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Abstract

In this paper, we show that personalized levels can be auto-
matically generated for platform games. We build on previ-
ous work, where models were derived that predicted player
experience based on features of level design and on playing
styles. These models are constructed using preference learn-
ing, based on questionnaires administered to players after
playing different levels. The contributions of the current pa-
per are (1) more accurate models based on a much larger data
set; (2) a mechanism for adapting level design parameters to
given players and playing style; (3) evaluation of this adap-
tation mechanism using both algorithmic and human players.
The results indicate that the adaptation mechanism effectively
optimizes level design parameters for particular players.

1 Introduction

Procedural content generation (PCG) is an important tech-
nique for computer game development, and is likely to be of
ever greater importance in the future; both offline, for mak-
ing the game development process more efficient (design of
content such as environments and animations now consume
a major part of the development budget for most commer-
cial games) and online, for increasing replay value, adapting
games to particular demographics and enabling new types
of games based on player-adapted content. The literature on
personalized and player-adaptive PCG is so far scarce, as it
is a new research direction (Togelius et al. 2010).

Emotions and player experience are critical in game de-
sign. Players may become frustrated when they don’t
progress well, pleased with themselves when they beat a
level, or turn away in despair when encountering a seem-
ingly insoluble problem. Emotions can be triggered by
gameplay events (e.g. finding a treasure), by the behavior
of a game character, or by interaction with the game (e.g.,
frustration when the game is too difficult) (Hudlicka 2008).

Successful computer games are typically fun and immer-
sive. Fun can emerge from challenges met in the game and
goals accomplished, which may vary from a victory in a sce-
nario, to the accumulation of an asset, or to the right to move
to the next level (Schuytema 2007).

Many theories exist regarding why we play games and
what makes computer games fun (Bateman and Boon 2006;
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Isbister and Schaffer 2008; Koster 2004). However, these
theories are qualitative rather than quantitative and tend to
apply to games in general rather than to specific aspects of
games. We still have to make several auxiliary assumptions
if we want to develop algorithms that design or adapt games
automatically. Therefore we need empirical research on par-
ticular games to acquire such models.

Optimization of game aspects based on empirically de-
rived models has so far mostly focused on the impact
of non player character (NPC) behavior (Andrade et al.
2005a; Missura and Gärtner 2009) and the adjustment of
NPC behavioral parameters for maximizing satisfaction in
games (Yannakakis and Hallam 2009). The focus of most
research has been on dynamic game balancing which algo-
rithmically changes parameters of the game to prevent play-
ers feeling frustrated because the game is too hard or bored
because the game is too easy. The proposed algorithms are
often restricted to specific game genres; for example, dy-
namic scripting is suitable only for games that are either
scripted or imply storytelling. Lee and Jung (2006) work
on dynamic scripting for a shooter game using a Gaussian
Mixture Module that models the player’s reaction pattern.
Spronck et al. (2006) implement dynamic scripting through
reinforcement learning to control the movement of the NPC.
Andrade et al. (2005b; 2005a) also used reinforcement learn-
ing to modify NPC behaviors. They did not, however adjust
the difficulty of the game level during play.

While procedural content generation of various kinds has
been around in the game industry for decades, published
attempts at generating coherent game segments (like lev-
els) are scarce. When it comes to platform games, only a
few attempts at generating levels can be found in the litera-
ture (Compton and Mateas 2006; Smith et al. 2009). Adap-
tive or personalized procedural content generation is a new
research direction. Recent publications include attempts at
optimizing tracks for car racing games (Togelius, De Nardi,
and Lucas 2007); weapons for space shooter games (Hast-
ings, Guha, and Stanley 2009); and rulesets for board
games and predator-prey games (Marks and Hom 2007;
Browne 2008; Togelius and Schmidhuber 2008).

A related direction focuses on incorporating the players’
emotions into the game in a closed-loop manner. Here,
player emotion is actively manipulated to ensure engage-
ment (Hudlicka 2008). Existing work (Yannakakis and
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Maragoudakis 2005; Charles and Black 2004) demonstrates
the power of using affective player models to in-game situa-
tions of high interest and satisfaction for the players.

