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Abstract 
Our goal is to enable Non Player Characters (NPC) in 
computer games to exhibit natural behaviors. The quality of 
behaviors affects the game experience especially in story-
based games, which rely on player-NPC interactions. We 
used Reinforcement Learning to enable NPC companions to 
develop preferences for actions. We implemented our RL 
technique in BioWare Corp.’s Neverwinter Nights. Our 
experiments evaluate an NPC companion’s behaviors 
regarding traps. Our method enables NPCs to rapidly learn 
reasonable behaviors and adapt to changes in the game. 

Introduction   

Game players have growing expectations about intelligent 
behavior of agents in story-based games. Non-Player 
Characters (NPC) lead the Player Character (PC) through 
the story. The behaviors of NPCs are usually scripted 
manually, which results in repetitive and artificial looking 
behaviors. Since there are usually many NPCs in story-
based games, the cost of scripting complex behaviors for 
each NPC is not financially viable. Some researchers 
(Spronck et al. 2006) and games companies (Booth 2009) 
have started using learning techniques to generate more 
realistic and complex behaviors for NPCs. Reinforcement 
Learning (RL) is a popular adaptive learning technique. 

In RL there are several mechanisms and algorithms to 
learn policies that identify high-reward behaviors for an 
agent in any given context, by maximizing the expected 
reward. We can use these techniques to learn policies for 
various types of agent behaviors in story-based games to 
derive more natural NPC behaviors. 

We use RL to derive appropriate behaviors for a 
companion NPC that accompanies the PC during the story. 
For illustration, we investigate the actions a companion 
selects immediately after detecting a trap and after 
subsequent verbal communication with the PC. After 
detecting a trap, an NPC can: disarm it, mark its location, 
inform the PC about it, or do nothing. The first two actions 
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may cause physical damage to the NPC and/or PC if the 
action fails critically. The second two actions may cause 
physical damage if the PC subsequently triggers the trap. 
The choice of action should depend on the NPC’s past 
experience regarding traps and on how much the NPC 
cares about the PC. After this initial NPC action, the PC 
may provide verbal feedback on the action such as “Good 
job disarming that trap” or  “It exploded, but good try.” or 
“Marking was a bad idea, disarm it.” Next, the PC may 
also tell the NPC what further action to take on that 
specific trap, such as: “You marked it, now disarm it”, or 
“OK, there is a trap, mark it’s location”. At this point the 
NPC should decide either to do what the PC asks or refuse, 
saying something like “Bad idea” or “Disarm it yourself”.  
The PC can request additional actions on this particular 
trap and the NPC can continue to concur or refuse until the 
trap is disarmed or the PC decides to move on. 

A second example of an NPC decision is whether to pick 
someone’s pocket. This NPC decision depends on various 
parameters such as potential gain, success probability 
based on past experience, and again how much the NPC 
cares about the PC, which in this case would depend on 
whether the PC shares loot from previous NPC pickpocket 
actions. There is a set of actions to choose from and the 
NPC will choose an appropriate action. As in the previous 
example, the PC can both provide optional verbal feedback 
and can entreat the NPC to take a different action. 

We used ScriptEase (2010) and the Sarsa(λ) algorithm 
(Sutton and Barto 1998) to generate learned companion 
behaviors in BioWare Corp.’s Neverwinter Nights (NWN) 
(BioWare 2010b). The NPC learns natural behaviors that 
adapt quickly to changes in the environment. Running 
many experiments in the game takes a long time, since we 
cannot shut off the graphics. Therefore, we wrote a 
simulation program that uses NWN mechanics and 
conducted multiple experiments to evaluate our approach. 

Related Work 

There have been a few attempts to use learning methods 
for NPC behaviors in computer games (e.g., Creatures, and 
Black & White). However, RL has not been popular since 
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the learning times are often too long for the limited roles 
that NPCs play (Spronck et al. 2003). Some hybrid 
methods have been proposed such as a dynamic rule-base 
(Spronck et al. 2006), where a pre-built set of rules is 
maintained for each type of NPC. A subset of the existing 
rule-base is chosen for each NPC and after observing a 
complete set of actions, the value function for choosing a 
new subset of rules is updated. However, this method still 
requires effort to make a logical and ordered rule-base 
(Timuri et al. 2007) and its adaptation is limited once a 
policy has been learned (Cutumisu et al. 2008). Sharma et 
al. (2007) used a hybrid of RL and planning to create high 
level strategic plans in real time strategy games. Smith, et 
al. ‎(2008) used the Q-Learning algorithm to learn high-
level team strategies in first person shooter games. 

