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Abstract 
 Providing compelling, realistic, immersive game worlds is 
one of the major goals in modern game design. The 
presence of unique and interesting dialogue for all of the 
characters in a game enhances this sense of immersion. In 
this paper we present the concept of an “Intentional 
Dialogue Line” that supports the efficient generation of 
multiple variations of a dialogue, where these variations are 
both unique and appropriate to the character who is 
speaking them. This paper focuses on how machine learning 
can be used to quickly populate the intentional dialogue 
lines with existing content. 

 Introduction  

Imagine that you have just stepped into a tavern in a small 
town. You are here because this is where, according to the 
locals at least, you are most likely to find a little action. 
However, instead of a lively establishment full of patrons 
enjoying themselves, what you have found is more akin to 
what someone might expect to see in a wax museum. In 
place of lively patrons you find stiff unmoving people who 
all seem to repeat the same set of two or three phrases. It is 
likely that you would find the whole situation quite 
unnerving and quickly make your way out of the tavern. 
While this may sound as if it is a scene out of a cheap 
horror film, it is in fact a scene found all too often in the 
majority of story-based video games. 
 The idea of immersion has become a hot topic within the 
games industry in recent years as designers strive to create 
more believable worlds for their games (Hocking 2008). 
By populating the game world with characters who behave 
in a believable manner, the designers enhance the player’s 
ability to suspend disbelief. An increased sense of 
immersion allows the player to more fully enjoy the 
gaming experience. In addition, the inclusion of realistic 
non-player characters (NPCs) in the game world can also 
provide designers with an increased number of creative 
options. Designers are able to influence the atmosphere of 
the game through the ambient behaviors of the NPCs. In 
our previous example, if prior to entering the tavern the 
game had featured lively realistic characters, then the 
behavior of the NPCs within the tavern would seem all the 
more unsettling. By ensuring that NPC behavior is 
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appropriate and believable throughout the game, the 
designers could use lack of behavior as a plot device. 
 Unfortunately, the creation of realistic NPC behavior is 
not without its costs. The creation of unique and 
appropriate behavior for the multitude of NPCs, especially 
secondary NPCs, found in a game is often considered to be 
prohibitively time-consuming and expensive. What is 
needed is a means of efficiently and effectively creating 
realistic character behavior for the NPCs who populate the 
game world, reducing the cost of making the game more 
immersive. A serious content bottleneck with realistic 
behaviors exists that is analagous to the graphics content 
bottleneck of ten years ago. To solve the behavior content 
bottleneck, we need abstractions that parallel the triangle-
model-texture map abstraction that solved the graphics 
bottleneck by representing graphics as data-driven content 
rather than procedural algorithms (Hecker 2008) (Rabin et 
al. 2009). There are several aspects of the realistic NPC 
behavior problem, each requiring a set of abstractions. In 
this paper, we tackle one very important component of 
immersive behavior – varied and contextually-sensitive 
dialogue. We introduce an abstraction, the intentional 
dialogue line, to facilitate the efficient creation of 
appropriate, interesting dialogue for an arbitrary number of 
NPCs. 
 Following a brief discussion of some related work, the 
remainder of this paper details the specifics of an 
intentional dialogue line, as well as some tools to facilitate 
this abstraction. We discuss how intentional dialogue lines 
are translated into actual dialogue within the game. 
Following that, we present a machine learning method for 
quickly populating intentional dialogue lines with user 
created content and then discuss the results of our machine 
learning technique. 

Related Work 

The existing work on facilitating efficient dialogue 
generation falls into two categories. One category focuses 
on the development of tools to better represent game 
dialogue and tries to simplify the dialogue creation 
process. The results of this work can be seen throughout 
the games industry with tools like BioWare Corp’s Aurora 
Toolset for the game Neverwinter Nights (NWN 2009), or 
Bethesda Softworks' Elder Scrolls Construction Set for The 
Elder Scrolls IV: Oblivion (Oblivion 2009). This category 
also includes ongoing research to improve these kinds of 
tools (Siegel and Szafron 2009). While such tools ease the 

