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Abstract

Artificial intelligence is frequently used to control virtual
characters in movies and games. When these characters ap-
pear in crowds, controlling them is called crowd simulation.
In this paper, I suggest that crowd simulation could be ac-
complished by multi-agent reinforcement learning, a method
by which groups of agents can learn to act autonomously in
their environment. I present a case study that explores the
challenges and benefits of this type of approach and encour-
ages the development of learning techniques for AI in enter-
tainment media.

Introduction

A primary role of artificial intelligence (AI) in entertainment
media is to control virtual characters. Some characters are
individuals with unique roles, while others are members of
large crowds of virtual extras. Crowd simulation is the prob-
lem of controlling background groups of virtual agents in a
believable manner. It arises in several entertainment-media
domains, such as computer games and motion pictures.

Rule-based AI has become common in these do-
mains (Johnson and Wiles 2001). In this type of AI, virtual
characters follow scripts: if this happens, do that. A recent
user study suggests that rule-based agents can be too pre-
dictable (Miles and Tashakkori 2010). One potential way
to address this issue is to move towards learning AI, in
which virtual characters adapt their behavior autonomously
through machine learning.

Entertainment media has begun to incorporate learning
AI in interesting ways. Notable examples come primarily
from computer games: genetic algorithms to evolve virtual
organisms, reinforcement learning to train virtual compan-
ions, and neural networks to train virtual drivers (Johnson
and Wiles 2001). However, approaches to crowd simulation
have not yet moved in this direction. The most likely reason
is that crowd simulation is an inherently multi-agent prob-
lem, and is therefore challenging for machine learning.

A range of methods exist for crowd simulation. Parti-
cle modeling is an approach that models crowds as particles
and moves them according to the physics of particle mo-
tion (Heigeas et al. 2003). Strategy-based simulation has
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agents follow behavioral rules, which may be probabilis-
tic (Sung, Gleicher, and Chenney 2004). Cognitive modeling
has agents use planning algorithms to determine the actions
necessary to accomplish their goals (Funge, Tu, and Ter-
zopoulos 1999). There is also an approach that imitates the
behavior of humans as captured on video (Lerner, Chrysan-
thou, and Lischinski 2007). These methods cover a wide
range of sophisticated AI techniques, but they do not involve
agents who learn. To my knowledge, there are currently no
crowd-simulation approaches that do.

In a learning approach, a crowd of virtual characters
would experiment within their environment. Each character
would adapt its behavior in response to rewards it receives
from the environment. Over time, each character would de-
velop behaviors that consistently earn high rewards. This
approach is an example of reinforcement learning (RL).

Single-agent RL is a well-studied method (Sutton and
Barto 1998). However, crowd simulation is an inherently
multi-agent problem, requiring multi-agent RL (Busoniu,
Babuska, and Schutter 2008). Compared to single-agent RL,
multi-agent RL poses some additional challenges (Stone and
Veloso 2000). To explore these challenges, I present a small
case study that applies multi-agent RL to a crowd-simulation
problem.

The School Domain

Since this case study requires a simple crowd-simulation do-
main, I have developed one that I will refer to as the School
domain. It represents an environment with classrooms and
hallways, and it contains agents who simulate the movement
of students through hallways between classes. The desired
behavior for agents in this domain is a believable mix of
socialization, in which students group together in hallways,
and goal-oriented traffic, in which students move towards
classrooms.

Figures 1 and 2 show instances of the School domain with
six classrooms and one hallway. Agents are represented by
colored circles, and they occupy segments of the hallway.
Classrooms on either side of the hallway are outlined in
black and have doors indicated by gaps.

The domain operates in episodes. At the beginning of an
episode, agents are placed in random, unique hallway seg-
ments and are assigned random goal classrooms. At each
step of the episode, each agent observes its environment and
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Figure 1: Agents operating in the School domain. In this
screen shot, most agents are socializing in the hallway, and
there are 20 time steps remaining in the episode.

chooses an action to perform. The episode ends after a fixed
number of steps. Figure 1 illustrates a good mid-episode
configuration and Figure 2 illustrates a good final one.

Agents need to observe their environment at each time
step. How much they observe is an important aspect of the
domain design. I kept the observations as simple as I could
while still providing information that seems necessary for
choosing actions. At each time step, each agent observes the
following features of its environment:

• The time left in an episode.
• The distance to its goal classroom.
• The distance to the closest other agent.