Most progress on using RL in games has been on 
learning high-level strategies rather than behaviors for 
individual NPCs. However, Cutumisu et al. (2008) and 
Zhao and Szafron (2009) have shown that individual NPCs 
can learn behaviors using variations of the Sarsa(λ) 
algorithm called ALeRT, and ALeRT-AM. These 
algorithms have dynamic learning rates that support the 
fast changing environments found in video games. 
However, these algorithms were only evaluated for 
combat, where relatively more training episodes are 
available than the situation for most non-combat behaviors. 
In addition, the reward function used in combat is not 
suitable for non-combat situations. Merrick and Maher  
(2009) have additional references to research on character 
learning in games. 

We show that RL can be used to learn non-combat NPC 
behaviors. Our goal is to devise a responsive learning 
system that produces natural behaviors for NPCs, based on 
their own motivations. 

Algorithm 

We use Sarsa(λ), an online single agent RL algorithm 
‎(Sutton and Barto 1998) with function approximation and 
binary features to learn agent behaviors. On each time step, 
the agent performs an action and observes the 
consequences. Sarsa(λ) maintains an approximation of the 
optimal action-value function, Q*(s,a). For each pair of 
states and actions, it represents the value of taking action a 
in state s and is used to select the best action to perform in 
the current state according to a learned policy π. Policy π is 
a mapping of each pair of state-actions (a, s) to the 
probability of performing action a in state s. The 
corresponding action-value function for policy π, Qπ(s,a), 
estimates the expected long-term reward for performing 
action a in state s and following policy π afterwards. In 
Sarsa(λ) we start in state s1, take action a1, and observe 
reward r1 and state s2. We select action a2 according to our 
policy, π, and then update our approximation, Qπ(s,a), 
hence the name Sarsa (state-action-reward-state-action).  

Sarsa(λ) is an on-policy algorithm so it learns from 
experience. Sarsa(λ) uses a temporal-difference updating 
method in which α is the learning rate, γ is a discount 
factor, and λ, the trace-decay, propagates rewards for the 
latest actions to previous actions using the eligibility trace 
matrix, denoted e(s, a). These parameters can be tuned to 
adjust the responsiveness of learning: 

Qt+1(st,at)←Qt(st,at)+α[rt+1+γQt(st+1,at+1)-Qt(st,at)]et(st,at) 

Double Reward System 
In the conventional Sarsa(λ) algorithm, updates to the 
approximation of Q(s,a) are done once for each learning 
step. However, for the companion-learning problem there 
are two potential sources of reward in each step. The first 
reward is the immediate reward, ri, the NPC observes from 
the environment after taking an action. It reflects the 
immediate consequences of the NPC action. If the NPC 
encounters a critical failure while disarming a trap the NPC 
takes damage. If the NPC is successful, experience points 
(XP) are gained. Each consequence must be considered to 
build an effective reward function, which will inform the 
NPC’s preferences for performing future actions. The 
second reward is a delayed reward based on feedback of 
the PC. This feedback could be verbal or physical, such as 
a gift from the PC. We focus on verbal rewards, which we 
denote rv. The delayed reward may or may not materialize 
since the PC may not provide a verbal reward or gift. As a 
result, our single update to Q(s,a) is always based on one 
reward, ri or two rewards, ri and rv. 

This technique is different than performing two 
complete Sarsa(λ) steps, since the NPC does not perform 
an action between the immediate and delayed reward. If a 
delayed reward occurs, we perform an update immediately. 
If no delayed reward occurs before the next action 
selection is triggered, we update without a delayed reward, 
so our algorithm is actually a Sarsa/Sarrsa algorithm. The 
verbal reward function should take into account how much 
the NPC currently cares about the PC. If the NPC does not 
care about the PC, the verbal reward is discounted.  