154

Proceedings of the Fifth Artificial Intelligence for Interactive Digital Entertainment Conference



process of creating dialogue, they do not reduce the 
amount of dialogue that must be authored by the designers. 
It is analogous to having excellent tools for creating 
graphical game objects while lacking the abstractions that 
allow the same model to be re-used with different textures.  
 The other category of work on game dialogue uses a 
variety of natural language processing techniques to 
wholly generate game dialogue. Examples of this approach 
can be found in Kacmarcik's NPC dialogue generation 
(Kacmarcik 2006) and the free form dialogue found in 
Façade (Mateas and Stern 2003). While this approach is 
perhaps the most exciting, it also faces the greatest 
challenges. Much of the dialogue these approaches 
generate is simplistic and rigidly structured. Pure 
generation of game dialogue wrests too much dialogue 
control away from the game designers, who are tasked with 
ensuring the game’s entertainment value and integrity. 
Additionally, there is a great deal of difficulty in assigning 
ratings, such as those of the ESRB, to games in which the 
dialogue that is presented to the player is not fully known 
prior to game time. Our approach is a hybrid of these two 
categories. We propose tools that not only support dialogue 
created by game designers, but also help to generate 
dialogue based on a designer’s own style and present this 
dialogue to the designer for approval before the game 
ships. 

The Intentional Dialogue Line 

Dialogue in a story-based game generally consists of a set 
of player character (PC) and NPC lines grouped into 
exchanges. At any given point in the dialogue, an NPC will 
speak a line, and then the player will choose one of 
potentially many responses. This will often be followed by 
a series of other exchanges of NPC and PC lines until the 
end of the conversation is reached. Such a structure is 
clearly visible in the dialogue trees of games like 
Neverwinter Nights (NWN 2009) and Mass Effect (Mass 
Effect 2009). However, even games such as Oblivion 
(Oblivion 2009) that lack tree-based dialogue tend to resort 
to exchanges. 
 The lowest level element of a dialogue is the dialogue 
line. A dialogue line may consist of any statement, 
question, or other similar element that the designer wishes 
a character to say. Consequently, the set of all potential 
dialogue lines is massive. However, not all lines occur with 
equal frequency in an average dialogue. If one considers 
the purpose or intent of a line, instead of the exact text, 
some patterns arise. Perhaps the most obvious examples 
are the greeting line and farewell line of most dialogues. 
While the exact text will differ, all greeting lines share the 
same intent. We propose a system in which any dialogue 
can be composed of intentional dialogue lines. These 
intentional lines can be converted to actual lines at game 
time based on some characteristic, such as the mood of the 
character speaking the lines. We are not proposing game 
time generation of novel lines, but instead the dynamic 
binding of the intentional line to an actual line that shares 

its intent and meets the situation’s requirements. This 
approach allows NPCs to relate similar information using 
different phrasing, helping to eliminate the drone effect 
described previously. The PC lines in Oblivion’s (Oblivion 
2009) wiki-style dialogue system can be thought of as 
“intentional” dialogue lines, though they are not replaced 
with an actual dialogue line at game time. Similarly, the 
short synopsis lines that the player is presented with in 
Mass Effect (Mass Effect 2009) can also be thought of as 
the “intentional” lines, though in this case each 
“intentional” line has only a single actual dialogue line 
associated with it. 
 The question is how to create these intentional dialogue 
lines, and how to dynamically map the intent to an actual 
line during the game. One idea is to have the designer 
simply write a dialogue line with the given intent, and then 
perform some automatic paraphrasing to morph the line 
into a variant with the desired traits. Unfortunately, there 
are some major difficulties with this approach. In order for 
the NPCs in a game to be believable, they must speak in a 
manner that is both fitting to their character and varied 
from other characters. Modern paraphrasing techniques are 
simply not sophisticated enough to accomplish this task 
(Lin and Pantel 2001). While it may be possible to achieve 
more desirable results through the use of domain-specific, 
rule-based morphing algorithms, it is not clear that doing 
so will provide the degree of variation and suitability that 
is required.  
 How then should one approach the task of creating 
intentional dialogue lines? Instead of a system based on 
automatic generation of morphed lines, we have created a 
system focused on both flexibility and control. Designers 
can manually generate the variations to be associated with 
an intentional dialogue line or they can use automatic 
methods to generate the variations. Regardless of the 
method of generating the dialogue lines themselves, we 
provide a number of tools to support the automatic, 
dynamic replacement of intentional lines with appropriate 
actual dialogue lines based on the context in which they are 
being displayed (i.e. game state). We feel that this 
approach provides the greatest deal of control over the 
final result while still greatly reducing the effort required 
to create similar, but varied, dialogues. 
 An intentional dialogue line is an abstract line with a 
specific intent, such as a greeting line or a farewell line. 
We then associate a number of actual dialogue lines that 
share the intent of this abstract line. For example, three 
such lines with the greeting intent are: “Hello”, “What 
reason could you possibly have for disturbing me?” and 
“Aye, and a fine day to you too laddie.” The benefit of 
such an approach is that while there are potentially a very 
large number of characters that need to deliver a greeting 
line, it is very unlikely that each and every character would 
use a different greeting. As such, while initial uses of a 
specific intentional dialogue line may require the designer 
to create a new variation most times, later uses of the line 
should be possible without the need to create any new 
content. 
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However, simply having a collection of similar dialogue 
lines is not enough to allow us to use an intentional 
dialogue line in a game. We also need a means of selecting 
which of the actual lines should be selected at game time. 
For this we need two things: one is a means of partitioning 
the actual lines based on some characteristics, and the other 
is a set of rules that allow us to map game state to one of 
these partitions and therefore support the selection of one 
of the appropriate actual lines in that partition. 

