Proceedings of the Sixth AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment

Training Goal Recognition Online from
Low-Level Inputs in an Action-Adventure Game

Kevin Gold
Rochester Institute of Technology

Abstract

A method is presented for training an Input-Output Hid-
den Markov Model (IOHMM) to identify a player’s cur-
rent goal in an action-adventure game. The goals were
Explore, Fight, or Return to Town, which served as the
hidden states of the IOHMM. The observation model
was trained by directing the player to achieve particular
goals and counting actions. When trained on first-time
players, training to the specific players did not appear to
provide any benefits over a model trained to the experi-
menter. However, models trained on these players’ sub-
sequent trials were significantly better than the models
trained to the specific players the first time, and also out-
performed the model trained to the experimenter. This
suggests that game goal recognition systems are best
trained after the players have some time to develop a
style of play. Systems for probabilistic reasoning over
time could help game designers make games more re-
sponsive to players’ individual styles and approaches.

Introduction

In games that do not obey a linear plot, it is a common oc-
currence for a player to return to a game after a long hiatus,
only to have no idea what she was trying to accomplish last.
For example, a player logging in to World of Warcraft (Bliz-
zard, 2004) for the first time in months will have a quest log
full of goals, but may not have been actively pursuing any
of them. Instead, the player may have been headed back
to town to sell items, headed to a new zone, or grinding (re-
peatedly killing monsters) to reach the next level. The player
may not have known at the time of logout just how long it
would be before playing next, and therefore may not have
made any note of what she was doing. Goals such as ex-
ploration, heading to a destination, or grinding may not be
obvious from any particular action, but may instead become
apparent through a pattern of behavior over time. If the game
had some way of recognizing such patterns, it could store
its guess about what the player’s goal was, and remind the
player what it was when the player returns to the game.

The present paper is about a system that can be trained to
recognize some common video game goals from a player’s

Copyright (© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

21

#% Carried: 0 /20

Bali 24

-
R ¥

i
&
&

leveling [N
explore [
totown ||

FSM:

town

Figure 1: A screenshot of the game providing realtime feed-
back about its beliefs about the player’s intentions. Lengths
of the bars in the upper right correspond to goal probabili-
ties.

pattern of behavior over time. The method can produce real-
time feedback about the game’s degree of belief that the
player is pursuing each goal (Figure 1). Unlike similar pre-
vious work, the system is designed to recognize actions from
relatively low-level inputs — the player’s moment-to-moment
movement and sword-swinging. The method can be trained
and applied online, using very fast operations. The train-
ing requires only counting actions when the player is given
known goals; given known goals, learning can occur online,
without churning through the player’s action history. Apply-
ing the algorithm then only requires a few matrix multipli-
cations with each new observation of the player’s actions.

Probabilistic reasoning over time is arguably the best
strategy for making this kind of decision online in a game.
Low-level actions can be ambiguous; is the player walking
south to approach the monster, or the area behind the mon-
ster? Rule-driven strategies popular in the game industry,
such as finite state machines and behavior trees (Isla 2005),
may have a difficult time distinguishing between player mo-
tives, because they often fail to take into account the rest
of the player’s history. Other methods may be slow and re-

% Carried: 4 /20
Bank: 0

&
2:1
B

Find a Treasy[e,
Chest i i

Tip: Walk off the edge of the screen to go to a new area

-
-,

K

Figure 2: A screenshot of the game, under the training con-
dition that gives explicit goals. Feedback about beliefs is not
provided during training and testing, to avoid bias.

quire significant computation to update in response to the
player’s actions. By contrast, the model to be presented can
update its beliefs in constant time, with just a single ma-
trix multiplication and some scaling operations. It also has
the advantage of being relatively transparent to inspection,
with conditional probabilities that are readily interpretable.
Speed is essential for an algorithm’s viability the game in-
dustry, where Al is not allowed much processing power,
while transparency is important to the game designers, who
have the final say over agent behavior.

The present work is meant to answer three questions.
First, can a trained probabilistic model provide better online
predictions for player behavior than a hand-designed finite
state machine? Second, does it make sense to apply the same
trained model to multiple players, or should these models be
trained to each individual player? And third, is it possible
to train such models during the “tutorial” while the player is
still learning the game, or is this training data not as good as
later measurements in predicting the player’s goals?