Agents need to choose an action at each time step. The
set of available actions is another important aspect of the
domain design. Again, I kept them simple while still allow-
ing for the desired behavior. At each time step, each agent
can choose from the following actions:

• Stay in the current segment.
• Move one segment towards the goal classroom.
• Move one segment towards the closest other agent.

There are two additional design details that seemed ap-
propriate in this domain, and that I will mention here for
completeness. First, if an agent enters its goal classroom, it
remains there regardless of its action choices throughout the
rest of the episode. This means that goal states are absorb-
ing states, which is a common design decision. Second, if
the agent is not in the hallway or is alone in the hallway, the
distance to the closest other agent is not well defined. To fix
this problem, I define the distance in these cases to be the
maximum value in its range.

Note that while this is a simple domain, it is not with-
out potential practical applications. It was inspired by a
virtual-reality project to train disabled students to navigate

Figure 2: Agents operating in the School domain. In this
screen shot, the episode has ended and most agents are in
their classrooms, except for one tardy student.

electronic wheelchairs through school hallways (Sonar et al.
2005). Adding virtual students as believable obstacles in the
environment would be a crowd simulation problem similar
to those found in entertainment media.

Reinforcement Learning

RL is a method by which an agent can learn to act au-
tonomously in its environment. RL algorithms typically
perform online learning; agents incrementally update their
knowledge as they collect information by trial-and-error.
The main challenge in this type of learning is to correctly as-
sociate actions with their effects, even though some effects
are typically delayed.

Learning with RL often takes place in episodes. At each
step of an episode, an agent observes the state of its environ-
ment and chooses an action to perform. It then observes the
resulting state and receives a reward for its action, and uses
this information to update its method of choosing actions,
which is called a policy. The agent’s goal is to learn a policy
that maximizes its total episode reward. Figure 3 illustrates
this general RL procedure.

One effective type of RL is Q-learning (Sutton and Barto
1998). In a Q-learning algorithm, an agent’s policy is to
take the action that has the highest Q-value in the current
state. Learning therefore reduces to assigning a Q-value to
each state-action pair. A Q-value Q(s, a) estimates the to-
tal episode reward achievable by taking action a in state s
and continuing to follow the policy thereafter. Typically Q-
values begin at zero, and are adjusted after each step:

Q(s, a) ←− r + maxa
′Q(s′, a′) (1)

where r and s′ are the reward and subsequent state after
taking action a in state s, and a′ ranges over all the actions.
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Figure 3: An RL agent observes the initial state of its en-
vironment, chooses an action to perform, observes the new
state, and uses this information to adjust its policy. Then it
chooses another action, and this cycle continues.

Thus the current estimate of a Q-value on the right is used
to produce a better estimate on the left, and over time all the
Q-values become more accurate.

Under certain conditions, the Q-values are guaranteed to
converge to their correct values (Sutton and Barto 1998).
One condition is that the environment should not change
while the agent is learning. Another is that the agent, if per-
mitted to learn infinitely, would update the Q-value of every
possible state-action pair infinitely often. The latter is typi-
cally achieved using ε-greedy exploration: with probability
ε ∈ (0, 1), an agent chooses a random action instead of the
one with the highest Q-value, thus ensuring that every state-
action pair has a nonzero probability of occurring.

For this case study, I made two changes to the Q-value
update in Equation 1. The first change adjusts it to a popu-
lar variant of Q-learning called SARSA, which takes explo-
ration steps into account when updating Q-values (Sutton
and Barto 1998). In the SARSA Q-value update, the max-
imization term in Equation 1 is replaced by the Q-value of
the specific action a′ that the agent plans to take in state s′:

Q(s, a) ←− r + Q(s′, a′) (2)

The second change is to introduce a learning rate that
controls how quickly Q-values change: alpha ∈ (0, 1]. This
new parameter makes the new Q-value into a weighted av-
erage between the old estimate and the new one, producing
more cautious learning. Using an α < 1 is necessary for
domains in which the same action may not always have the
same effect (Sutton and Barto 1998), which is the case here
because there are multiple independent agents. This change
turns Equation 2 into the update equation that my RL agents
use:

Q(s, a) ←− (1 − α)Q(s, a) + α(r + Q(s′, a′)) (3)

Multi-Agent RL in the School Domain

This section describes how I apply Equation 3 in the School
domain. Agents have three observations and three action
choices, as described previously. Each possible setting of

the three observations corresponds to a state s in the RL al-
gorithm, and each action choice corresponds to an action a.