Mapping from Game State 

How do we decide which actual dialogue line to use in 
place of the abstract intentional line at game time? Our 
goal here is to ensure that lines spoken by a character at 
game time are appropriate, while also providing variation 
between similar characters. We must first have a way of 
differentiating the actual lines from one another based on 
some characteristics of the lines. To accomplish this, we 
use a multidimensional grid with one dimension for each 
characteristic and three values for that characteristic: low, 
medium and high. For example, if there are two 
characteristics of interest, sophistication and disposition of 
the speaker, we would use a 3x3 grid. Such a grid is shown 
in Figure 1. 

 
Figure 1. An intentional Greeting line and a partitioning of its 

actual lines on two conceptual axes – sophistication (vertical) and 

disposition (horizontal). 

 
 With this set of bins to hold the actual dialogue lines, 
there remain a few problems to solve. First, we must 
consider how to place the lines within the bins. For now we 
will consider a straight-forward, user-driven approach in 
which the author of the intentional dialogue line manually 
chooses the bin in which an actual line should be placed. 

This provides the maximum level of user control, while not 
precluding the future addition of automated methods that 
are described later in this paper. 
 With the bins of our intentional dialogue line populated, 
the problem becomes how to select, at game time, the 
specific actual line that is used in a given situation. In order 
to provide believable characters it is important that the 
specific line that appears in their dialogue is appropriate. 
Returning to the example of Figure 1, we should consider 
various elements of game state that would tell us about the 
sophistication and disposition of the character speaking the 
line. However, there are many ways in which to go about 
deciding on how to map game state to these characteristics. 
In the case of disposition one might consider character 
attributes of both the speaker and listener. Such attributes 
could include charisma, various speech-related skills, racial 
differences between characters, and countless other 
possibilities limited only by the game engine and the 
imagination of the designer. A fixed set of rules for 
mapping game state to our bins will not provide the 
necessary expressive power. 
 In order to provide the necessary flexibility in defining 
the relationship between game state and the bins of the 
intentional dialogue line, we need a set of dynamic 
mappings, where a different dynamic mapping can be 
assigned to a different character or type of character. Such 
dynamic mappings are able to capture the differences 
between characters. This allows us to use a common set of 
lines, in the bins, from which each character will select 
only the lines that are appropriate. For example, a designer 
may assign a “racial difference” mapping to the disposition 
axis of a group of townspeople. If the race of the NPC 
speaker and PC are the same, the disposition of the NPC 
speaker is high. If the race of one is human and the other is 
non-human, the disposition of the NPC speaker is medium. 
Finally, if the races of both are non-human and different, 
the disposition of the NPC speaker is low. This is a 
dynamic mapping as it varies between NPC speakers 
depending on their race (and varies across PCs in a 
multiplayer game or in replays with different PC races). 
However, it is only one of a set of dynamic mappings, 
since there may be another “occupation” mapping where 
those NPCs who receive this mapping have dispositions 
based solely on their occupations. The designer selects 
different dynamic mappings for different groups of NPCs 
based on the story. 
 One implementation of these sets of dynamic mappings 
is based on dialogue filters (Siegel and Szafron 2009). A 
filter is essentially a script attached to a dialogue line that 
determines whether the line will be displayed to the player. 
However, filters are presented to the designer in a manner 
that allows them to create filters without specific 
programming knowledge. These dynamic mappings can be 
reused in other contexts to support the creation of complex 
mappings within seconds. To implement intentional 
dialogue lines in Neverwinter Nights (NWN 2009), our 
system includes all associated actual dialogue lines in place 
of each intentional dialogue line. Each actual dialogue line 
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has a filter attached. At game time the filters then 
determine which of the lines is presented to the player. 
Changes in PC or NPC characteristics are reflected in the 
lines chosen by the filters. However, from the designer's 
perspective we are able to hide this complexity, presenting 
them with only the set of bins and the filters for 
determining how to map game state to each axis.  In this 
way, we are able to provide the necessary power and 
control while maintaining ease of use. 