The focus and main contribution of this paper is the design
of an online game adaptation mechanism that maximizes
the player’s fun value in platform games. The approach
proposed extends and draws upon earlier work on model-
ing player experience in the same game (Pedersen, Togelius,
and Yannakakis 2010). We extend this work through (1) re-
constructing the computational model of player experience
based on a new, larger data set, (2) designing an online adap-
tation mechanism based on the constructed models and (3)
testing the model and mechanism using both human subjects
and controllers taken from the 2009 Mario AI Competition.

2 Testbed Platform Game

The testbed platform game used for our study is a modified
version of Markus Persson’s Infinite Mario Bros (see Fig-
ure 1) which is a public domain clone of Nintendo’s clas-
sic platform game Super Mario Bros. The original Infinite
Mario Bros and its source code is available on the web.

Figure 1: Infinite Mario Bros game screenshot

The gameplay in Super Mario Bros consists of mov-
ing the player-controlled character, Mario, through two-
dimensional levels. Mario can walk and run, duck, jump,
and shoot fireballs. The main goal of each level is to get to
the end of the level. Auxiliary goals include collecting as
many coins as possible, and clearing the level as fast as pos-
sible. For more details about the game and our modifications
the reader may refer to (Pedersen, Togelius, and Yannakakis
2010).

While implementing most features of Super Mario Bros,
the standout feature of Infinite Mario Bros is the automatic
generation of levels. Every time a new game is started, lev-
els are randomly generated by traversing a fixed width and
adding features according to certain heuristics as specified
by placement parameters. In our modified version of Infi-
nite Mario Bros we concentrate on a few selected game level
parameters that affect game experience.

3 Data Collection

Data of three types was collected from 327 players.
1. Controllable features of the game: These parameters are

used for level generation, and affect the type and difficulty
of the level. This set contains three features that are re-
lated to gaps: number of gaps, average width of gaps, and
gap entropy, as well as a switching feature that defines the
percentage of the level played in the left direction.

2. Gameplay characteristics: Statistical features of how the
user plays the game such as how often the player jumped,
ran, died, how much he spent moving left, and how many
enemies he killed for the different type of opponents.
These features cannot be directly controlled by the game
as they depend on the player’s skill and playing style.

3. Player experience: After playing a set of four games, di-
vided into two pairs played in both orders, players were
asked to report the prefered game for three emotional di-
mensions; fun, challenge and frustration, through a 4-
alternative forced choice questionnaire protocol.

A detailed description of which features were collected for
each type of data as well as the modeling process can be
found in (Pedersen, Togelius, and Yannakakis 2010). The
analysis presented in this paper is based on 654 game pairs
(1308 game sessions) played by 327 players, more than
twice as many as in the previous paper. The collected data
has been preprocessed to remove the pairs with unclear pref-
erences (those pairs where both games are equally liked or
disliked). After this step, 458, 463, and 463 pairs remain for
fun, challenge, and frustration respectively.

4 Modeling of Player Experience Preferences

Initially, we use single layer perceptrons (SLPs) to approxi-
mate the affective state of the players. Sequential feature se-
lection is used to choose the input subsets for the SLPs. All
features (both gameplay and controllable) are investigated at
this stage. After selecting the feature sets that maximize the
accuracy in predicting the players preferences, we evolve the
topology and weights of multi layer perceptrons (MLPs) to
match reported player preferences.

Single Layer Perceptron Models: Feature Selection

A set of 58 features was extracted during gameplay (e.g. fea-
tures related to time, player’s actions, cause of death etc).
We would like our model to be dependent on as few features
as possible, not only to make it easier to analyze; but also
to make it more useful for incorporation into future games
for purposes of e.g. online game adaptation; and to save
computational effort. Therefore, sequential forward feature
selection (SFS) is used to extract the minimal feature subsets
that yield the highest performance.

The performance of each player model is measured
through the average classification accuracy of the SLP in
three independent runs using 3-fold cross validation.