Machine learning techniques that attempt to identify goals
can take advantage of the fact that the game can temporar-
ily control the player’s goals, in the form of specific quests
or instructions. This is useful for establishing ground truth
for training. In fact, the current structure of modern video
games dovetails perfectly with the machine learning re-
searcher’s aims, because games typically begin with tuto-
rials in which the player’s goals are directed. Before the
player is allowed to choose goals, the player may be given a
series of directed goals to ensure that the player knows the
possibilities that the game offers. This offers the tantaliz-
ing possibility that as the human player learns the game, the
game can “learn the player.” This model could then be up-
dated whenever the player’s goals are known, as is often the
case for the obligatory plot-critical segments of a game.

The target application in the present paper is a simple
action-adventure game with an interface similar to The Leg-

22

end of Zelda (Figure 2). Players can accumulate money by
either slaying monsters or finding treasure chests through-
out the game world. The game learns conditional probabil-
ities for various actions under three possible hidden states:
Explore, in which the player is searching for new treasure
chests; Grind/Level, in which the player is killing monsters
repeatedly; and Return, in which a player is attempting to
return the money to a bank before it is lost to attacking
monsters. These general goals — reaching a known location,
fighting enemies, and attempting to find new locations — ap-
ply to several popular game genres, including MMORPGs
such as World of Warcraft, action-adventure games such as
the Legend of Zelda series, and sandbox-style action games
such as Grand Theft Auto IV. In all such cases, the inter-
pretation of the player’s movement patterns is likely to be
critical in identifying the current goal.

The paper will not deal with the issue of learning how of-
ten particular players indulge in particular goals; i.e., this is
not about learning players’ preferred “play style” at a high
level (Thue, Bulitko, and Spetch 2008). Rather, the paper
will deal with learning the players’ low-level behavior un-
der particular goals, with the intention of recognizing when
those particular goals are being pursued. Thus, the transition
models, which govern how often and under what conditions
players switch goals, will be fixed for the experiments to
be described; this is a paper purely about learning the ob-
servation model, so that player goals can be recognized in
the future. Moreover, it is assumed that computation is at a
premium in these games, so the methods presented will sac-
rifice some accuracy and power in exchange for being train-
able and applicable entirely online, without making multiple
passes over the player’s action history.

Plan recognition using Bayesian methods was first used in
the domain of natural language story understanding (Char-
niak and Goldman 1993). Previous goal recognition work in
the context of video games has typically been in the context
of non-action-oriented games in which inputs are either less
ambiguous or involve some verbal component. Typical ex-
amples include The Restaurant Game, which built trees of
action sequences based on observed player actions to recog-
nize sequences similar to those previously observed (Orkin
and Roy 2007); an action recognition system in the RPG
Neverwinter Nights that used actions and an Early parser
to disambiguate speech (Gorniak and Roy 2005); the aca-
demic/art game Facade, which used pattern-matching on
typed text to guess player attitudes towards its characters
(Mateas and Stern 2007); and systems that used Bayesian
reasoning to guess player goals in an online MUD (Albrecht,
Zukerman, and Nicholson 1998) and in an interactive story-
telling environment (Mott, Lee, and Lester 2006). Of these,
the last two are most similar to the present work, but oc-
curred in much less ambiguous settings, that of a text-based
online adventure game and a first-person educational “sci-
ence mystery” game, respectively. In an action game, player
inputs can be much more ambiguous as players engage in
complicated maneuvers to avoid enemy attacks; “moving
east” could be highly ambiguous if a town, an unexplored
map edge, and a monster are all in that direction, while the
player is also being chased by a different monster from the

west.

Application of keyhole plan recognition to action games
has included using plan recognition networks for the net-
worked space combat game Netrek (Huber and Hadley
1997), support vector machines to identify plays in the foot-
ball video game RUSH 2008 as they are being executed
(Laviers et al. 2009), and HMM model comparison for rec-
ognizing military operations played out in Unreal Tourna-
ment in the absence of opponents (Sukthankar and Sycara
2005). The present approach has the advantage over these
of being able to model goal shifts; while plan recognition
networks, SVMs, and HMM model comparison are all de-
signed to grant a single classification to a whole time series,
hidden state inference can deal with situations in which a
player abandons a goal in favor of a new one. The current
work also has the advantage of comparing probabilistic goal
recognition to the simpler industry approach of using a finite
state machine, to give industry professionals a better idea of
the return on the added time investment of programming and
training such a model. It does reside within a much larger
research context of action recognition from continuous in-
puts using Hidden Markov Models (Lee and Kim 1999;
Starner and Pentland 1997), but reviewing this background
is beyond the scope of this paper.