Using Learning to Populate Bins 

While filters are a convenient and efficient method to 
dynamically map intentional lines to actual lines, we need 
an efficient method of populating the intentional line with 
its variants. While the manual approach mentioned before 
does provide a great deal of control, it also requires a great 
deal of effort. When transitioning to our system one would 
like to be able to take advantage of existing content. 
However, going through dialogue files to select lines with 
the desired intent and sort the selected lines into the bins is 
time-consuming. While we do not provide an automated 
method for identifying the intent of a line, we do present a 
machine learning approach to automate the sorting of the 
selected lines into bins. 
 Consider the 3x3 sophistication/disposition grid in 
Figure 1. In order to determine which bin to place a 
dialogue line in, we must categorize it based on these two 
properties. One approach would be to build a single 
classifier that assigns one of nine labels to each line. 
However, such an approach lacks scalability, requiring a 
unique classifier for each combination of potential axes. 
Additionally, the number of outputs of such a classifier 
would increase exponentially with the inclusion of 
additional axes (3n outputs for n axes). We instead propose 
a more modular approach in which each axis is classified 
independently. Doing so provides greater extensibility with 
regards to the addition of new axes, as well as the ability, if 
necessary, to pursue different classification technologies 
for different properties. In this paper we describe our 
experience with building a classifier to determine the 
sophistication of a dialogue line. A similar classifier could 
be designed for each characteristic of interest to designers.  
 While there are a large number of approaches one could 
use when developing a natural language classifier, we used 
a support vector machine due to the effectiveness it has 
shown in identifying sentiment elsewhere (Annett and 
Kondrak 2008). More specifically, we used the support 
vector machine algorithm (C-SVM) implemented in the 
LIBSVM library (Chang and Lin 2001). We used a linear 
basis function, set the cost of constraint violation to 1.0, 
and set the stopping threshold to 0.001. Prior to selecting 
the parameters, we tried many different settings, but found 
that these provided us with the best results. 
 In addition to a classifier algorithm, we need to select a 
good set of features. We used a feature vector with one slot 
for each word in a selected corpus – the bag-of-words 
approach. The grammar and word order of a line are 

ignored. This approach is desirable because it greatly 
reduces the size of the feature space. We used two different 
bag-of-words implementations. 
 One approach is to use binary values in our feature 
vectors. The value of a specific feature is 1 if that word is 
present in the line and 0 otherwise. This approach has the 
benefit of not requiring any knowledge of the corpus as a 
whole, but lacks any information on multiple occurrences 
or the importance of a word. 
 The second approach is to use TF-IDF (term frequency – 
inverse document frequency) (Salton 1991).  TF-IDF is a 
measure of how frequently a word occurs within a given 
line, compared to how many lines within the corpus 
contain the word. An increase in the number of 
occurrences of a word within a line will cause an increase 
in the value of the feature. In contrast, an increase in the 
number of lines throughout the corpus that contain a word 
will cause a decrease in the value of the feature.  In this 
way, we are able to represent information about both the 
number of occurrences of a word within the line as well as 
the overall importance of the word. 
 Additionally, we also use a set of features measuring the 
average number of words per sentence in a line (a dialogue 
line may contain multiple sentences). In order to increase 
effectiveness, we use a set of binary features in place of a 
single feature with a floating point value. The average 
number of words per sentence within a line is calculated, 
and then the result is rounded to the nearest integer value 
(all values over 10 are rounded down to 10). The features 
correspond to these 10 integer values, with a value of 1 
being assigned if a line has that average number of words, 
and a 0 assigned otherwise. 

