevant, N. R., and Jansen, M. R. 2007. An analysis of map-
based abstraction and refinement. In SARA, 344–358.
Sturtevant, N. R.; Felner, A.; Barrer, M.; Schaeffer, J.; and Burch,
N. 2009. Memory-based heuristics for explicit state spaces. In
IJCAI, 609–614.
Sturtevant, N. R. 2007. Memory-efficient abstractions for pathfind-
ing. In AIIDE, 31–36.
Sturtevant, N. R. 2009. Optimizing motion-constrained pathfind-
ing. In AIIDE.
Tozour, P. 2002. Building a near-optimal navigation mesh. In AI
Game Programming Wisdom. (S. Rabin, ed.), 171–185.

82

	AIIDE10
	Contents
	Index
	Help
	Terms
	AIIDE 2010