The set of features that yields the highest prediction ac-
curacy differs for each emotional state investigated (+/- in
parenthesis signifies positive or negative correlation). The
selected feature subset for fun consists of four features: time
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Fun Frustration Challenge
MLP Topology 7-10-1 10-4-2-1 9-3-1
MLPprevious 74.21% 91.33% 79.37%

MLP 69.66% 89.33% 74.66%

Table 1: MLP performance for the previous and current
model

needed to complete the level (+), time spent in large mode
(+), time spent running (+), and number of unleashed shells
(+). For frustration, a larger set of seven features were
selected, consisting of: time needed to complete the level
(+), total number of cannons fired in the level (+), number
of power blocks destroyed (+), number of times the player
shifted mode (+), average width of gaps (+), number of coin
blocks destroyed (+), and number of jumps executed (-).
Challenge can be predicted using a set of six features: num-
ber of collected coins (+), time needed to complete the level
(-), average width of gaps (+), number of times the player
fires (+), total number of cannons in the level (+), and num-
ber of times the player was killed because of a cannon (+).

Using SLPs with the selected features, we are able to pre-
dict fun, frustration and challenge with 64%, 84.66%, 70%,
respectively.

Multi Layer Perceptron Models

Since our main aim is to automatically generate game con-
tent that is tailored to player experience in real-time, we need
to be able to predict emotions, at least partly, from control-
lable features. For this purpose, all remaining controllable
features which are not already included in the selected fea-
ture subset are forced into the input of MLP models and the
topologies of the networks are optimized for maximum pre-
diction accuracy.

As can be seen in table 1, the performance of the MLPs
trained on the larger dataset is slightly lower than the one
obtained previously (Pedersen, Togelius, and Yannakakis
2010). Overall, however, the approach proposed is able to
predict the player’s preferences with an acceptable accuracy
and is able to generalize well across larger sets of data. Frus-
tration achieves the highest performance 89.33% and main-
tained the smallest difference from the old model. We ob-
served a drop in about 5% when predicting fun and challenge
with a prediction accuracy of 69.66% and 74.66% compared
to 74.21% and 79.37% for fun and challenge respectively.

It’s also worth noting that the networks vary in size and
topology. The topology for the challenge model is the small-
est, consisting of one hidden layer that includes three neu-
rons. Frustration is predicted with a network of two hidden
layers while the network for fun consists of one hidden layer
with ten neurons.

5 On-line Game Adaptation Mechanism

The aim of this study is to dynamically adapt level gener-
ation parameters based on player experience models, in or-
der to optimize player experience. Our approach to on-line
game adaptation is based on performing exhaustive search
in the space of controllable features to find the combination

of controllable features that, taken together with observed
gameplay features, maximize the MLP output value.

The search space consists of four features; number of
gaps, average width of gaps, gap placement and number
of direction switches with value ranges of [4,10], [10,30],
[0,1] and [0,1], respectively. The search space is explored
by starting from the minimal possible values and at each
step the values are increased by 1, 1, 0.1, and 0.1 respec-
tively. Each configuration of controllable features is fed (to-
gether with the recently observed gameplay features) into
the MLP; the combination that maximizes network output is
chosen to generate the next level. With such a small search
space (12000 configurations) we can find the optimal config-
uration almost instantly, allowing real time level generation.

6 Testing the On-line Game Adaptation

The adaptation mechanism is capable of generating a new
level that optimizes some aspect of predicted player expe-
rience almost instantaneously given the playing style of the
previous level. However, as the playing style of the same
player on the next level is likely to differ from that of the
previous level (because the level is different), the effect of
the controllable features on player experience is rather indi-
rect. It is therefore important to study the behaviour of the
adaptation mechanism over time. In this paper, we test the
adaptation mechanism using both humans and AI players.
The reason for using AI players is that they behave consis-
tently over time, and have more time to spend on playing
computer games than the average human test subject.

Two different AI controllers were used to test the adap-
tation mechanism. Both controllers were submitted to the
2009 edition of the Gameplay track of the Mario AI Compe-
tition; a competition about designing controllers that play
Infinite Mario Bros as well as possible, in the sense of
completing as many levels as possible. See (Togelius,
Karakovskiy, and Baumgarten 2010) for details about the
rules of the competition, API and controllers submitted.