The reward r, however, poses a challenge in this domain.
Designing the reward function is a key problem in any RL
domain; since rewards are the primary force driving agent
behavior, it is important to reward the desired behavior. In
the School domain, the desired behavior characteristic is be-
lievability. How can one measure believability in order to
reward it? One possibility would be to bring a human into
the loop to provide feedback. That approach would be inter-
esting, but it also seems work-intensive and inconvenient.

Instead, I designed the agents in the School domain to
construct their own rewards according to internal motiva-
tions. Agents have two motivations: to socialize with other
agents, and to reach their goal classroom by the end of the
episode. They construct rewards for themselves based on
whether these events occur. An agent may give itself a goal
reward once during an episode, and it may give itself a so-
cialization reward at any time step. Note that it would be
possible to create agents with different motivations simply
by specifying different intrinsic rewards.

Another challenge in applying the RL algorithm to the
School domain involves the number of possible states s.
Suppose the length of an episode is 25 and the maximum dis-
tance across the domain is 20, as in Figures 1 and 2. Then
the number of possible states is 25 × 20 × 20 = 10, 000.
Since an agent must visit many states many times to learn
accurate Q-values, this state space is unpleasantly large, es-
pecially for such a small domain.

One way of reducing the size of a state space is to use
tile coding (Sutton and Barto 1998) to divide observations
into intervals. For example, instead of observing the exact
time left, an agent could observe that the time is in interval 1
(between 1 and 5 steps left), interval 2 (between 6 and 10
steps left), and so on. Interval 0 must represent exactly 0,
since precision there is necessary for reward calculations.
If all the features of the environment are tiled this way, the
number of possible states becomes 6 × 5 × 5 = 150. The
lower precision introduced by tiling may slightly decrease
the maximum possible reward, but it will allow learning to
progress much more quickly.

A final challenge in the School domain is the application
of the single-agent RL algorithm to a multi-agent environ-
ment. One straightforward approach is simply to have each
agent execute this algorithm independently. However, recall
that one of the convergence conditions for Q-learning is that
the environment should not change while the agent is learn-
ing. Having multiple agents learn in the same environment
violates this condition, because changes in each agent’s be-
havior produce changes in the environment for all the other
agents.

Violations like this are surprisingly common in successful
RL applications. In particular, independent multi-agent Q-
learning can sometimes be effective in practice even though
theoretical guarantees are lost (Tesauro and Kephart 2002).
There is no guarantee that this will be the case here, but it
seems worthwhile to try the straightforward approach first,
and I do so in this case study.
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Experimental Results

This section presents results of experiments in the School
domain using the hallway layout of Figures 1 and 2. I set the
episode length to 25, which is slightly more than the maxi-
mum distance agents might need to travel to their goal. For
all agents, I set the goal reward to 30 and the socialization
reward per time step to 1, so that reaching the goal could
always provide slightly more reward in an episode than con-
stant socializing.

Learning Agents

RL results are typically presented as learning curves, which
plot the average episode reward against the number of train-
ing episodes. To generate these curves, I had the RL agents
learn for 10 episodes at a time, and then perform 100 non-
learning episodes to estimate their average episode reward
at that point. I repeated these stages until the agents had
learned for a total of 1000 episodes.

I conducted experiments with 1, 2, 3, 5, and 10 agents.
Since certain parameter settings can be crucial to the speed
and success of RL algorithms, I tried a range of learn-
ing rates α and exploration rates ε. The α settings were
0.01, 0.05, 0.1, and 0.2 and theε settings were 0.1, 0.2, 0.3,
and 0.4. These parameters are often set to decay over time,
but for simplicity, I did not do so here.

Since one RL learning curve can vary significantly from
another even with the same parameters, I generated and av-
eraged together 10 curves for each set of parameters. This
produced a total of 800 learning curves, which took approx-
imately 20 minutes to generate on a single processor.

With only one agent, the challenges of multi-agent RL
were absent. At all parameter settings, this agent quickly
maximized its rewards. The more interesting cases were
those with 2, 3, 5, or 10 agents. Learning progressed more
slowly with more agents, but at their best parameter set-
tings, they all achieved consistently high rewards within
1000 episodes of training.

