
Supporting Dialogue Generation for Story-Based Games
Christopher Kerr, Duane Szafron

Department of Computing Science, University of Alberta
Edmonton, AB, Canada

{kerr, duane}@cs.ualberta.ca

Abstract
 Providing compelling, realistic, immersive game worlds is
one of the major goals in modern game design. The
presence of unique and interesting dialogue for all of the
characters in a game enhances this sense of immersion. In
this paper we present the concept of an “Intentional
Dialogue Line” that supports the efficient generation of
multiple variations of a dialogue, where these variations are
both unique and appropriate to the character who is
speaking them. This paper focuses on how machine learning
can be used to quickly populate the intentional dialogue
lines with existing content.

 Introduction

Imagine that you have just stepped into a tavern in a small
town. You are here because this is where, according to the
locals at least, you are most likely to find a little action.
However, instead of a lively establishment full of patrons
enjoying themselves, what you have found is more akin to
what someone might expect to see in a wax museum. In
place of lively patrons you find stiff unmoving people who
all seem to repeat the same set of two or three phrases. It is
likely that you would find the whole situation quite
unnerving and quickly make your way out of the tavern.
While this may sound as if it is a scene out of a cheap
horror film, it is in fact a scene found all too often in the
majority of story-based video games.
 The idea of immersion has become a hot topic within the
games industry in recent years as designers strive to create
more believable worlds for their games (Hocking 2008).
By populating the game world with characters who behave
in a believable manner, the designers enhance the player’s
ability to suspend disbelief. An increased sense of
immersion allows the player to more fully enjoy the
gaming experience. In addition, the inclusion of realistic
non-player characters (NPCs) in the game world can also
provide designers with an increased number of creative
options. Designers are able to influence the atmosphere of
the game through the ambient behaviors of the NPCs. In
our previous example, if prior to entering the tavern the
game had featured lively realistic characters, then the
behavior of the NPCs within the tavern would seem all the
more unsettling. By ensuring that NPC behavior is

Copyright © 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

appropriate and believable throughout the game, the
designers could use lack of behavior as a plot device.
 Unfortunately, the creation of realistic NPC behavior is
not without its costs. The creation of unique and
appropriate behavior for the multitude of NPCs, especially
secondary NPCs, found in a game is often considered to be
prohibitively time-consuming and expensive. What is
needed is a means of efficiently and effectively creating
realistic character behavior for the NPCs who populate the
game world, reducing the cost of making the game more
immersive. A serious content bottleneck with realistic
behaviors exists that is analagous to the graphics content
bottleneck of ten years ago. To solve the behavior content
bottleneck, we need abstractions that parallel the triangle-
model-texture map abstraction that solved the graphics
bottleneck by representing graphics as data-driven content
rather than procedural algorithms (Hecker 2008) (Rabin et
al. 2009). There are several aspects of the realistic NPC
behavior problem, each requiring a set of abstractions. In
this paper, we tackle one very important component of
immersive behavior – varied and contextually-sensitive
dialogue. We introduce an abstraction, the intentional
dialogue line, to facilitate the efficient creation of
appropriate, interesting dialogue for an arbitrary number of
NPCs.
 Following a brief discussion of some related work, the
remainder of this paper details the specifics of an
intentional dialogue line, as well as some tools to facilitate
this abstraction. We discuss how intentional dialogue lines
are translated into actual dialogue within the game.
Following that, we present a machine learning method for
quickly populating intentional dialogue lines with user
created content and then discuss the results of our machine
learning technique.