We used two different controllers in our experiments:
1. The agent that won the competition, submitted by Robin

Baumgarten. This agent is based on an A* search algo-
rithm in state space and simulates the future trajectory of
both itself and enemy NPCs for each considered action. It
performs very well on the type of levels generated by the
level generator, as evidenced by it managing to finish all
levels in the competition.

2. The competition entry of Sergio Lopez. This agent is
based on a relatively simple heuristic function that de-
cides when to jump and how high, and otherwise walks
left. While performing less well than Robin’s agent, it
could still complete most of the levels in the competition.
The reason we chose these two controllers is that they

differ not only in performance and architecture, but also in
playing style. While Robin’s agent runs through the lev-
els, almost continuously jumping and shooting fireballs, Ser-
gio’s agent strolls along at a more leisurely pace, only jump-
ing when necessary and never firing. In general, Sergio’s
agent looks rather more human-like and lacks the creepy ex-
actness of Robin’s agent. These behavioural differences are
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directly reflected in metrics used by the player experience
model, allowing us to test the adaptation mechanism with
automated playthroughs of significantly different styles.

In the following sections we will discuss a number of ex-
periments that have been done to test the model performance
and the validity of the proposed approach. In the first experi-
ment we test the performance of the mechanism by optimiz-
ing levels to playing characteristics of a specific player. In
the second experiment, we test the generality of the mech-
anism by optimizing levels for changing playing styles. In
both experiments, all agents played in real time while game-
play features were recorded.

7 Experiment 1: Optimizing Player

Experience for a Fixed Playing Style

The experiment presented in this section is focused on gen-
erating optimized levels for a specific player. The experi-
ment is done in the following steps:

1. An initial level is generated with random parameters.

2. An AI agent plays the level while gameplay features are
recorded.

3. Using the set of recorded gameplay features, the values
for the controllable features that optimizes the player ex-
perience are chosen.

4. A new adapted level is generated based on the optimized
controllable features.

The two AI agents have each played a set of 50 levels
with the first level generated randomly, followed by a set
of adapted levels that aim at maximizing player experience
based on gameplay during the previous level. The exper-
iment is repeated 10 times for each agent starting from a
different random level each time.

For comparison purposes, 50 random levels were gener-
ated by assigning random values for the controllable fea-
tures instead of searching for the optimal set of values. The
results depicted in figure 2 show the performance of the pro-
posed approach against the randomly generated levels: our
adaptation mechanism is able to generate levels with higher
predicted fun level than the baseline random levels. (In the
discussion in this section, “fun” always refers to predicted
fun levels. We do not claim that the algorithms had fun.)

Figure 2: Optimized fun levels vs. random levels for Robin’s
agent

Figure 3: Optimized fun levels vs. random levels for Ser-
gio’s agent

We were able to generate fun levels for Sergio’s agent
that are 81.31% fun, while the optimized fun levels for
Robin’s agent have a slightly lower fun value with an av-
erage 68.71% (see figures 2, 3, 4 and 5). This difference
is related to the agent’s playing style. The observation
of each agent playing characteristics showed that Sergio’s
agent plays in a more human-like style; he moves at an aver-
age speed so it is able to complete the levels approximately
at the same time as a human player would, and he jumps
only when necessary. Robin’s agent, on the other hand, is
able to clear the levels fast, he keeps jumping and he fires
even when unnecessary.

We were able to construct levels with higher fun values
for the agent who plays in a human like manner than we
could for the other agent. Since the model has been trained
on data collected from human players, we suspect that this is
due to the nature of the data our fun model was built on. Ser-
gio’s agent playing style may matches a pattern of behavior
existent in human players.

Figure 4: Optimized fun levels for Robin’s agent

Figure 5: Optimized fun levels for Sergio’s agent
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Statistical Analysis

This section describes testing the correlations between the
three emotions that we are investigating.

To check whether optimizing for one reported emotional
state affects the others, we generated levels to optimize the
fun value while monitoring how the values change for frus-
tration and challenge. We performed an analysis for ex-
ploring statistically significant correlations between these
emotions. We use the correlation coefficient as described
in (Pedersen, Togelius, and Yannakakis 2010). A statisti-
cally significant effect (p < 0.05) is observed between chal-
lenge and frustration (p = 3.57 ∗ 10−20) for Robin’s agent.
The negative correlation (−0.66) between these two emo-
tions shows that for players like Robin’s agent challenging
levels are predicted to be less frustrating.

