

Learning Companion Behaviors Using Reinforcement Learning in Games

AmirAli Sharifi, Richard Zhao and Duane Szafron

Department of Computing Science, University of Alberta
Edmonton, AB,

CANADA T6G 2H1
asharifi@ualberta.ca, rxzhao@ualberta.ca, dszafron@ualberta.ca

Abstract
Our goal is to enable Non Player Characters (NPC) in
computer games to exhibit natural behaviors. The quality of
behaviors affects the game experience especially in story-
based games, which rely on player-NPC interactions. We
used Reinforcement Learning to enable NPC companions to
develop preferences for actions. We implemented our RL
technique in BioWare Corp.’s Neverwinter Nights. Our
experiments evaluate an NPC companion’s behaviors
regarding traps. Our method enables NPCs to rapidly learn
reasonable behaviors and adapt to changes in the game.

Introduction

Game players have growing expectations about intelligent
behavior of agents in story-based games. Non-Player
Characters (NPC) lead the Player Character (PC) through
the story. The behaviors of NPCs are usually scripted
manually, which results in repetitive and artificial looking
behaviors. Since there are usually many NPCs in story-
based games, the cost of scripting complex behaviors for
each NPC is not financially viable. Some researchers
(Spronck et al. 2006) and games companies (Booth 2009)
have started using learning techniques to generate more
realistic and complex behaviors for NPCs. Reinforcement
Learning (RL) is a popular adaptive learning technique.

In RL there are several mechanisms and algorithms to
learn policies that identify high-reward behaviors for an
agent in any given context, by maximizing the expected
reward. We can use these techniques to learn policies for
various types of agent behaviors in story-based games to
derive more natural NPC behaviors.

We use RL to derive appropriate behaviors for a
companion NPC that accompanies the PC during the story.
For illustration, we investigate the actions a companion
selects immediately after detecting a trap and after
subsequent verbal communication with the PC. After
detecting a trap, an NPC can: disarm it, mark its location,
inform the PC about it, or do nothing. The first two actions

Copyright © 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

may cause physical damage to the NPC and/or PC if the
action fails critically. The second two actions may cause
physical damage if the PC subsequently triggers the trap.
The choice of action should depend on the NPC’s past
experience regarding traps and on how much the NPC
cares about the PC. After this initial NPC action, the PC
may provide verbal feedback on the action such as “Good
job disarming that trap” or “It exploded, but good try.” or
“Marking was a bad idea, disarm it.” Next, the PC may
also tell the NPC what further action to take on that
specific trap, such as: “You marked it, now disarm it”, or
“OK, there is a trap, mark it’s location”. At this point the
NPC should decide either to do what the PC asks or refuse,
saying something like “Bad idea” or “Disarm it yourself”.
The PC can request additional actions on this particular
trap and the NPC can continue to concur or refuse until the
trap is disarmed or the PC decides to move on.

A second example of an NPC decision is whether to pick
someone’s pocket. This NPC decision depends on various
parameters such as potential gain, success probability
based on past experience, and again how much the NPC
cares about the PC, which in this case would depend on
whether the PC shares loot from previous NPC pickpocket
actions. There is a set of actions to choose from and the
NPC will choose an appropriate action. As in the previous
example, the PC can both provide optional verbal feedback
and can entreat the NPC to take a different action.

We used ScriptEase (2010) and the Sarsa(λ) algorithm
(Sutton and Barto 1998) to generate learned companion
behaviors in BioWare Corp.’s Neverwinter Nights (NWN)
(BioWare 2010b). The NPC learns natural behaviors that
adapt quickly to changes in the environment. Running
many experiments in the game takes a long time, since we
cannot shut off the graphics. Therefore, we wrote a
simulation program that uses NWN mechanics and
conducted multiple experiments to evaluate our approach.