GESM Action Selection Policy 
We need an action selection policy to select actions based 
on the learned values of Q(s,a) for the current state and all 
available actions. Several action selection policies are 
widely used. The simplest selection policy is a greedy 
policy, where the NPC selects the action with the highest 
Q(s,a) for the current state. This policy is good in a 
stationary environment when the optimal policy, π*, has 
already been learned (Sutton and Barto 1998). A simple 
alternative is the ε-greedy policy, which selects the action 
with highest Q(s,a) with probability 1- ε (exploitation) and 
selects a random action with a probability ε (exploration). 
Another alternative policy is the Softmax Policy ‎(Sutton 
and Barto 1998), where the Q(s,a) values for all actions are 
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transformed into probabilities. Actions with higher Q(s,a) 
values have greater probability of being selected. 

Each policy has advantages and disadvantages. After 
gathering empirical results with both the ε -greedy and 
Softmax policies, we decided to combine them into a new 
policy we call Greedy Epsilon Softmax or GESM. This 
policy selects the action with highest Q(s,a) value with 
probability of 1-ε, and uses Softmax with probability of ε, 
excluding the best action during exploration. We avoid the 
random exploration of the normal ε -greedy algorithm, 
since in this application the second best action is usually 
more appropriate than the rest of the actions. We used a 
Gibbs distribution for the Softmax part of the policy 
(where n is the number of distinct actions, and τ is the 
temperature parameter controlling the scale of differences 
in selection probabilities): 

e
Qt (a)

τ

e
Qt (b)

τ
b=1

n∑
 

NWN Implementation 

One of the responsibilities of companions in story-based 
games may be to detect and disarm traps.  Companions in 
NWN are scripted manually. They wait for the PC’s 
command instead of initiating behaviors, and they always 
obey. If the PC tells an NPC to disarm a trap, the NPC 
always attempts to disarm it regardless of damage. Such 
NPCs do not look intelligent in the player’s eyes. In 
Dragon Age, a companion can disarm a trap when the 
player takes on the persona of the companion. In this case, 
the companion is also forced to disarm the trap. However, 
an NPC using our learning system will develop preferences 
for actions after a short period of time and will decide what 
to do about a trap after detecting it and how to respond to 
the PC’s orders about detected traps.  

Figure 1 shows the NWN area we built for our traps 
experiments. The PC and the companion NPC go counter 
clockwise around the castle starting from the point 
designated by Label 3. As they pass the resetting trigger 
for the first time, they start the experiment and the traps get 
reset each time they walk over the resetting trigger. 

Our learning task for traps is non-episodic, so the NPC 
can continue to learn as long as there are traps available. A 
learning step consists of deciding the next action for a trap 
that has been detected or deciding whether to obey an order 
from the PC, then performing the selected action and 
receiving the rewards. The sets of actions available to the 
companion NPC after detecting a trap or receiving an order 
from the PC are shown in Table 1. 

We model the difficulty-based traps in NWN by three 
trap categories, easy, medium, and hard. These are not 
absolute difficulty categories, but instead are relative to the 
NPCs skill level at some point in the game. In other words, 
late in the game a trap that we label easy relative to NPC 

skill could actually be more difficult than a trap we label 
hard near the start of the game, when the NPC skill level is 
low. Disarming or marking a trap can result in success, 
failure, or critical failure. Failure causes no damage and the 
trap remains active. Critical failure damages the NPC and 
the trap remains armed. The amount of damage is a range 
of percentages of maximum hit points (HP) that depends 
on the trap category. Table 2 shows the properties of 
actions, their critical failure damage and their 
success/fail/critical fail probabilities relative to trap 
difficulty that we used to model traps. 

 
Figure 1 - Traps Area. Label 1 is the resetting trigger, Label 2 is 

the traps. Label 3 denotes the starting point of PC and NPC. 

 
Decision Making 

Trigger 
Trap Detection PC orders to Disarm PC orders to Mark 

Nothing Disarm Mark 
Disarm Refuse Refuse 
Mark 

Possible NPC 
Actions 

Inform 
N/A 

Table 1- Available NPC actions and decision-making triggers 

 