The α and ε parameters had significant effects on both
the speed of learning and the rewards achieved by the fi-
nal policy. The best parameter setting was consistently
α = 0.1, ε = 0.4. Figures 4 and 5 show the effects of
varying them in the 10-agent experiments; these results are
representative of the 2, 3, and 5-agent experiments as well.

In this domain, of course, the qualitative appearance of
the agents is more important than their quantitative rewards.
However, I found that the quantitative performance of an
agent was somewhat indicative of its believability. Agents
receiving low rewards (below 30) did so because they often
did not reach their goal classrooms. Agents receiving high
rewards (above 30) did so because they usually did reach
their goal classrooms and also socialized on the way.

Agents with high-reward policies typically spent the be-
ginning of an episode socializing with other agents nearby,
and moved to their goal classrooms as the episode came to
an end, as in Figure 2. In fact, this figure contains actual
screenshots of RL agents using a high-reward policy.

Agents with low-reward policies tended to have two un-
desirable characteristics. First, they often ignored their goal

Figure 4: These learning curves show how the average
episode reward earned by 10 agents increases as they train.
Each curve represents the average of 10 experiments using a
learning rate α = 0.1 and an exploration rate ε as shown.

Figure 5: These learning curves show how the average
episode reward earned by 10 agents increases as they train.
Each curve represents the average of 10 experiments using
an exploration rate ε = 0.4 and a learning rate α as shown.

classrooms in favor of the more immediate rewards of so-
cializing. Second, they tended to oscillate between two ad-
jacent hallway segments, as if comically indecisive about
where to go.

Comparison with Rule-Based Agents

These results show that multi-agent reinforcement learning
is capable of producing reasonable crowd simulation in the
School domain. But how does this approach compare to a
non-learning one? To address that question, I also developed
agents who follow rules to choose their actions. Based on
the behavior of the RL agents, believable behavior in this
domain can be described by two simple rules:

1. If the time left is less than or equal to the goal distance,
move towards the goal.

2. Otherwise, move towards the closest agent.
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Rule-based agents make the same observations that RL
agents do, choose from the same actions, and give them-
selves the same rewards (though the rewards do not af-
fect their behavior). They exhibit behavior similar to the
RL agents; in fact, they earn higher rewards. After 1000
episodes of training with α = 0.1 and ε = 0.4, the ten RL
agents earn an average reward of 38 per episode. Ten agents
following the rules above earn an average reward of 46 per
episode.

The reason for this difference is that rule-based agents al-
ways reach their goal. RL agents occasionally fail to do so,
as in Figure 2. When they do fail, it is typically a near miss:
one or two agents are late by one or two time steps. In these
cases, the late agents have not learned an optimal policy be-
cause of the chaotic impact of the multi-agent environment.

Recall, however, that qualitative appearance matters more
in this domain than quantitative rewards. The real question
is: do the higher rewards of rule-based agents produce more
believable behavior?

Believable behavior should achieve high rewards, but it
should not necessarily be optimal. Real students do not al-
ways make it to class on time, as the rule-based agents do.
After observing these agents for a while, one begins to see
their mechanical, predictable nature. The RL agents, on the
other hand, are more lifelike in their slight and systematic
sub-optimality. Rule-based agents could be given this qual-
ity by putting some design effort into creating probabilistic
rules, but RL agents acquire it naturally.

Believable behavior is also diverse. Some students are
more social while others are more conscientious; some tend
to be late more than others. Again, the RL agents capture
this quality without any explicit design, because each agent
learns a different policy. They do so despite having the same
reward structure, because they influence each others’ learn-
ing processes. After observing the same 10 agents for a
while, one begins to recognize certain agents by their behav-
ior, almost as if they have personalities. Rule-based agents
would need different sets of rules to have this quality.

I discovered another difference between the approaches
by accident. When I first evaluated the rule-based agents,
they did not behave as expected; they alternately moved to-
gether and apart. The reason for this behavior was a bug that
caused more than two agents in the same location to over-
look each other as they searched for nearby agents. The RL
agents learned to perform effectively despite the bug, by ac-
cepting it as part of their environment and learning around
it. The rule-based agents did not have this flexibility.

Challenges

This case study highlights several challenges in applying
multi-agent RL to crowd simulation. It also suggests addi-
tional challenges that might appear only in a more complex
domain. This section explores both types and suggests ways
to address them.