Related Work

There have been a few attempts to use learning methods
for NPC behaviors in computer games (e.g., Creatures, and
Black & White). However, RL has not been popular since

69

Proceedings of the Sixth AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment

the learning times are often too long for the limited roles
that NPCs play (Spronck et al. 2003). Some hybrid
methods have been proposed such as a dynamic rule-base
(Spronck et al. 2006), where a pre-built set of rules is
maintained for each type of NPC. A subset of the existing
rule-base is chosen for each NPC and after observing a
complete set of actions, the value function for choosing a
new subset of rules is updated. However, this method still
requires effort to make a logical and ordered rule-base
(Timuri et al. 2007) and its adaptation is limited once a
policy has been learned (Cutumisu et al. 2008). Sharma et
al. (2007) used a hybrid of RL and planning to create high
level strategic plans in real time strategy games. Smith, et
al. ‎(2008) used the Q-Learning algorithm to learn high-
level team strategies in first person shooter games.

Most progress on using RL in games has been on
learning high-level strategies rather than behaviors for
individual NPCs. However, Cutumisu et al. (2008) and
Zhao and Szafron (2009) have shown that individual NPCs
can learn behaviors using variations of the Sarsa(λ)
algorithm called ALeRT, and ALeRT-AM. These
algorithms have dynamic learning rates that support the
fast changing environments found in video games.
However, these algorithms were only evaluated for
combat, where relatively more training episodes are
available than the situation for most non-combat behaviors.
In addition, the reward function used in combat is not
suitable for non-combat situations. Merrick and Maher
(2009) have additional references to research on character
learning in games.

We show that RL can be used to learn non-combat NPC
behaviors. Our goal is to devise a responsive learning
system that produces natural behaviors for NPCs, based on
their own motivations.

Algorithm

We use Sarsa(λ), an online single agent RL algorithm
‎(Sutton and Barto 1998) with function approximation and
binary features to learn agent behaviors. On each time step,
the agent performs an action and observes the
consequences. Sarsa(λ) maintains an approximation of the
optimal action-value function, Q*(s,a). For each pair of
states and actions, it represents the value of taking action a
in state s and is used to select the best action to perform in
the current state according to a learned policy π. Policy π is
a mapping of each pair of state-actions (a, s) to the
probability of performing action a in state s. The
corresponding action-value function for policy π, Qπ(s,a),
estimates the expected long-term reward for performing
action a in state s and following policy π afterwards. In
Sarsa(λ) we start in state s1, take action a1, and observe
reward r1 and state s2. We select action a2 according to our
policy, π, and then update our approximation, Qπ(s,a),
hence the name Sarsa (state-action-reward-state-action).

Sarsa(λ) is an on-policy algorithm so it learns from
experience. Sarsa(λ) uses a temporal-difference updating
method in which α is the learning rate, γ is a discount
factor, and λ, the trace-decay, propagates rewards for the
latest actions to previous actions using the eligibility trace
matrix, denoted e(s, a). These parameters can be tuned to
adjust the responsiveness of learning:

Qt+1(st,at)←Qt(st,at)+α[rt+1+γQt(st+1,at+1)-Qt(st,at)]et(st,at)

Double Reward System
In the conventional Sarsa(λ) algorithm, updates to the
approximation of Q(s,a) are done once for each learning
step. However, for the companion-learning problem there
are two potential sources of reward in each step. The first
reward is the immediate reward, ri, the NPC observes from
the environment after taking an action. It reflects the
immediate consequences of the NPC action. If the NPC
encounters a critical failure while disarming a trap the NPC
takes damage. If the NPC is successful, experience points
(XP) are gained. Each consequence must be considered to
build an effective reward function, which will inform the
NPC’s preferences for performing future actions. The
second reward is a delayed reward based on feedback of
the PC. This feedback could be verbal or physical, such as
a gift from the PC. We focus on verbal rewards, which we
denote rv. The delayed reward may or may not materialize
since the PC may not provide a verbal reward or gift. As a
result, our single update to Q(s,a) is always based on one
reward, ri or two rewards, ri and rv.