Related Work

The existing work on facilitating efficient dialogue
generation falls into two categories. One category focuses
on the development of tools to better represent game
dialogue and tries to simplify the dialogue creation
process. The results of this work can be seen throughout
the games industry with tools like BioWare Corp’s Aurora
Toolset for the game Neverwinter Nights (NWN 2009), or
Bethesda Softworks' Elder Scrolls Construction Set for The
Elder Scrolls IV: Oblivion (Oblivion 2009). This category
also includes ongoing research to improve these kinds of
tools (Siegel and Szafron 2009). While such tools ease the

154

Proceedings of the Fifth Artificial Intelligence for Interactive Digital Entertainment Conference

process of creating dialogue, they do not reduce the
amount of dialogue that must be authored by the designers.
It is analogous to having excellent tools for creating
graphical game objects while lacking the abstractions that
allow the same model to be re-used with different textures.
 The other category of work on game dialogue uses a
variety of natural language processing techniques to
wholly generate game dialogue. Examples of this approach
can be found in Kacmarcik's NPC dialogue generation
(Kacmarcik 2006) and the free form dialogue found in
Façade (Mateas and Stern 2003). While this approach is
perhaps the most exciting, it also faces the greatest
challenges. Much of the dialogue these approaches
generate is simplistic and rigidly structured. Pure
generation of game dialogue wrests too much dialogue
control away from the game designers, who are tasked with
ensuring the game’s entertainment value and integrity.
Additionally, there is a great deal of difficulty in assigning
ratings, such as those of the ESRB, to games in which the
dialogue that is presented to the player is not fully known
prior to game time. Our approach is a hybrid of these two
categories. We propose tools that not only support dialogue
created by game designers, but also help to generate
dialogue based on a designer’s own style and present this
dialogue to the designer for approval before the game
ships.

The Intentional Dialogue Line

Dialogue in a story-based game generally consists of a set
of player character (PC) and NPC lines grouped into
exchanges. At any given point in the dialogue, an NPC will
speak a line, and then the player will choose one of
potentially many responses. This will often be followed by
a series of other exchanges of NPC and PC lines until the
end of the conversation is reached. Such a structure is
clearly visible in the dialogue trees of games like
Neverwinter Nights (NWN 2009) and Mass Effect (Mass
Effect 2009). However, even games such as Oblivion
(Oblivion 2009) that lack tree-based dialogue tend to resort
to exchanges.
 The lowest level element of a dialogue is the dialogue
line. A dialogue line may consist of any statement,
question, or other similar element that the designer wishes
a character to say. Consequently, the set of all potential
dialogue lines is massive. However, not all lines occur with
equal frequency in an average dialogue. If one considers
the purpose or intent of a line, instead of the exact text,
some patterns arise. Perhaps the most obvious examples
are the greeting line and farewell line of most dialogues.
While the exact text will differ, all greeting lines share the
same intent. We propose a system in which any dialogue
can be composed of intentional dialogue lines. These
intentional lines can be converted to actual lines at game
time based on some characteristic, such as the mood of the
character speaking the lines. We are not proposing game
time generation of novel lines, but instead the dynamic
binding of the intentional line to an actual line that shares