Previous work has studied a similar model with hand-
chosen probabilities, which was shown to be more effective
than an FSM as long as the extra IOHMM goal-switching
structure was used (Gold 2010). The current paper is the
first to address training such a model to user data. In partic-
ular, it addresses whether it is more worthwhile to train to
individual players, or player behavior in the aggregate; and
whether players need experience with the game before the
models are useful.

Methods
Game

The game was a top-down action-adventure game running
at 30 fps. The player’s available actions were to move in
eight cardinal directions, or jab a sword up, down, left, or
right. Each screen contained 15 monsters, randomly placed,
which would charge the player at 4 pixels/frame (120 pix-
els/second) if the player approached within 150 pixels (the
“aggro radius”). Each edge of the screen was either blocked
by a wall or led to another screen, with screens arranged in
a b x 4 map. The player started at a “Town” sprite near the
middle of the world map. Six locations on this map, each at
least 2 screens away from start, had a 33% chance of con-
taining a treasure chest.

If a monster hit a player, the player restarted either from
the bank or the location of the last treasure chest pickup,
wherever the player visited last. On being attacked with a
sword, a monster died and was replaced with a gem. A mon-
ster respawned randomly on the screen 5 seconds after being
killed, and all monsters respawned if a player left a screen
and came back to it.

During training and evaluation, in the upper-left corner,
the game instructed the player what to do next: “Kill 20
monsters,” “Find a treasure chest,” or “Return to the bank.”

23

Each goal was given twice: once to train the underlying
model, and a second time to establish ground truth for the
test condition. (Ostensibly, the game could be played with-
out such instructions, and this is the point; but the instruc-
tions are necessary to establish ground truth for evaluation.)

Instructions at the bottom of the screen appeared three
times: at the beginning of the experiment, to tell the player
how to move and attack; on beginning the “Find a treasure
chest” goal, to inform the player that it was possible to move
off the edge of the screen to reach a new area; and on the
player’s first death during the “Return to town” goal, to state
that the player had been returned to the location of the last
treasure chest.

Finite State Machine

A finite state machine (FSM) provided a baseline for predic-
tions about player goals. When the player reached a previ-
ously unexplored screen, the finite state machine predicted
that the player’s current goal was Explore. When the player
entered a square closer to the bank than the current square,
the FSM changed its prediction to Return. When a player
killed a monster, the Finite State Machine set its prediction
to Level.

Probabilistic Model

The model is an Input-Output Hidden Markov Model (Ben-
gio and Frasconi 1995) in which the input consists of
whether the player has just achieved a goal, the hidden state
represents the player’s current goal, and the output is the
low-level input from the keyboard, interpreted in the context
of nearby landmarks.

IOHMMs have a similar structure to Hidden Markov
Models (HMM; (Rabiner 1989)), but with additional con-
text information that can change the transition matrix and
observation probabilities. When there is additional context
information that can cause a state to change, or can cause
the behavior within a state to change, IOHMM s best repre-
sent the causal structure of the problem for the purposes of
Bayesian reasoning (Figure 3). When this additional con-
text information is known, IOHMM s are just as efficient to
update their hidden state beliefs as Hidden Markov Mod-
els. They are ideal for use in games because games often
have access to a wealth of contextual information that can
help identify the player’s current goal, beyond the player’s
actions.

Here, the additional context information is used primar-
ily to change the HMM transition matrix when the player
achieves a goal. There are two transition matrices in use:
one with probabilities that tend to perpetuate the current
goal, and another that suggests the player is likely to switch
goals, which is swapped in when the player has just achieved
a goal. This is an effect that is awkward to achieve with a
normal HMM; including “goal achieved” as another obser-
vation would double the number of observation categories,
increasing the time necessary to train, and would unneces-
sarily mix observables (whether a goal is achieved) with un-
knowns (the player’s current goal) in the hidden state vari-
able, since there are different transition probabilities associ-
ated with each. In general, Bayesian models can be more

Intention
State
S

Intention

State
S|

1

Player
Action
O,

Player
Action
O

Figure 3: A slice of an Input-Output Hidden Markov Model
(IOHMM) for games. The game state is a known variable
that can affect the conditional probability of the player’s
switching goals, and the player’s actions given those goals.

concise when they reflect the causality of the situation (Rus-
sell and Norvig 2003). Furthermore, elsewhere it has been
shown that without this extra structure, HMMs do not out-
perform the FSM described earlier on the goal prediction
task to be described (Gold 2010).