This technique is different than performing two
complete Sarsa(λ) steps, since the NPC does not perform
an action between the immediate and delayed reward. If a
delayed reward occurs, we perform an update immediately.
If no delayed reward occurs before the next action
selection is triggered, we update without a delayed reward,
so our algorithm is actually a Sarsa/Sarrsa algorithm. The
verbal reward function should take into account how much
the NPC currently cares about the PC. If the NPC does not
care about the PC, the verbal reward is discounted.

GESM Action Selection Policy
We need an action selection policy to select actions based
on the learned values of Q(s,a) for the current state and all
available actions. Several action selection policies are
widely used. The simplest selection policy is a greedy
policy, where the NPC selects the action with the highest
Q(s,a) for the current state. This policy is good in a
stationary environment when the optimal policy, π*, has
already been learned (Sutton and Barto 1998). A simple
alternative is the ε-greedy policy, which selects the action
with highest Q(s,a) with probability 1- ε (exploitation) and
selects a random action with a probability ε (exploration).
Another alternative policy is the Softmax Policy ‎(Sutton
and Barto 1998), where the Q(s,a) values for all actions are

70

transformed into probabilities. Actions with higher Q(s,a)
values have greater probability of being selected.

Each policy has advantages and disadvantages. After
gathering empirical results with both the ε -greedy and
Softmax policies, we decided to combine them into a new
policy we call Greedy Epsilon Softmax or GESM. This
policy selects the action with highest Q(s,a) value with
probability of 1-ε, and uses Softmax with probability of ε,
excluding the best action during exploration. We avoid the
random exploration of the normal ε -greedy algorithm,
since in this application the second best action is usually
more appropriate than the rest of the actions. We used a
Gibbs distribution for the Softmax part of the policy
(where n is the number of distinct actions, and τ is the
temperature parameter controlling the scale of differences
in selection probabilities):

e
Qt (a)

τ

e
Qt (b)

τ
b=1

n∑

NWN Implementation

One of the responsibilities of companions in story-based
games may be to detect and disarm traps. Companions in
NWN are scripted manually. They wait for the PC’s
command instead of initiating behaviors, and they always
obey. If the PC tells an NPC to disarm a trap, the NPC
always attempts to disarm it regardless of damage. Such
NPCs do not look intelligent in the player’s eyes. In
Dragon Age, a companion can disarm a trap when the
player takes on the persona of the companion. In this case,
the companion is also forced to disarm the trap. However,
an NPC using our learning system will develop preferences
for actions after a short period of time and will decide what
to do about a trap after detecting it and how to respond to
the PC’s orders about detected traps.

Figure 1 shows the NWN area we built for our traps
experiments. The PC and the companion NPC go counter
clockwise around the castle starting from the point
designated by Label 3. As they pass the resetting trigger
for the first time, they start the experiment and the traps get
reset each time they walk over the resetting trigger.

Our learning task for traps is non-episodic, so the NPC
can continue to learn as long as there are traps available. A
learning step consists of deciding the next action for a trap
that has been detected or deciding whether to obey an order
from the PC, then performing the selected action and
receiving the rewards. The sets of actions available to the
companion NPC after detecting a trap or receiving an order
from the PC are shown in Table 1.

We model the difficulty-based traps in NWN by three
trap categories, easy, medium, and hard. These are not
absolute difficulty categories, but instead are relative to the
NPCs skill level at some point in the game. In other words,
late in the game a trap that we label easy relative to NPC

skill could actually be more difficult than a trap we label
hard near the start of the game, when the NPC skill level is
low. Disarming or marking a trap can result in success,
failure, or critical failure. Failure causes no damage and the
trap remains active. Critical failure damages the NPC and
the trap remains armed. The amount of damage is a range
of percentages of maximum hit points (HP) that depends
on the trap category. Table 2 shows the properties of
actions, their critical failure damage and their
success/fail/critical fail probabilities relative to trap
difficulty that we used to model traps.

Figure 1 - Traps Area. Label 1 is the resetting trigger, Label 2 is

the traps. Label 3 denotes the starting point of PC and NPC.