its intent and meets the situation’s requirements. This
approach allows NPCs to relate similar information using
different phrasing, helping to eliminate the drone effect
described previously. The PC lines in Oblivion’s (Oblivion
2009) wiki-style dialogue system can be thought of as
“intentional” dialogue lines, though they are not replaced
with an actual dialogue line at game time. Similarly, the
short synopsis lines that the player is presented with in
Mass Effect (Mass Effect 2009) can also be thought of as
the “intentional” lines, though in this case each
“intentional” line has only a single actual dialogue line
associated with it.
 The question is how to create these intentional dialogue
lines, and how to dynamically map the intent to an actual
line during the game. One idea is to have the designer
simply write a dialogue line with the given intent, and then
perform some automatic paraphrasing to morph the line
into a variant with the desired traits. Unfortunately, there
are some major difficulties with this approach. In order for
the NPCs in a game to be believable, they must speak in a
manner that is both fitting to their character and varied
from other characters. Modern paraphrasing techniques are
simply not sophisticated enough to accomplish this task
(Lin and Pantel 2001). While it may be possible to achieve
more desirable results through the use of domain-specific,
rule-based morphing algorithms, it is not clear that doing
so will provide the degree of variation and suitability that
is required.
 How then should one approach the task of creating
intentional dialogue lines? Instead of a system based on
automatic generation of morphed lines, we have created a
system focused on both flexibility and control. Designers
can manually generate the variations to be associated with
an intentional dialogue line or they can use automatic
methods to generate the variations. Regardless of the
method of generating the dialogue lines themselves, we
provide a number of tools to support the automatic,
dynamic replacement of intentional lines with appropriate
actual dialogue lines based on the context in which they are
being displayed (i.e. game state). We feel that this
approach provides the greatest deal of control over the
final result while still greatly reducing the effort required
to create similar, but varied, dialogues.
 An intentional dialogue line is an abstract line with a
specific intent, such as a greeting line or a farewell line.
We then associate a number of actual dialogue lines that
share the intent of this abstract line. For example, three
such lines with the greeting intent are: “Hello”, “What
reason could you possibly have for disturbing me?” and
“Aye, and a fine day to you too laddie.” The benefit of
such an approach is that while there are potentially a very
large number of characters that need to deliver a greeting
line, it is very unlikely that each and every character would
use a different greeting. As such, while initial uses of a
specific intentional dialogue line may require the designer
to create a new variation most times, later uses of the line
should be possible without the need to create any new
content.

155

However, simply having a collection of similar dialogue
lines is not enough to allow us to use an intentional
dialogue line in a game. We also need a means of selecting
which of the actual lines should be selected at game time.
For this we need two things: one is a means of partitioning
the actual lines based on some characteristics, and the other
is a set of rules that allow us to map game state to one of
these partitions and therefore support the selection of one
of the appropriate actual lines in that partition.

Mapping from Game State

How do we decide which actual dialogue line to use in
place of the abstract intentional line at game time? Our
goal here is to ensure that lines spoken by a character at
game time are appropriate, while also providing variation
between similar characters. We must first have a way of
differentiating the actual lines from one another based on
some characteristics of the lines. To accomplish this, we
use a multidimensional grid with one dimension for each
characteristic and three values for that characteristic: low,
medium and high. For example, if there are two
characteristics of interest, sophistication and disposition of
the speaker, we would use a 3x3 grid. Such a grid is shown
in Figure 1.

Figure 1. An intentional Greeting line and a partitioning of its

actual lines on two conceptual axes – sophistication (vertical) and

disposition (horizontal).

 With this set of bins to hold the actual dialogue lines,
there remain a few problems to solve. First, we must
consider how to place the lines within the bins. For now we
will consider a straight-forward, user-driven approach in
which the author of the intentional dialogue line manually
chooses the bin in which an actual line should be placed.

This provides the maximum level of user control, while not
precluding the future addition of automated methods that
are described later in this paper.
 With the bins of our intentional dialogue line populated,
the problem becomes how to select, at game time, the
specific actual line that is used in a given situation. In order
to provide believable characters it is important that the
specific line that appears in their dialogue is appropriate.
Returning to the example of Figure 1, we should consider
various elements of game state that would tell us about the
sophistication and disposition of the character speaking the
line. However, there are many ways in which to go about
deciding on how to map game state to these characteristics.
In the case of disposition one might consider character
attributes of both the speaker and listener. Such attributes
could include charisma, various speech-related skills, racial
differences between characters, and countless other
possibilities limited only by the game engine and the
imagination of the designer. A fixed set of rules for
mapping game state to our bins will not provide the
necessary expressive power.
 In order to provide the necessary flexibility in defining
the relationship between game state and the bins of the
intentional dialogue line, we need a set of dynamic
mappings, where a different dynamic mapping can be
assigned to a different character or type of character. Such
dynamic mappings are able to capture the differences
between characters. This allows us to use a common set of
lines, in the bins, from which each character will select
only the lines that are appropriate. For example, a designer
may assign a “racial difference” mapping to the disposition
axis of a group of townspeople. If the race of the NPC
speaker and PC are the same, the disposition of the NPC
speaker is high. If the race of one is human and the other is
non-human, the disposition of the NPC speaker is medium.
Finally, if the races of both are non-human and different,
the disposition of the NPC speaker is low. This is a
dynamic mapping as it varies between NPC speakers
depending on their race (and varies across PCs in a
multiplayer game or in replays with different PC races).
However, it is only one of a set of dynamic mappings,
since there may be another “occupation” mapping where
those NPCs who receive this mapping have dispositions
based solely on their occupations. The designer selects
different dynamic mappings for different groups of NPCs
based on the story.
 One implementation of these sets of dynamic mappings
is based on dialogue filters (Siegel and Szafron 2009). A
filter is essentially a script attached to a dialogue line that
determines whether the line will be displayed to the player.
However, filters are presented to the designer in a manner
that allows them to create filters without specific
programming knowledge. These dynamic mappings can be
reused in other contexts to support the creation of complex
mappings within seconds. To implement intentional
dialogue lines in Neverwinter Nights (NWN 2009), our
system includes all associated actual dialogue lines in place
of each intentional dialogue line. Each actual dialogue line