Constructing a Training Set 

A classifier technique requires data to train and a method 
of evaluation. However, as one might expect, there is no 
available set of game dialogue lines that are pre-labeled for 
sophistication. One solution would be to write a collection 
of lines ourselves. However, it would be best if the lines 
used are representative of the lines found in real games and 
this requires the use of professionally written dialogue. 
While it is possible to collect a set of unlabeled dialogue 
lines directly from games, the tendency for game dialogue 
to be stored in proprietary file formats makes automatic 
collection of the lines difficult. The time required to collect 
the dialogue lines manually through the game, as well as 
the time required to have the set of lines labeled by a jury 
makes this approach fairly expensive. However, this 
approach should also provide the highest quality labels. As 
such, this is the best approach if one is only concerned with 
the quality of the trained classifier, and not the time 
required to produce it. 
 Due to the cost of the jury approach, we also propose a 
more automated solution. While game dialogue is not easy 
to come by, movie dialogue is. The linear nature of a film, 
in contrast to a game, means that the dialogue is written in 
scripts that can be easily parsed. In addition to being 
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readily available, film dialogue is professionally written 
and story-based so it shares many characteristics of game 
dialogue. However, even with the task of collecting the 
dialogue lines now automated, the time required to label 
the collection is still a problem. Therefore, we propose a 
semi-automated solution. Dialogue lines from a movie 
script come with an additional piece of information, 
beyond the text of the dialogue line itself: the name of the 
character speaking the line. While the number of individual 
dialogue lines within a script can be quite large, the 
number of characters in a film is generally relatively small. 
By assigning a fixed characteristic label (e.g. low, medium 
or high sophistication) to each character, we can propagate 
those labels to the lines the characters speak. This allows 
us to obtain a labeled set of dialogue lines very quickly. 
 Unfortunately this semi-automated approach is not 
without potential flaws. While a character may generally 
speak at a certain level of a characteristic (e.g. 
sophistication or disposition), it is unlikely that the 
character will always speak at that level of that 
characteristic. Therefore, there is a certain level of 
unreliability to the labels that are generated. In addition, 
even without the issue of label reliability, there is no 
guarantee that movie dialogue is directly transferable to 
game dialogue. These concerns must be addressed when 
evaluating a classifier based on semi-automatic labeling of 
film dialogue. 

Evaluation 

We evaluated the results obtained from a classifier trained 
on a manually labeled (juried) set of training data from 
games, as well as a set of training data from movie scripts 
labeled using our semi-automated method. For the game 
data, we used 5-fold cross-validation, aggregated over 10 
trials to account for the randomness in fold selection. 
However, for the classifier trained on movie data, simple 
5-fold cross-validation does not address the concerns noted 
previously. As such, we trained the classifier on the set of 
movie lines and then used the manually labeled game data 
to evaluate the classifier. Here the aggregating of multiple 
trials was unnecessary as there is no random fold 
assignment. 
 The best results would be obtained by an approach in 
which both the precision and recall of the predicted labels 
are high. Such a requirement is captured in the F-measure, 
which is the harmonic mean of the precision and recall. If 
the F-measure for each of the three labels is then combined 
to produce a single aggregate F-measure for all of the data, 
this quantity then becomes equivalent to the accuracy (due 
to the lack of a “no prediction” option). As such, the results 
presented here will show the error in the predictions for 
each label as well as the overall accuracy of the 
predictions. 

Manually Labeled Game Dialogue 
For our set of manually labeled (juried) game data, we 
used a collection of 225 dialogue lines collected from the 
first two chapters of the game Neverwinter Nights (NWN 
2009). These lines were given to seven individuals with 
both game-playing experience and content creation 
experience, who labeled the lines as being of low, medium, 
or high sophistication. Each individual performed their 
labeling independently. We then took the set of lines in 
which five or more individuals agreed on the label and 
used this as our data set. The size of our labeled set was 
181 lines with 50 low, 76 medium, and 55 high 
sophistication lines. 
 The best results were obtained through the use of the 
binary valued bag-of-words classifier with the average 
words per sentence feature included. With this classifier 
we were able to obtain a mean accuracy of 63.37% with a 
standard deviation of 0.75%. The use of TF-IDF in place of 
a binary value caused overall results to drop by 
approximately 14%. Figure 2 shows the results. The bars 
represent the percentage of the lines with the given actual 
label to be predicted as low, medium, or high 
sophistication (as ordered left to right in each of the 
groups). We can see that the majority of mistakes made by 
the classifier are by a single category, whereas the number 
of misses by two categories is quite low. 