Decision Making

Trigger
Trap Detection PC orders to Disarm PC orders to Mark

Nothing Disarm Mark
Disarm Refuse Refuse
Mark

Possible NPC
Actions

Inform
N/A

Table 1- Available NPC actions and decision-making triggers

Trap Type
Action

Outcome
Disarm Mark Inform Nothing Refuse

Success 80% 100% 100% 100% 100%
Fail 10% 0% 0% 0% 0%

Easy
5-10%
damage Critical Failure 10% 0% 0% 0% 0%

Success 50% 70% 100% 100% 100%
Fail 10% 10% 0% 0% 0%

Medium
10%-20%
damage Critical Failure 40% 20% 0% 0% 0%

Success 10% 50% 100% 100% 100%
Fail 10% 10% 0% 0% 0%

Hard
20%-30%
damage Critical Failure 80% 40% 0% 0% 0%

Table 2 - Action outcomes relative to trap difficulty

To define the reward function, it is necessary to discuss
an important concept. The NPC’s approval of the PC,
denoted A∈ [0,1], plays an important role in the reward. A

71

changes as the NPC observes the consequences of actions
that are based on PC orders. Dragon Age (BioWare 2010a)
displays such an approval as a value between -100 and
100. Similarly, we display this approval as a value between
0 and 100. Therefore, changes in A, denoted ΔA, are made
in discrete steps with a minimum step size of 1/100. To
mirror the real world, A does not change linearly. If the
NPC currently has a low A, it is harder for the PC to gain
trust and if A is high, the NPC can forgive some mistakes.
This means that changes in A are smaller when A is low
(near 0) or high (near 1) and larger when A is in the middle
(near 0.5). Therefore, we calculate ΔA (the change in A)
using the following parabolic function (A in [0,1]), so that
A changes most rapidly in the middle of its interval (ΔA=
5/100) and most slowly at the ends (ΔA= 1/100):

ΔA = (-16A2 + 16A + 1)/100

Note that the NPC’s approval of the PC (A) may change
for other reasons during the game and affect the NPC’s
willingness to obey trap-related orders.

The immediate reward is parameterized based on the
action and the action outcome. Table 3 shows the
parameters used to create the reward function. The reward
has two positive components, one negative component and
one component whose sign is variable:

Reward = XPR + TRR + IDR + AR

Parameter Formula or Value
XPR +0.2

TRR
A*(Average Trap Damage)*(Revelation Factor RF)

RF = 0 for nothing, 0.3 for inform, 0.8 for mark and 1.0 for
disarm

IDR -(1-A)*(Actual Critical Failure Damage)
AR AF*A
AF 0.35

Table 3 - Required parameters for building the reward
function.

XPR is the reward that represents XP gained by
successfully disarming a trap, so it is zero in other
situations. XPR is constant and determined by the relative
damage a character must usually take to accumulate XP.

TRR represents the reward for revealing the existence of
a trap. It accounts for reduction in future damage from an
armed trap by allowing the PC to avoid it. The total value
of TRR that can be obtained for a single trap is the average
trap damage, discounted by the approval A. However, this
reward can be earned in stages. None of this reward is
earned if the NPC does nothing. If the NPC marks a non-
revealed trap, the reward is 0.8 (revelation factor of
marking) of this total. If the NPC only informs the PC that
a trap exists, the reward is only 0.3 (revelation factor of
informing) of this total, since there is a higher chance that
the PC will get damaged by not knowing the exact location
of the trap. However, if the NPC first informs and then
marks a trap, the reward for informing already accounts for
0.3 of the total so the reward for marking is (0.8 - 0.3) of
the total.

IDR is the negative reward that represents damage taken
by the NPC for a critical failure, while disarming or
marking a trap. IDR is discounted based on the NPC’s
approval of the PC, since the NPC may be willing to take
damage for a well-liked PC.
 AR is the reward that represents positive or negative
verbal feedback from the PC. AR depends both on the
approval, A, and a scaling factor, AF. The scaling factor is
necessary to combine an approval score between 0 and 1
with damage rewards and the XP reward and A is used
since the amount the NPC cares about the PC approval is
dependent on how much the NPC approves of the PC.