Trap Type 
Action 

Outcome 
Disarm Mark Inform Nothing Refuse 

Success 80% 100% 100% 100% 100% 
Fail 10% 0% 0% 0% 0% 

Easy  
5-10% 
damage Critical Failure 10% 0% 0% 0% 0% 

Success 50% 70% 100% 100% 100% 
Fail 10% 10% 0% 0% 0% 

Medium 
10%-20% 
damage  Critical Failure 40% 20% 0% 0% 0% 

Success 10% 50% 100% 100% 100% 
Fail 10% 10% 0% 0% 0% 

Hard  
20%-30% 
damage Critical Failure 80% 40% 0% 0% 0% 

Table 2 - Action outcomes relative to trap difficulty 

To define the reward function, it is necessary to discuss 
an important concept. The NPC’s approval of the PC, 
denoted A∈ [0,1], plays an important role in the reward. A 
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changes as the NPC observes the consequences of actions 
that are based on PC orders. Dragon Age (BioWare 2010a) 
displays such an approval as a value between -100 and 
100. Similarly, we display this approval as a value between 
0 and 100. Therefore, changes in A, denoted ΔA, are made 
in discrete steps with a minimum step size of 1/100. To 
mirror the real world, A does not change linearly. If the 
NPC currently has a low A, it is harder for the PC to gain 
trust and if A is high, the NPC can forgive some mistakes. 
This means that changes in A are smaller when A is low 
(near 0) or high (near 1) and larger when A is in the middle 
(near 0.5). Therefore, we calculate ΔA (the change in A) 
using the following parabolic function (A in [0,1]), so that 
A changes most rapidly in the middle of its interval (ΔA= 
5/100) and most slowly at the ends (ΔA= 1/100): 

ΔA = (-16A2 + 16A + 1)/100 

Note that the NPC’s approval of the PC (A) may change 
for other reasons during the game and affect the NPC’s 
willingness to obey trap-related orders. 

The immediate reward is parameterized based on the 
action and the action outcome. Table 3 shows the 
parameters used to create the reward function. The reward 
has two positive components, one negative component and 
one component whose sign is variable: 

Reward = XPR + TRR + IDR + AR 
 

Parameter Formula or Value 
XPR +0.2 

TRR 
A*(Average Trap Damage)*(Revelation Factor RF) 

RF = 0 for nothing, 0.3 for inform, 0.8 for mark and 1.0 for 
disarm 

IDR -(1-A)*(Actual Critical Failure Damage) 
AR AF*A 
AF 0.35 

Table 3 - Required parameters for building the reward 
function. 

XPR is the reward that represents XP gained by 
successfully disarming a trap, so it is zero in other 
situations. XPR is constant and determined by the relative 
damage a character must usually take to accumulate XP. 

TRR represents the reward for revealing the existence of 
a trap. It accounts for reduction in future damage from an 
armed trap by allowing the PC to avoid it. The total value 
of TRR that can be obtained for a single trap is the average 
trap damage, discounted by the approval A. However, this 
reward can be earned in stages. None of this reward is 
earned if the NPC does nothing. If the NPC marks a non-
revealed trap, the reward is 0.8 (revelation factor of 
marking) of this total. If the NPC only informs the PC that 
a trap exists, the reward is only 0.3 (revelation factor of 
informing) of this total, since there is a higher chance that 
the PC will get damaged by not knowing the exact location 
of the trap. However, if the NPC first informs and then 
marks a trap, the reward for informing already accounts for 
0.3 of the total so the reward for marking is (0.8 - 0.3) of 
the total.  

IDR is the negative reward that represents damage taken 
by the NPC for a critical failure, while disarming or 
marking a trap. IDR is discounted based on the NPC’s 
approval of the PC, since the NPC may be willing to take 
damage for a well-liked PC. 
 AR is the reward that represents positive or negative 
verbal feedback from the PC. AR depends both on the 
approval, A, and a scaling factor, AF. The scaling factor is 
necessary to combine an approval score between 0 and 1 
with damage rewards and the XP reward and A is used 
since the amount the NPC cares about the PC approval is 
dependent on how much the NPC approves of the PC. 

The feature vector used for learning contains 5 binary 
features that represent the state of the environment: 1) the 
NPC’s approval of the PC is higher than 0.5, 2) the damage 
to an NPC from a critical failure is greater than 10% of the 
NPC’s maximum hit-points, 3) the NPC’s skill rank of 
disarming traps is greater than the NPC’s level, 4) the 
NPC’s dexterity skill modifier is greater than 3 and 5) a 
constant 1 for normalization. We have used linear function 
approximation, which means we calculate Q(s,a) as the dot 
product of the learned weight vector of an action, ωa

T 
(initialized to zero) and the binary feature vector Φs. This 
small feature vector seems to capture all of the necessary 
information for realistic trap-disarming behavior. 
Naturally, the feature vector would have some other 
components for other learning activities. However, there 
will likely be some shared features such as the NPC’s 
approval of the PC. 