The three hidden states G corresponded to the three goal
types, Explore, Level, and Return. The possible obser-
vations A were Swing, Stop, Approach Unexplored and
Monster, Approach Unexplored Without Monster, Approach
Town And Monster, Approach Town Without Monster, Ap-
proach Monster, Approach Gem, Other Movement. A move-
ment counted as an approach to unexplored territory or the
town if it included at least one correct basic cardinal direc-
tion, so that if the town was to the upper-left, movement
up, left, or diagonally up and to the left counted as an ap-
proach. Since monsters could not be attacked diagonally (an
artifact of the attack sprites used), a diagonal move toward
a monster did not count as approaching it, since this gener-
ally did not signal an attack; however, a non-diagonal move
toward the circle defined by a monster’s “aggro radius” in
which it would attack did count, since this was a common
way to bait monsters. The probabilistic model consisted of
the conditional probabilities p(A;|G}) for each action A and
goal G, and the probabilities p(Gi11|Gt, G') for each goal
G and a boolean variable G’ that indicated whether a goal
has just been achieved.

The transition matrix 7 thus varied depending on
whether a goal had been recently achieved. One matrix Ty
with 0.9 along the diagonal was used for continuing any goal
in progress, and another with higher out-of-state transitions
was used for each of the possible goals G’ that could be
completed in the last time step.

The time ¢ was indexed by actions instead of time. Every
time the player’s keyboard input changed, this was used as
an observation, and the model updated. The observations
were also updated every 500ms as the player moved, even
if input did not change, since the context of an action could
change over the course of a move.

In updating the beliefs at each time step, the vector of
probabilities was updated using the Forward algorithm (Rus-

24

sell and Norvig 2003). Let the current vector of probabilities
for the hidden goals be G, and P(alg) be the probability of
the observed action under a given goal g. Then on receiving
a new input from the player o1, the algorithm for updating
the probabilities of each hidden state is:

Giy1 =TL Gy

for each hidden state g do

Sg,t41 < Sgt+1 * Plalg)
end for .
Gyy1 < normalize(Gyy1)

This provided the probability p(G¢|G1.. +—1) at each time
step, mimicking the information the game would have avail-
able for determining the player’s current goal at each time
step.

For interpreting the player’s goal at the current time step,
no further computation is necessary; the “backward mes-
sage” of the Forward-Backward algorithm only affects be-
liefs about hidden states at the previous time steps (Russell
and Norvig 2003). It would, however, be trivial to add some
lag ¢ to the model and apply the Forward-Backward algo-
rithm instead, so that it could use the most current evidence
to re-interpret the beliefs it had about the player’s goals ¢ ac-
tions ago. The current work forgoes the extra lag to achieve
maximum swiftness of response to goal changes, at the po-
tential expense of accuracy.

The Forward algorithm is also not to be confused with
the Viterbi algorithm, which finds the most likely sequence
of actions up to the present time step. The Forward algo-
rithm returns the fotal probability of each hidden state, re-
gardless of the history of hidden states that led to it, which
may be different from the Viterbi prediction (Russell and
Norvig 2003). For developers attempting to build an algo-
rithm that builds a single narrative for the player’s actions,
as opposed to simply making a best guess about the current
state, the Viterbi algorithm would be more appropriate.

Training the Observation Model

For computational efficiency and simplicity, priors on the
model probabilities were taken into account by using pseu-
docounts of one observation for each goal-action pair — an
old strategy known as “Laplace’s law” that is equivalent to a
Bayesian estimator with a uniform prior on events (Manning
and Schiitze 1999). An observation probability could then
be computed later by dividing the sum of the action counts
and pseudocounts by the total number of actions made in
that state. All three training conditions — “Kill 20 monsters,”
“Find a Treasure Chest,” and “Return to Town” — could often
be completed in under 5 minutes.

Given the sparsity of data for transitions, transition mod-
els were not trained, but set to be plausible transition mod-
els for the genre of game. This consisted of out-of-state
transition probabilities of 0.05 when no goal had recently
been achieved; probabilities of 0.5 of transition to the other
two states when “Return” had recently been achieved; and a
probability of 0.95 of transition to Return if a treasure chest
had just been found, since in the final game, the player would
not be able to pick up more treasure until the treasure chest
had been brought to town. No particularly different transi-

tion model was used for the “Level” goal, since this goal in
practice can be pursued indefinitely.

Experiment 1: Player variability and first-time
players

This experiment was designed to assess two questions: first,
whether training the model was better than a finite state
machine across all players; and second, how well a model
trained on one player could be applied to novice players.