The feature vector used for learning contains 5 binary
features that represent the state of the environment: 1) the
NPC’s approval of the PC is higher than 0.5, 2) the damage
to an NPC from a critical failure is greater than 10% of the
NPC’s maximum hit-points, 3) the NPC’s skill rank of
disarming traps is greater than the NPC’s level, 4) the
NPC’s dexterity skill modifier is greater than 3 and 5) a
constant 1 for normalization. We have used linear function
approximation, which means we calculate Q(s,a) as the dot
product of the learned weight vector of an action, ωa

T
(initialized to zero) and the binary feature vector Φs. This
small feature vector seems to capture all of the necessary
information for realistic trap-disarming behavior.
Naturally, the feature vector would have some other
components for other learning activities. However, there
will likely be some shared features such as the NPC’s
approval of the PC.

Simulation

In order to evaluate our learning system we needed to
calculate the Q(s,a) averages over a large number of runs.
It is impossible to shut off the graphics in the game and the
time it takes for the PC to give orders or feedback and the
NPC to respond would make the experiments very time
consuming. Therefore, we created a simulator program that
captures the complexity of traps in story-based games. It
generalizes many of the concepts in NWN, such as traps of
varying difficulty with respect to NPC skill, critical failure
damage, experience point rewards and the problem of
leaving un-disarmed traps that can trigger later. All the
parameters we need to set in the game are available in the
simulator and they work with the game mechanics. The
simulator also enabled us to model different common PCs
by setting parameters. After running the simulator, we can
transfer the learned weight vector to an NPC in NWN and
observe the NPC behaviors that are generated by that
weight vector. Naturally, as the NPC interacts with a PC,
the weights change as the NPC learns in the NWN
environment. This is in contrast to the default rogue
companion in NWN that always obeys the PC.

72

Experiments and Evaluation

We conducted many experiments with a variable number
of traps and variable trap difficulty. We fixed the learning
parameters to α = 0.1, γ =0.95 λ = 0, and the policy
parameters to ε = 0.3 and τ = 0.2. Each graph in this
section is the average of 500 independent learning
experiments, where the learning weights and other
parameters are reset before each experiment.

An NPC starts with zero knowledge of the traps,
knowing only the set of legal actions. We modeled
common PC behaviors using four different PC models. An
independent PC wants the NPC to be independent. This PC
never gives orders to the NPC. The rogue PC wants to
personally disarm all the traps. The selfish PC wants the
NPC to disarm all the traps, no matter what negative
consequences occur for the NPC. The cautious PC cares
about the NPC and tries to understand the level of the
NPC’s rogue skills. This PC would never order the NPC to
disarm a trap if the NPC failed at the easier task of marking
it. For brevity, we present only a representative subset of
results. Other results were as expected and appear in
Sharifi (2010). When the game is shipped, the designers do
not know what the behavior of the PC will be. The player
may play similarly to one of these four models, some
combination of them or in any arbitrary way. The NPC
learns to adapt to whatever style the PC has, even if the PC
changes style during the game. The learning algorithm
does not depend on these models in any way.

Our action selection policy, GESM, selects the highest
action during exploitation and selects one of the other
actions probabilistically based on relative state-action
value during exploration. The relative scores play an
important role in marking NPC preferences and contribute
to the NPC’s more natural behavior. The main obstacle in
using RL in computer games is the speed of adaptation. In
order to understand how well an NPC adapts to the
changes in both the emotional environment and the
physical environment, we need to test the NPC’s responses
to both trap difficulty changes and PC approval changes.