156

has a filter attached. At game time the filters then
determine which of the lines is presented to the player.
Changes in PC or NPC characteristics are reflected in the
lines chosen by the filters. However, from the designer's
perspective we are able to hide this complexity, presenting
them with only the set of bins and the filters for
determining how to map game state to each axis. In this
way, we are able to provide the necessary power and
control while maintaining ease of use.

Using Learning to Populate Bins

While filters are a convenient and efficient method to
dynamically map intentional lines to actual lines, we need
an efficient method of populating the intentional line with
its variants. While the manual approach mentioned before
does provide a great deal of control, it also requires a great
deal of effort. When transitioning to our system one would
like to be able to take advantage of existing content.
However, going through dialogue files to select lines with
the desired intent and sort the selected lines into the bins is
time-consuming. While we do not provide an automated
method for identifying the intent of a line, we do present a
machine learning approach to automate the sorting of the
selected lines into bins.
 Consider the 3x3 sophistication/disposition grid in
Figure 1. In order to determine which bin to place a
dialogue line in, we must categorize it based on these two
properties. One approach would be to build a single
classifier that assigns one of nine labels to each line.
However, such an approach lacks scalability, requiring a
unique classifier for each combination of potential axes.
Additionally, the number of outputs of such a classifier
would increase exponentially with the inclusion of
additional axes (3n outputs for n axes). We instead propose
a more modular approach in which each axis is classified
independently. Doing so provides greater extensibility with
regards to the addition of new axes, as well as the ability, if
necessary, to pursue different classification technologies
for different properties. In this paper we describe our
experience with building a classifier to determine the
sophistication of a dialogue line. A similar classifier could
be designed for each characteristic of interest to designers.
 While there are a large number of approaches one could
use when developing a natural language classifier, we used
a support vector machine due to the effectiveness it has
shown in identifying sentiment elsewhere (Annett and
Kondrak 2008). More specifically, we used the support
vector machine algorithm (C-SVM) implemented in the
LIBSVM library (Chang and Lin 2001). We used a linear
basis function, set the cost of constraint violation to 1.0,
and set the stopping threshold to 0.001. Prior to selecting
the parameters, we tried many different settings, but found
that these provided us with the best results.
 In addition to a classifier algorithm, we need to select a
good set of features. We used a feature vector with one slot
for each word in a selected corpus – the bag-of-words
approach. The grammar and word order of a line are