21 players were recruited online for the study, of whom
19 successfully finished both the training and testing rounds.
The players’ experience with games ranged from complete
novices to experienced. Each run of the study consisted of
training the observation model to the players’ actions dur-
ing the training phase, then running the three goals again
with each of three models making online predictions of the
player’s current goal. The three models were the trained
probabilistic model, the Finite State Machine describe in the
Methods section, and a model previously trained on the ex-
perimenter, which itself predicted the experimenter’s goals
with an average of 87% accuracy over six test trials. All
three algorithms were always run in parallel on the same
time series, justifying a paired ¢-test in the analysis.

Results

The models trained to each individual player performed sig-
nificantly better (66% accuracy) than the finite state machine
(54% accuracy, p < 0.01), but their improvement over the
model trained to the experimenter only approached signifi-
cance (p = 0.18).

Experiment 2: Effects of experience

Informal reports from subjects who continued to play the
game after Experiment 1 suggested that the method’s perfor-
mance improved as subjects became more experienced with
the game. To test this hypothesis, all subjects from Experi-
ment 2 were invited to repeat the experiment. Five subjects
responded to the invitation. Of these, two had played the
game on their own in the interim, resulting in three players
that had done one full run and two that had done 3 full runs
previously.

Subjects’ training data from Experiment 1 was not used
at all, to avoid confounding the effect of more training data
with the effect of experience.

Results

All five players produced trained models with higher accura-
cies than their last runs, significantly increasing the average
accuracy among this subgroup from 60% to 70% (two-tailed
paired t-test p = 0.01). In addition, all models trained on
this run — without using any data from the prior run — were
now significantly better at predicting their goals during the
test phase than the models trained to a different player (74%
versus 63%, p = 0.03).

Figure 4 summarizes the results of Experiment 2, com-
paring the five repeat players’ results to their results from
Experiment 1.

25

Trained, First Play Trained, Subsequent Play

Trained, Diferent Player

Figure 4: Average accuracies for the models trained on a
subsequent playthrough, compared to models trained on a
first playthrough, an FSM, and a model trained to a different
player, for the five repeat players of Experiment 2. Bars are
standard error. Chance performance is 0.33.

Conclusions

The most interesting result here for the researcher interested
in goal recognition is that training probabilistic models on
players experienced with the game appears to have been
much more useful than training the models on the subjects
while they were still learning to play. This is true despite the
fact that there was far more training data during the players’
first run, which took them longer than the second run due to
their lack of experience. If the training data had been kept
from one run to the next and included in the second run,
the machine learning researcher’s most natural conclusion
would have been that the increased amount of data was what
led to the model’s improved performance. Instead, data col-
lected after the player has become acquainted with the game
seems to be simply more reliable than the earlier data. This
is interesting particularly because it was not even the play-
ers’ high-level strategies and transitions between them that
changed, but the low-level actions that they tended to take to
achieve those same goals.

What this suggests for those creating intention recogni-
tion systems for video games — or indeed, machine learning
researchers interested in goal recognition in general — is that
it can be useful to give users some experience with novel
tasks and systems before collecting training data. Or, if data
is being collected passively in the aggregate, it may be use-
ful to separate out the records of users who are new. Thus,
even though it is appealing to imagine a game which learns
the player even as the player learns the game, models may
be more effective if they are trained on player missions that
occur after the player has had a chance to perform similar
tasks once or twice. It appears that at this point, the player’s
pattern of play becomes more understandable to the proba-
bilistic model, and also more distinguishable from the pat-
terns of an arbitrary experienced player. In short, it takes
experience to develop a style.

There are many possibilities for future work with these

IOHMMs. A natural extension of the present work would be
to learn the transition probabilities as well as the observation
probabilities for a player model, using Expectation Maxi-
mization (Bishop 2006). It is an open question as to whether
the hidden states learned from EM would still correspond to
player motivations. It is entirely possible with EM that the
hidden states will come to have an entirely different seman-
tics. This sometimes occurs in speech recognition; though
the textbook coverage of speech recognition often treats the
hidden states as the phonemes to be recognized, in practice,
EM can cause the hidden states to become uninterpretable
by inspection. Controlling player goals in order to train the
observation models may therefore still be useful as a com-
ponent of a two-step process, where the second step trains
the transition models either with EM or simple observation
counts.