Figure 2 illustrates the speed of adaptation for changing
trap difficulties (the physical environment). Figure 2 shows
results for a cautious PC with high approval (0.8), while
traps change from easy to hard and back to easy every 5
traps. This graph shows that as the NPC becomes aware of
the danger from hard traps, marking becomes top choice
and disarming becomes second choice. The cautious PC is
coaching the NPC by giving verbal approval for success
and disapproval for failure. This verbal approval speeds up
the learning process. We do not expect this kind of cyclic
trap difficulty in the game. However, we constructed this
scenario specifically to validate fast adaptability. Although
trap difficulty does not actually cycle in a game, it is
common to face a range of trap difficulties at any point in
the game.

Figure 2 - Adapting to trap difficulty with a high approval
cautious PC

Figure 3 shows alternating easy/hard traps for a selfish
PC with low approval (0.2). The preferred action is based
solely on the difficulty of the traps. For hard traps, the
learned action preference order is to do nothing, then mark,
then inform and then disarm. The NPC learns that it is best
to do nothing with hard traps, since if the NPC informs the
selfish PC that a trap is present, the NPC will be ordered to
disarm it. For easy traps the order of preferences is: disarm,
then nothing, then mark and finally to inform. The reason
the NPC prefers to disarm rather than mark is that
disarming yields XP while marking does not.

Figure 3 - Adapting to trap difficulty with a low approval selfish

PC

Figure 4 illustrates the NPC responses to PC commands. It
is for the same easy/hard traps, low approval selfish PC
experiment shown in Figure 3. It shows what the NPC
would do in response to being commanded to disarm a
trap. The NPC is quite willing to disarm easy traps to earn
the XP. For hard traps, the NPC learns to refuse.

73

Figure 4 –Command action Adaption to trap difficulty for a low
approval of a selfish PC

Figure 5 shows alternating easy/hard traps for a rogue
PC with low approval. A rogue PC wants the NPC to only
inform about traps so that the PC can disarm/mark all the
traps personally. After 7 traps, the NPC learns to inform
the PC about all traps. Since XP for traps is shared between
both players, no matter who disarms them, the NPC is fine
with allowing the PC to take all the risks. However, it takes
7 traps to convince the NPC, since the first 5 traps are easy
and the low approval means that the NPC does not respect
the PC commands. Once the NPC realizes that there are
some hard traps (traps 6 and 7), the PC is allowed to
disarm/mark all the rest. The results are similar for a high
approval PC, except that it only takes a single trap for the
PC to convince the NPC, due to the high approval.

Figure 5 - Adapting to trap difficulty with a low approval rogue

PC

Figure 6 shows tests with 40 traps with fixed hard
difficulty. We use a cautious PC that starts with a low
approval (0.2) and then switch to high approval (0.8) after
5 traps. We then switch back and forth for every 5 traps.

This simulates changes in approval due to other events
occurring in the game that drive changes in the emotional
state of the NPC. We want to see if the NPC behavior
changes accordingly. Since the traps are hard, the first
choice is to inform the PC. Since the PC is cautious, the
NPC is not commanded to disarm. When the approval is
high, the second choice is to mark the traps to prevent the
PC from being damaged. However, when the approval is
low, the second choice is to do nothing since the NPC does
not care about damage to the PC from an unmarked trap.
Note that our GESM policy is to explore 30% of the time
and in the exploration case, the first choice is never
selected. The second choice (mark or nothing) is then
selected most of the time, since τ = 0.2.

Figure 6 - Adapting to Low and High approval changes of a

cautious PC with hard traps

With easy traps (not shown) the NPC disarms all traps as
first choice since the XP is desirable and there is a very
little chance of damage.

Conclusion

Techniques such as behavior trees (Isla 2005) and rule
based ‎(Spronck et al. 2006) methods have been used in
games. Recently, RL has been used to enable NPCs to
learn behavior strategies for combat scenarios (Cutumisu et
al.) ‎(Zhao and Szafron 2009). However, there have been no
successful attempts to enable companion NPCs to learn
more flexible behaviors that are responsive to changes in
emotional and physical state.

We created a mechanism that enables adaptive
companion NPC behavior. Players have individual goals,
treat their companions differently and have varying
companion expectations in different game situations. Our
experiments show that an NPC using our learning
mechanism can respond differently based on NPC approval
of the PC and the changing environmental circumstances
(trap difficulty).