ignored. This approach is desirable because it greatly
reduces the size of the feature space. We used two different
bag-of-words implementations.
 One approach is to use binary values in our feature
vectors. The value of a specific feature is 1 if that word is
present in the line and 0 otherwise. This approach has the
benefit of not requiring any knowledge of the corpus as a
whole, but lacks any information on multiple occurrences
or the importance of a word.
 The second approach is to use TF-IDF (term frequency –
inverse document frequency) (Salton 1991). TF-IDF is a
measure of how frequently a word occurs within a given
line, compared to how many lines within the corpus
contain the word. An increase in the number of
occurrences of a word within a line will cause an increase
in the value of the feature. In contrast, an increase in the
number of lines throughout the corpus that contain a word
will cause a decrease in the value of the feature. In this
way, we are able to represent information about both the
number of occurrences of a word within the line as well as
the overall importance of the word.
 Additionally, we also use a set of features measuring the
average number of words per sentence in a line (a dialogue
line may contain multiple sentences). In order to increase
effectiveness, we use a set of binary features in place of a
single feature with a floating point value. The average
number of words per sentence within a line is calculated,
and then the result is rounded to the nearest integer value
(all values over 10 are rounded down to 10). The features
correspond to these 10 integer values, with a value of 1
being assigned if a line has that average number of words,
and a 0 assigned otherwise.

Constructing a Training Set

A classifier technique requires data to train and a method
of evaluation. However, as one might expect, there is no
available set of game dialogue lines that are pre-labeled for
sophistication. One solution would be to write a collection
of lines ourselves. However, it would be best if the lines
used are representative of the lines found in real games and
this requires the use of professionally written dialogue.
While it is possible to collect a set of unlabeled dialogue
lines directly from games, the tendency for game dialogue
to be stored in proprietary file formats makes automatic
collection of the lines difficult. The time required to collect
the dialogue lines manually through the game, as well as
the time required to have the set of lines labeled by a jury
makes this approach fairly expensive. However, this
approach should also provide the highest quality labels. As
such, this is the best approach if one is only concerned with
the quality of the trained classifier, and not the time
required to produce it.
 Due to the cost of the jury approach, we also propose a
more automated solution. While game dialogue is not easy
to come by, movie dialogue is. The linear nature of a film,
in contrast to a game, means that the dialogue is written in
scripts that can be easily parsed. In addition to being

157

readily available, film dialogue is professionally written
and story-based so it shares many characteristics of game
dialogue. However, even with the task of collecting the
dialogue lines now automated, the time required to label
the collection is still a problem. Therefore, we propose a
semi-automated solution. Dialogue lines from a movie
script come with an additional piece of information,
beyond the text of the dialogue line itself: the name of the
character speaking the line. While the number of individual
dialogue lines within a script can be quite large, the
number of characters in a film is generally relatively small.
By assigning a fixed characteristic label (e.g. low, medium
or high sophistication) to each character, we can propagate
those labels to the lines the characters speak. This allows
us to obtain a labeled set of dialogue lines very quickly.
 Unfortunately this semi-automated approach is not
without potential flaws. While a character may generally
speak at a certain level of a characteristic (e.g.
sophistication or disposition), it is unlikely that the
character will always speak at that level of that
characteristic. Therefore, there is a certain level of
unreliability to the labels that are generated. In addition,
even without the issue of label reliability, there is no
guarantee that movie dialogue is directly transferable to
game dialogue. These concerns must be addressed when
evaluating a classifier based on semi-automatic labeling of
film dialogue.

Evaluation

We evaluated the results obtained from a classifier trained
on a manually labeled (juried) set of training data from
games, as well as a set of training data from movie scripts
labeled using our semi-automated method. For the game
data, we used 5-fold cross-validation, aggregated over 10
trials to account for the randomness in fold selection.
However, for the classifier trained on movie data, simple
5-fold cross-validation does not address the concerns noted
previously. As such, we trained the classifier on the set of
movie lines and then used the manually labeled game data
to evaluate the classifier. Here the aggregating of multiple
trials was unnecessary as there is no random fold
assignment.
 The best results would be obtained by an approach in
which both the precision and recall of the predicted labels
are high. Such a requirement is captured in the F-measure,
which is the harmonic mean of the precision and recall. If
the F-measure for each of the three labels is then combined
to produce a single aggregate F-measure for all of the data,
this quantity then becomes equivalent to the accuracy (due
to the lack of a “no prediction” option). As such, the results
presented here will show the error in the predictions for
each label as well as the overall accuracy of the
predictions.