More broadly, other techniques for player intention recog-
nition can fall out naturally from applying different algo-
rithms to the IOHMMs. Categorizing players as one type or
another, as in (Thue, Bulitko, and Spetch 2008), might be
performed using model likelihood comparison. Construct-
ing a single narrative that explains the player’s behavior
might be performed with the Viterbi algorithm. Artificial
agents might register surprise when the prediction given by
the Forward algorithm is later invalidated by the Forward-
Backward algorithm, as they come to reinterpret the player’s
actions in light of new evidence. The IOHMMs themselves
could grow more sophisticated as they condition on more
game state evidence; introducing such evidence to the model
is only as computationally expensive as procuring the evi-
dence in the first place, since conditioning on known inputs
does not increase the computational complexity of the For-
ward algorithm. Ideally, probabilistic methods could be used
not just to help detect and gently guide players away from
repetitive strategies, but to shape high-level stories from
low-level actions.

Acknowledgments

This work was supported by the Norma Wilentz Hess fel-
lowship of Wellesley College.

References

Albrecht, D.; Zukerman, I.; and Nicholson, A. E. 1998.
Bayesian models for keyhole plan recognition in an adven-

ture game. User Modeling and User-Adapted Interaction
8(1-2):5-47.

Bengio, Y., and Frasconi, P. 1995. An input output HMM
architecture. In Tesauro, G.; Touretzky, D. S.; and Leen,

T. K., eds., Advances in Neural Information Processing Sys-
tems, volume 7. MIT Press. 427-434.

Bishop, C. M. 2006. Pattern Recognition and Machine
Learning. New York: Springer.

Charniak, E., and Goldman, R. 1993. A Bayesian model of
plan recognition. Artificial Intelligence 64(1).

26

Gold, K. 2010. Designer-driven intention recognition in an
action-adventure game using Fast Forward Bayesian Mod-
els. In FLAIRS 2010. AAAI Press.

Gorniak, P., and Roy, D. 2005. Probabilistic grounding of
situated speech using plan recognition and reference resolu-
tion. In Proceedings of the Seventh International Conference
on Multimodal Interfaces. New York, NY: ACM.

Huber, M., and Hadley, T. 1997. Multiple roles, multiple
teams, dynamic environment. In Proceedings of the first in-
ternational conference on autonomous agents, 332-339.

Isla, D. 2005. Handling complexity in the Halo 2 Al. In
Proceedings of the Game Developers Conference. Gamasu-
tra.

Laviers, K.; Sukthankar, G.; Molineaux, M.; and Aha, D. W.
2009. Improving offensive performance through opponent
modeling. In AIIDE 2009. AAAI Press.

Lee, H.-K., and Kim, J. H. 1999. An HMM-based threshold
model approach for gesture recognition. IEEE Transactions
on Pattern Analysis and Machine Intelligence 21(10):961—
973.

Manning, C. D., and Schiitze, H. 1999. Foundations of
Statistical Natural Language Processing. Cambridge, MA:
MIT Press.

Mateas, M., and Stern, A. 2007. Writing facade: A case
study in procedural authorship. In Harrigan, P., and Wardrip-
Fruin, N., eds., Second Person: Role-Playing and Story in
Games and Playable Media. Cambridge, MA: MIT Press.
183-208.

Mott, B.; Lee, S.; and Lester, J. 2006. Probabilistic goal
recognition in interactive narrative environments. In Pro-
ceedings of AAAI-06. Menlo Park, CA: AAAI Press.

Orkin, J., and Roy, D. 2007. The Restaurant Game: Learn-
ing social behavior and language from thousands of players
online. Journal of Game Development 3(1):39-60.

Rabiner, L. R. 1989. A tutorial on hidden Markov models
and selected applications in speech recognition. Proceedings
of the IEEE 77(2):257-296.

Russell, S., and Norvig, P. 2003. Artificial Intelligence: A
Modern Approach. Upper Saddle River, New Jersey: Pren-
tice Hall, 2nd edition.

Starner, T., and Pentland, A. 1997. RealTime American Sign
Language Recognition from Video Using Hidden Markov
Models. Technical Report 375, M.I.T Media Laboratory
Perceptual Computing Section.

Sukthankar, G., and Sycara, K. 2005. Automatic recogni-
tion of human team behaviors. In Proceedings of the IJCAI
Workshop on Modeling Others from Observations.

Thue, D.; Bulitko, V.; and Spetch, M. 2008. Player mod-
eling for interactive storytelling: a practical approach. In
Rabin, S., ed., AI Game Programming Wisdom 4. Boston,
MA: Course Technology. 633—-646.

	AIIDE10
	Contents
	Index
	Help
	Terms
	AIIDE 2010