 
Figure 2. Sophistication classifier accuracy of juried game 

dialogue lines.  

Semi-automated Labeling of Movie Dialogue 

For our movie dialogue lines, we chose to use The Lord of 
the Rings: The Fellowship of the Ring (LOTR 2002) and 
The Princess Bride (TPB 2001). Character labels were 
selected by viewing the films and judging the perceived 
level of sophistication in each character’s dialogue. 
Characters who lacked a consistent manner of speaking 
were excluded. The character labels were then propagated 
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to the lines spoken by each character, providing us with a 
labeled collection of 1,410 dialogue lines. The evaluation 
set used was the same set of 181 juried lines from 
Neverwinter Nights (NWN 2009) described previously. 
 The best results were obtained through the use of the 
TF-IDF valued bag-of-words classifier with the average 
words per sentence feature included. These features 
provided an overall accuracy of 45%. Use of the binary-
valued classifier caused a drop of 11%. Results for this 
classifier are shown in Figure 3 in the same format as those 
from the previous experiment. Here we can see that while 
the results for medium and high sophistication lines are 
similar to those obtained when training on juried data, the 
performance of the classifier on low sophistication lines is 
quite poor. An inspection of some low sophistication 
dialogue lines, from both games and movies, suggests that 
low sophistication movie dialogue is of higher 
sophistication than the low sophistication dialogue in 
games. Many of the low sophistication game dialogue lines 
are rather comically low, whereas the film lines are not so 
extreme. The film lines are more self-consistent than these 
results indicate. The 5-fold cross validation on the film 
data produced accuracies of 41% for low, 59% for medium 
and 45% for high. However, these values remain too low 
and further study is required for this method to be of 
practical use. 

 
Figure 3. Sophistication classifier accuracy of film dialogue lines. 

Additional Results 

In addition to the results presented, we also investigated 
some other features and techniques. An average-syllables-
per-word feature was tried; the feature was much like the 
average-words-per-sentence feature described previously. 
There was little to no increase in accuracy using the 
feature, however, and it required a far greater number of 
bins than did the average words per sentence feature. 

 Some attempts were made at culling the movie data to 
remove inaccurate labels. In the first case, 5-fold cross-
validation was performed on the movie data and 
incorrectly predicted lines were removed. The remaining 
lines were used to train a new, more self-consistent, 
classifier. In the second case, a similar approach was taken, 
except that when excluding a fold, the remaining four folds 
were combined into four classifiers (excluding one fold in 
each) and a voting scheme was used to decide whether to 
remove a line. Neither method provided a large enough 
increase in results to justify being used. 
 We also tried the standard practice of excluding a list of 
stop words from the word features used. Several stop word 
lists of varying size were used, and while some did provide 
minimal gains to the accuracy of the movie-dialogue-based 
classifier, all of them caused large decreases to the 
accuracy of the game-dialogue-based classifier. Again, the 
minimal gains were not large enough to warrant the 
inclusion of the technique. 
 Finally, the use of word pairs as features (as well as 
more general n-grams) was also attempted. This approach 
did show some promise when used with the game dialogue. 
However it drastically increased the size of the feature 
space. Due to this, it was not possible to use the features in 
the movie-dialogue-based classifier. It is likely that the 
witnessed increase was due to the word pairs implicitly 
including some grammatical information. However, due to 
the inefficiency of the feature, it was not included in the 
final classifiers. 

Conclusion 

We defined an abstraction based on the intentional 
dialogue line that allows game designers to manage 
multiple variations of a game dialogue. This approach 
allows the designer to map an actual dialogue line at game 
time, based on desired characteristics of the NPC speaker, 
PC and other game context. The designer can use a 
different mapping for different NPCs or groups of NPCs or 
at different times during the game. We also created a 
classifier to label the sophistication of a dialogue line to 
allow designers to more rapidly populate intentional 
dialogue lines by making use of existing content. While the 
juried game dialogue classifier certainly has room for 
improvement, the quality of its predictions is high enough 
for it to be of practical use. With nearly two-thirds of the 
dialogue lines properly sorted within the intentional 
dialogue line, the time required to re-sort the lines that 
were erroneously labeled will be less than the time it would 
take to sort all the lines from scratch. Using film dialogue 
to train a classifier was problematic. However, its 
relatively low cost indicates that more work should be 
done before dismissing it. 
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