The statistical analysis for Sergio’s agent showed no sig-
nificant correlation between any of the emotions investi-
gated. This shows the sensitivity of the model to the type
of player and the player’s playing style. We also observed
that the levels optimized for fun induced high levels of chal-
lenge for both agents.

8 Experiment 2: Dynamic Adaptation to

Changing Playing Styles

In this experiment we test the model’s ability to generalize
over different types of players. For this purpose, the two AI
agents were set to play in turns while monitoring how the
fun value evolves.

The experiment starts from a randomly generated level.
The agents play a set of 100 levels and every 20 levels the
playing agent is switched. The result in Figure 6 shows the
changes in fun value over 100 levels. The figure shows that
the fun value ranges around 70% in the first 20 levels where
Robin’s agent is playing, and when we switch the agent
to Sergio’s agent in the following 20 levels, it increases to
80% approximately, and it drops again to 70% when Robin’s
agent is set back to play. These results provide evidence for
the model’s ability to adapt to the types of players.

For further investigation, we did the same experiment on
human players playing a smaller set of 12 levels. The out-
come of this experiment is illustrated in figure 7, which
shows the evolution of fun over 48 levels played by four dif-
ferent human players. The results obtained is similar to the
ones obtained with the AI agents with fun value averages
80.65%, 93.88%82.11%,85.49% for first, second, third and
fourth player respectively. As seen from Figure 7 the adap-
tation mechanism is robust enough to adapt to a particular
player and to generalize over different types of players. Par-
ticipants in this experiment along with 6 other participants
were asked to report their preferences between the randomly
generated level and the first adapted level, results show that
60% of the participants enjoyed the adapted level more than
the random level.

9 Discussion

For the experiments presented in this paper, we only defined
four controllable features, three of which are related to gaps

Figure 6: Optimized fun levels for two AI agents

Figure 7: Optimized fun levels for four human players

in the level. Although we were able to predict the emo-
tional states with a relatively high accuracy and adapt well
to player’s playing style and characteristics, for our future
work we would like to investigate many more features.

Although the methodology proposed shows promising re-
sults in terms of optimizing player experience and adapting
to changing playing styles, the results presented are some-
how suggestive in that they are based on experiments on two
AI agents and four human players. Future work will include
further improvement and testing for the model.

We believe that our approach will generalize well to other
games, at least first- or third-person action games, since the
features we define have straightforward analogues in those
games. Not only do many such games have platform el-
ements, but also in a typical FPS like Halo concepts such
as average movement speed, speed of progress, number of
shots fired, entropy of object placement, and number and
concentration of enemies/items/obstacles are clearly defined
and can be assumed to have impact on player experience.

One of the limitations of the proposed approach is post-
experience. Subjective techniques only generate data when a
question is asked, and interrupting game play to ask a ques-
tion can be intrusive. There exist solutions for both test-
ing emotional models over different time windows as intro-
duced in (Yannakakis and Hallam 2009) and capturing the
association between gameplay dynamics and emotional re-
sponses via e.g. recurrent neural networks. In the future, we
will combine these techniques with our approach to adaptive
content generation; we will also investigate other sources of
information, like physiological measures. Naturally, when
better models have been derived, the efficacy of the adapta-
tion mechanism will be validated with human players.

In the experiments reported here, new game content was
generated at the end of each level. The next step towards
more responsive on-line adaptation to the player is to re-
place the level unit with a smaller time window in which we
assume that the entertainment preference is constant. This
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will allow us to include features that are based on ordering
in time and will result in more fine-grained adaptation.

10 Conclusion

The work reported in this paper introduces an on-line game
adaptation mechanism that can be used to effectively opti-
mize player experience. We saw that using the proposed
approach we were able to generate levels tailored to spe-
cific players. While our experiments were successful in the
sense that the predictors achieved acceptable accuracy and
the adaptation mechanism shows promising results, there are
many exciting ideas for further improvement.
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