Simulation 

In order to evaluate our learning system we needed to 
calculate the Q(s,a) averages over a large number of runs. 
It is impossible to shut off the graphics in the game and the 
time it takes for the PC to give orders or feedback and the 
NPC to respond would make the experiments very time 
consuming. Therefore, we created a simulator program that 
captures the complexity of traps in story-based games. It 
generalizes many of the concepts in NWN, such as traps of 
varying difficulty with respect to NPC skill, critical failure 
damage, experience point rewards and the problem of 
leaving un-disarmed traps that can trigger later. All the 
parameters we need to set in the game are available in the 
simulator and they work with the game mechanics. The 
simulator also enabled us to model different common PCs 
by setting parameters. After running the simulator, we can 
transfer the learned weight vector to an NPC in NWN and 
observe the NPC behaviors that are generated by that 
weight vector. Naturally, as the NPC interacts with a PC, 
the weights change as the NPC learns in the NWN 
environment. This is in contrast to the default rogue 
companion in NWN that always obeys the PC. 
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Experiments and Evaluation 

We conducted many experiments with a variable number 
of traps and variable trap difficulty. We fixed the learning 
parameters to α = 0.1, γ =0.95 λ = 0, and the policy 
parameters to ε = 0.3 and τ = 0.2. Each graph in this 
section is the average of 500 independent learning 
experiments, where the learning weights and other 
parameters are reset before each experiment. 

An NPC starts with zero knowledge of the traps, 
knowing only the set of legal actions. We modeled 
common PC behaviors using four different PC models. An 
independent PC wants the NPC to be independent. This PC 
never gives orders to the NPC. The rogue PC wants to 
personally disarm all the traps. The selfish PC wants the 
NPC to disarm all the traps, no matter what negative 
consequences occur for the NPC. The cautious PC cares 
about the NPC and tries to understand the level of the 
NPC’s rogue skills. This PC would never order the NPC to 
disarm a trap if the NPC failed at the easier task of marking 
it. For brevity, we present only a representative subset of 
results. Other results were as expected and appear in 
Sharifi (2010). When the game is shipped, the designers do 
not know what the behavior of the PC will be. The player 
may play similarly to one of these four models, some 
combination of them or in any arbitrary way. The NPC 
learns to adapt to whatever style the PC has, even if the PC 
changes style during the game. The learning algorithm 
does not depend on these models in any way.  

Our action selection policy, GESM, selects the highest 
action during exploitation and selects one of the other 
actions probabilistically based on relative state-action 
value during exploration. The relative scores play an 
important role in marking NPC preferences and contribute 
to the NPC’s more natural behavior. The main obstacle in 
using RL in computer games is the speed of adaptation. In 
order to understand how well an NPC adapts to the 
changes in both the emotional environment and the 
physical environment, we need to test the NPC’s responses 
to both trap difficulty changes and PC approval changes.  

Figure 2 illustrates the speed of adaptation for changing 
trap difficulties (the physical environment). Figure 2 shows 
results for a cautious PC with high approval (0.8), while 
traps change from easy to hard and back to easy every 5 
traps. This graph shows that as the NPC becomes aware of 
the danger from hard traps, marking becomes top choice 
and disarming becomes second choice. The cautious PC is 
coaching the NPC by giving verbal approval for success 
and disapproval for failure. This verbal approval speeds up 
the learning process. We do not expect this kind of cyclic 
trap difficulty in the game. However, we constructed this 
scenario specifically to validate fast adaptability. Although 
trap difficulty does not actually cycle in a game, it is 
common to face a range of trap difficulties at any point in 
the game. 
 

Figure 2 - Adapting to trap difficulty with a high approval 
cautious PC 

Figure 3 shows alternating easy/hard traps for a selfish 
PC with low approval (0.2).  The preferred action is based 
solely on the difficulty of the traps. For hard traps, the 
learned action preference order is to do nothing, then mark, 
then inform and then disarm. The NPC learns that it is best 
to do nothing with hard traps, since if the NPC informs the 
selfish PC that a trap is present, the NPC will be ordered to 
disarm it. For easy traps the order of preferences is: disarm, 
then nothing, then mark and finally to inform. The reason 
the NPC prefers to disarm rather than mark is that 
disarming yields XP while marking does not. 