Manually Labeled Game Dialogue
For our set of manually labeled (juried) game data, we
used a collection of 225 dialogue lines collected from the
first two chapters of the game Neverwinter Nights (NWN
2009). These lines were given to seven individuals with
both game-playing experience and content creation
experience, who labeled the lines as being of low, medium,
or high sophistication. Each individual performed their
labeling independently. We then took the set of lines in
which five or more individuals agreed on the label and
used this as our data set. The size of our labeled set was
181 lines with 50 low, 76 medium, and 55 high
sophistication lines.
 The best results were obtained through the use of the
binary valued bag-of-words classifier with the average
words per sentence feature included. With this classifier
we were able to obtain a mean accuracy of 63.37% with a
standard deviation of 0.75%. The use of TF-IDF in place of
a binary value caused overall results to drop by
approximately 14%. Figure 2 shows the results. The bars
represent the percentage of the lines with the given actual
label to be predicted as low, medium, or high
sophistication (as ordered left to right in each of the
groups). We can see that the majority of mistakes made by
the classifier are by a single category, whereas the number
of misses by two categories is quite low.

Figure 2. Sophistication classifier accuracy of juried game

dialogue lines.

Semi-automated Labeling of Movie Dialogue

For our movie dialogue lines, we chose to use The Lord of
the Rings: The Fellowship of the Ring (LOTR 2002) and
The Princess Bride (TPB 2001). Character labels were
selected by viewing the films and judging the perceived
level of sophistication in each character’s dialogue.
Characters who lacked a consistent manner of speaking
were excluded. The character labels were then propagated

158

to the lines spoken by each character, providing us with a
labeled collection of 1,410 dialogue lines. The evaluation
set used was the same set of 181 juried lines from
Neverwinter Nights (NWN 2009) described previously.
 The best results were obtained through the use of the
TF-IDF valued bag-of-words classifier with the average
words per sentence feature included. These features
provided an overall accuracy of 45%. Use of the binary-
valued classifier caused a drop of 11%. Results for this
classifier are shown in Figure 3 in the same format as those
from the previous experiment. Here we can see that while
the results for medium and high sophistication lines are
similar to those obtained when training on juried data, the
performance of the classifier on low sophistication lines is
quite poor. An inspection of some low sophistication
dialogue lines, from both games and movies, suggests that
low sophistication movie dialogue is of higher
sophistication than the low sophistication dialogue in
games. Many of the low sophistication game dialogue lines
are rather comically low, whereas the film lines are not so
extreme. The film lines are more self-consistent than these
results indicate. The 5-fold cross validation on the film
data produced accuracies of 41% for low, 59% for medium
and 45% for high. However, these values remain too low
and further study is required for this method to be of
practical use.

Figure 3. Sophistication classifier accuracy of film dialogue lines.

Additional Results

In addition to the results presented, we also investigated
some other features and techniques. An average-syllables-
per-word feature was tried; the feature was much like the
average-words-per-sentence feature described previously.
There was little to no increase in accuracy using the
feature, however, and it required a far greater number of
bins than did the average words per sentence feature.