74

When RL is applied to the behavior of companion
agents, the companion may decide to do things that are not
usually available in hard-coded behaviors. These behaviors
are the ones that make the NPC’s behavior more natural
(“Disarm it yourself”). For example, sometimes the NPC
might decide to remain silent about a detected trap, since
the NPC suspects that the PC will give a disarm order if the
PC is informed about it.

The mechanism that we created is not limited to trap
actions. For example, this mechanism can be used by the
NPC to decide when to pick pockets. The NPC would learn
from experience whether picking pocket is beneficial for
the party or not, by considering the changing environment
such as the PC’s generosity towards the companion NPC,
the type of target, and the evaluated risk of detection.
Companion NPCs using adaptive learning systems exhibit
more realistic behaviors, which can be specifically tuned,
controlled, and limited by game designers.

References

BioWare 2010a. Dragon Age. http://dragonage.bioware.com.

BioWare. 2010b. Neverwinter Nights. 2010b. http://nwn.bioware
.com.

Booth, M. 2009. The AI Systems of Left 4 Dead, AIIDE 2009
Keynote (http://www.valvesoftware.com/publications/2009/ai_
systems_of_l4d_mike_booth.pdf).

Cutumisu, M., Szafron, D., Bowling, M., Sutton, R.S. 2008.
Agent Learning using Action-Dependent Learning Rates in
Computer Role-Playing Games. 4th Annual Artificial Intelligence
and Interactive Digital Entertainment Conference (AIIDE-08),
22-29.

Isla, D. 2005. Handling complexity in the Halo 2 AI. In
Proceedings of Game Developers Conference, San Francisco.

Merrick, K., and Maher, M. 2009. Motivated Reinforcement
Learning. Berlin. Springer-Verlag.

ScriptEase. 2010. http://webdocs.cs.ualberta.ca/~script/.

Sharifi, A. 2010. Generating Adaptive Companion Behaviours
Using Reinforcement Learning In Games. MSc thesis, University
of Alberta, Edmonton, Canada.

Sharma, M., Holmes, M., Santamaria, J.C., Irani, A., Isbell, C.,
Ram, A. 2007. Transfer Learning in Real-Time Strategy Games
Using Hybrid CBR/RL. In International Joint Conference on
Artificial Intelligence, 1041-1046.

Smith, M., Lee-Urban, S., Muñoz-Avila, H. 2007. RETALIATE:
Learning Winning Policies in First-Person Shooter Games. In
Proceedings of the Nineteenth Innovative Applications of
Artificial Intelligence Conference, 1801-1806.

Spronck, P., Ponsen, M., Sprinkhuizen-Kuyper, I., and Postma, E.
2006. Adaptive Game AI with Dynamic Scripting. Machine
Learning 63(3): 217-248.

Spronck, P., Sprinkhuizen-Kuyper, I., and Postma, E. 2003.
Online Adaptation of Computer Game Opponent AI.
Proceedings of the 15th Belgium-Netherlands Conference on AI.
291-298.

Sutton, R.S., and Barto, A.G. eds. 1998. Reinforcement Learning:
An Introduction. Cambridge, Mass.: MIT Press.

Timuri, T., Spronck, P., and van den Herik, J. 2007. Automatic
Rule Ordering for Dynamic Scripting. 3rd Annual Artificial
Intelligence and Interactive Digital Entertainment Conference
(AIIDE-07), 49-54.

Watkins, C.J.C.H. 1989. Learning from Delayed Rewards. PhD
thesis, Cambridge University, Cambridge, England.

Zhao, R., Szafron, D. 2009. Learning Character Behavior Using
Agent Modeling in Games. 5th Annual Artificial Intelligence and
Interactive Digital Entertainment Conference (AIIDE-09), 179-
185.

75

	AIIDE10
	Contents
	Index
	Help
	Terms
	AIIDE 2010