 
Figure 3 - Adapting to trap difficulty with a low approval selfish 

PC 

Figure 4 illustrates the NPC responses to PC commands. It 
is for the same easy/hard traps, low approval selfish PC 
experiment shown in Figure 3. It shows what the NPC 
would do in response to being commanded to disarm a 
trap. The NPC is quite willing to disarm easy traps to earn 
the XP. For hard traps, the NPC learns to refuse. 
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Figure 4 –Command action Adaption to trap difficulty for a low 
approval of a selfish PC 

Figure 5 shows alternating easy/hard traps for a rogue 
PC with low approval. A rogue PC wants the NPC to only 
inform about traps so that the PC can disarm/mark all the 
traps personally. After 7 traps, the NPC learns to inform 
the PC about all traps. Since XP for traps is shared between 
both players, no matter who disarms them, the NPC is fine 
with allowing the PC to take all the risks. However, it takes 
7 traps to convince the NPC, since the first 5 traps are easy 
and the low approval means that the NPC does not respect 
the PC commands. Once the NPC realizes that there are 
some hard traps (traps 6 and 7), the PC is allowed to 
disarm/mark all the rest.  The results are similar for a high 
approval PC, except that it only takes a single trap for the 
PC to convince the NPC, due to the high approval. 

 
Figure 5 - Adapting to trap difficulty with a low approval rogue 

PC 

Figure 6 shows tests with 40 traps with fixed hard 
difficulty. We use a cautious PC that starts with a low 
approval (0.2) and then switch to high approval (0.8) after 
5 traps. We then switch back and forth for every 5 traps. 

This simulates changes in approval due to other events 
occurring in the game that drive changes in the emotional 
state of the NPC. We want to see if the NPC behavior 
changes accordingly. Since the traps are hard, the first 
choice is to inform the PC. Since the PC is cautious, the 
NPC is not commanded to disarm. When the approval is 
high, the second choice is to mark the traps to prevent the 
PC from being damaged. However, when the approval is 
low, the second choice is to do nothing since the NPC does 
not care about damage to the PC from an unmarked trap. 
Note that our GESM policy is to explore 30% of the time 
and in the exploration case, the first choice is never 
selected. The second choice (mark or nothing) is then 
selected most of the time, since τ = 0.2. 

 
Figure 6 - Adapting to Low and High approval changes of a 

cautious PC with hard traps 

With easy traps (not shown) the NPC disarms all traps as 
first choice since the XP is desirable and there is a very 
little chance of damage. 

Conclusion 

Techniques such as behavior trees (Isla 2005) and rule 
based ‎(Spronck et al. 2006) methods have been used in 
games. Recently, RL has been used to enable NPCs to 
learn behavior strategies for combat scenarios (Cutumisu et 
al.) ‎(Zhao and Szafron 2009). However, there have been no 
successful attempts to enable companion NPCs to learn 
more flexible behaviors that are responsive to changes in 
emotional and physical state. 

We created a mechanism that enables adaptive 
companion NPC behavior. Players have individual goals, 
treat their companions differently and have varying 
companion expectations in different game situations. Our 
experiments show that an NPC using our learning 
mechanism can respond differently based on NPC approval 
of the PC and the changing environmental circumstances 
(trap difficulty). 
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When RL is applied to the behavior of companion 
agents, the companion may decide to do things that are not 
usually available in hard-coded behaviors. These behaviors 
are the ones that make the NPC’s behavior more natural 
(“Disarm it yourself”). For example, sometimes the NPC 
might decide to remain silent about a detected trap, since 
the NPC suspects that the PC will give a disarm order if the 
PC is informed about it.  

The mechanism that we created is not limited to trap 
actions. For example, this mechanism can be used by the 
NPC to decide when to pick pockets. The NPC would learn 
from experience whether picking pocket is beneficial for 
the party or not, by considering the changing environment 
such as the PC’s generosity towards the companion NPC, 
the type of target, and the evaluated risk of detection.  
Companion NPCs using adaptive learning systems exhibit 
more realistic behaviors, which can be specifically tuned, 
controlled, and limited by game designers. 
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