 Some attempts were made at culling the movie data to
remove inaccurate labels. In the first case, 5-fold cross-
validation was performed on the movie data and
incorrectly predicted lines were removed. The remaining
lines were used to train a new, more self-consistent,
classifier. In the second case, a similar approach was taken,
except that when excluding a fold, the remaining four folds
were combined into four classifiers (excluding one fold in
each) and a voting scheme was used to decide whether to
remove a line. Neither method provided a large enough
increase in results to justify being used.
 We also tried the standard practice of excluding a list of
stop words from the word features used. Several stop word
lists of varying size were used, and while some did provide
minimal gains to the accuracy of the movie-dialogue-based
classifier, all of them caused large decreases to the
accuracy of the game-dialogue-based classifier. Again, the
minimal gains were not large enough to warrant the
inclusion of the technique.
 Finally, the use of word pairs as features (as well as
more general n-grams) was also attempted. This approach
did show some promise when used with the game dialogue.
However it drastically increased the size of the feature
space. Due to this, it was not possible to use the features in
the movie-dialogue-based classifier. It is likely that the
witnessed increase was due to the word pairs implicitly
including some grammatical information. However, due to
the inefficiency of the feature, it was not included in the
final classifiers.

Conclusion

We defined an abstraction based on the intentional
dialogue line that allows game designers to manage
multiple variations of a game dialogue. This approach
allows the designer to map an actual dialogue line at game
time, based on desired characteristics of the NPC speaker,
PC and other game context. The designer can use a
different mapping for different NPCs or groups of NPCs or
at different times during the game. We also created a
classifier to label the sophistication of a dialogue line to
allow designers to more rapidly populate intentional
dialogue lines by making use of existing content. While the
juried game dialogue classifier certainly has room for
improvement, the quality of its predictions is high enough
for it to be of practical use. With nearly two-thirds of the
dialogue lines properly sorted within the intentional
dialogue line, the time required to re-sort the lines that
were erroneously labeled will be less than the time it would
take to sort all the lines from scratch. Using film dialogue
to train a classifier was problematic. However, its
relatively low cost indicates that more work should be
done before dismissing it.

159

References

Hecker, C. 2008. Structure vs Style. Invited talk at 2008
Game Developers Conference.
http://chrishecker.com/Structure_vs_Style (accessed 2009).

Rabin, S., Pfeifer, B., Hecker, C., Reynolds, S., Isla, D.
2009. The Photoshop of AI: Debating the Structure vs
Style Decomposition of Game AI at 2009 Game
Developers Conference – AI Summit.
https://www.cmpevents.com/GD09/a.asp?option=C&V=11
&SessID=8279 (accessed 2009).

Hocking, C. 2008. I-fi: Immersive Fidelity in Game
Design. Invited talk at Game Developers Conference.

NWN. 2009. http://nwn.bioware.com

Oblivion. 2009. http://www.elderscrolls.com

Siegel, J. and Szafron, D. 2009. Dialogue Patterns - A
Visual Language For Dynamic Dialogue. Journal of Visual
Languages and Computing. Forthcoming.

Kacmarcik, G.. 2006. Using Natural Language to Manage
NPC Dialog. In Artificial Intelligence and Interactive
Digital Entertainment.

Mateas, M. and Stern, A. 2003. Facade: An Experiment in
Building a Fully-Realized Interactive Drama. In Game
Developers Conference.

Mass Effect. 2009. http://masseffect.bioware.com

Lin, D. and Pantel, P. 2001. Discovery of Inference Rules
for Question Answering. Natural Language Engineering
7(4):343-360.

Annett, M. and Kondrak, G. 2008. A Comparison of
Sentiment Analysis Techniques: Polarizing Movie Blogs.
Proceedings of the Twenty-First Canadian Conference on
Artificial Intelligence, 25-35.

Chang, C. and Lin, C. 2001. LIBSVM : a library for
support vector machines. Software available at
http://www.csie.ntu.edu.tw/~cjlin/libsvm

Salton, G. 1991. Developments in automatic text
retrieval. Science 253:974-979

LOTR. 2002. The Lord of the Rings: The Fellowship of the
Ring. Dir. Peter Jackson. [DVD] New Line Home
Entertainment, Inc.

TPB. 2001. The Princess Bride. Dir. Rob Reiner. [DVD]
MGM Home Entertainment.

160

	AIIDE09
	Contents
	Index
	AAAI Website