Making Design Decisions

Any control problem contains classic design challenges:
how should one choose the state description and actions for

the agents? Since these decisions are also necessary for rule-
based agents, they may not be an additional barrier to the
development of learning agents. In fact, designing these el-
ements with rule-based agents in mind is likely to be a suc-
cessful strategy.

However, there are additional design decisions that are
particular to learning agents: choosing a learning algorithm
and setting its parameters. Even for single-agent RL there
are many algorithms to choose from. While standard imple-
mentations of many machine-learning algorithms are avail-
able, I am not aware of any comparable RL packages. Fur-
thermore, parameter settings can have a significant impact
on agent performance. This may be considered a challenge
for the RL community, where theoretical work in classic do-
mains is predominant; we should also address practical de-
sign issues in realistic domains.

Improving Multi-Agent RL

The challenges of multi-agent RL arise even in my small
case study. By learning independently and simultaneously,
some agents do not converge to good policies. They perform
well enough to achieve believability in the School domain
because the task is simple. However, it is easy to imagine the
results becoming unacceptable in a more difficult learning
task.

Here we can turn to existing research, because there
are more sophisticated approaches to multi-agent RL that
could be applied to improve performance. For example,
the WoLF algorithm (Bowling and Veloso 2001) has agents
adapt their learning rate α in response to their performance.
When performing well, they change their policies slowly;
when performing poorly, they allow faster changes to learn
more quickly. A related approach is Multiple-Timescale
Learning (Leslie and Collins 2002), in which some agents
are permanently assigned different learning rates than oth-
ers. This diversity can provide more stability in the overall
learning process. A third option is the AWESOME algo-
rithm (Conitzer and Sandholm 2006), in which agents alter-
nate learning, approximating the single-agent case in which
the environment is stationary.

All of these algorithms can guarantee convergence to op-
timal policies in certain limited types of RL domains, such
as two-player games with Nash equilibria. Those guarantees
may not extend to domains like crowd simulation. However,
approaches like these are still likely to provide improvement
in performance, and in domains where optimality is not the
goal, this could be just what we want.

Scaling Up

My case study involves a relatively small number of agents
in a relatively small environment. An important lesson of
RL research is that techniques that succeed under these con-
ditions are not guaranteed to scale up. In crowd simulation
domains, complexity can increase along three dimensions:
the number of agents, the number of actions available to
them, and the number of states they can be in.

There are existing ways to address scaling challenges
in RL. Tile coding is one that I have used here. State
and action spaces can be further reduced by abstracting
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away details or by putting them into hierarchies (Diet-
terich 2000). An approach that may be particularly ap-
plicable in the multi-agent setting is transfer learning, the
use of knowledge gained while learning one task to fa-
cilitate learning in another task (Taylor and Stone 2009;
Torrey 2009). To reduce the difficulty of training large num-
bers of agents, one could train a smaller group first and then
allow them to adapt to larger crowds.

Managing Predictability

Unpredictable agents can be a source for concern. With
rule-based AI, designers have substantial control over their
agents’ actions. With learning AI, the agents are more au-
tonomous and may act in ways the designers did not expect.
While unpredictability can contribute to believability, it is
reasonable for designers to want an understanding of their
agents.

One way to maintain more control over learning agents
may be to use dynamic scripting, a hybrid method that com-
bines rules and RL (Spronck et al. 2006). Within the pure
RL framework, one way to make policies more interpretable
may be to extract human-readable rules (Torrey 2009).

Whichever approach they use, designers will always need
to ask: are there any conditions under which the agents will
do something terrible? This question applies to rule-based
agents as well as learning agents. Extensive testing of com-
puter games is necessary for this very reason, and it would
still be necessary with learning agents.

Conclusion

In this paper, I suggest that multi-agent reinforcement learn-
ing could be applied to the problem of crowd simulation.
There are many practical challenges involved, but there are
also many potential benefits.

Learning can produce more organic behavior that is less
predictable and more diverse. Furthermore, learning can
provide more resilience to the bugs that are inevitable in any
large software project. The initial design effort for learn-
ing agents is not likely to be less than for rule-based agents.
However, the effort required for future designs may be less,
providing benefits for related projects, or even for a single
project in which development is a moving target.

I believe that it is worthwhile to work towards incorpo-
rating learning techniques into entertainment media. For
both the entertainment industry and the machine-learning
research community, there are benefits to increasing the so-
phistication of AI in entertainment. Having impressive AI
is a major selling point for entertainment media, and the in-
dustry could play a larger role in driving machine-learning
research.
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