
Bringing Interactive Storytelling to Industry:

Designing a Reactive Narrative Encounter System

Daniel Kline

Crystal Dynamics
1300 Seaport Blvd Suite 100

Redwood City, CA 94063
dankline@sbcglobal.net

The Author

Daniel Kline is a Lead Game Engineer at Crystal Dynamics.
He's been an AI game programmer and designer since 2001,
when he received a BA from Vassar College's Mathematics
program. In that time, Dan has worked with companies across the
games industry, including Activision, Blizzard North, LucasArts,
and Midway. His work spans 9 titles, including Star Wars: Force
Unleashed, Diablo 3, and Call of Duty: Finest Hour. Between his
design and management roles, he's specialized in AI characters,
AI-design collaboration, and drama management.

Introduction

The commercial games industry is struggling to find a
form of narrative for single-player story-based games that
takes advantage of the medium. Current methods are
limited to structured narrative or simulation, both of which
have serious game design constraints. Drama Management
represents a potential new model. This talk will cover the
author's research into bringing interactive storytelling to
single-player story games. Focusing on the design and
production needs of current titles, different groups of pen-
and-paper RPG Game Masters were studied, and their
interactive narrative approach was algorithmically
replicated for video game storytelling on a per-encounter
level. To verify these results, an “Encounter Manager”
pen-and-paper algorithm was tested in place of a human
Game Master, achieving similar storytelling results and
exposing new conclusions. Implementing these techniques
in several video game projects has shown diverse payoffs,
not just in narrative, replayability, and pacing but also in
risk-reduction, art production, open world and linear level
design, and new game genres. However, the uncertainty
and risk of a new model of game production combined
with the lack of a driving need in commercial games has so
far proven a major hurdle for this approach. Looking
forward, similarities with other procedural narrative efforts
are explored, and future steps are proposed.

 Copyright © 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Current Storytelling Methods

Video games have relied on two proven storytelling
methods, structured narrative and simulation. Structured
narratives, frequently called branching, rely on linear pre-
authored scripts, sometimes broken up with limited player
choice. These static tales can achieve strong drama and
characterization, as exemplified in games like Mass Effect
or Metal Gear Solid IV. However, branching sidelines the
player's input into the narrative, which can only be
overcome through large amounts of expensive content.

Simulation games take the reverse approach. They
focus on simulating a world, and give the player maximal
space to find their own stories (Wright 2007). Although
they promote player creativity, simulation games like
Civilization 4 and Mercenaries 2 lack the narrative
characterization, thematic exploration, and reflection seen
in branching games.

Neither of these approaches can effectively combine
player interactivity and story. Open world games in
particular need a narrative that can adapt to a wider variety
of player actions in many locations. A simple example of
this appeared as far back as eight years ago with Grand
Theft Auto III, which spawned different gangs with
different attitudes towards the player depending on the
player's location and path through the story. Broadly put,
there is a growing video game design need for both: to
involve players more in stories alongside deeper and more
meaningful narratives, all without requiring overwhelming
amounts of content.

Games have long tried creative solutions to the problem.
Grand Theft Auto IV, Radical Dreamers, and Fallout 3 all
employ such tremendous amounts of branching content
that they can respond to a variety of player goals using
world exploration. Alternatively, games like Spore or
Nethack place predefined narrative “chunks” of content in
arbitrary sequences to create a unique story. But all of
these techniques are still fundamentally static and
impersonal. There is a search for a reactive narrative
solution.

Proceedings of the Fifth Artificial Intelligence for Interactive Digital Entertainment Conference

113

Seeking New Inspiration

In 2005, lacking video game models, I started looking to
other game media that had already tackled this problem for
inspiration. Pen-and-paper role-playing games ask Game
Masters to improvise, generate player content, and tell
stories on the fly. Despite such games being an original
inspiration for computer RPGs, video games like Oblivion
and Neverwinter Nights have focused on replicating pen-
and-paper gameplay, not the single-player reactive
storytelling experience. By studying these improvisational
techniques in action, I hypothesized that an algorithm
could fill the Game Master's narrative setting role for a
single-player story game, an “encounter sequencer”.

Over years of play, I sequenced and cataloged pen-and-
paper game sessions of five Game Masters. Each story
element was given a letter to represent the part of the story
it was describing. A character might be assigned to “A”, a
location to “B”, a plot to “C”, another character to “D”,
etc. Each element was assigned either a lowercase letter if
it was just a quick non-interactive mention, or a capital
letter if it was a major interactive plot point. Connected
elements that were part of the same scene were underlined.
Elements that were tied to a location were denoted with a
“ ' ”. This generated play sequences such as
“abacdAcefBafAcDe'cE'”, which could go on for many
lines depending on the length of the session, style of game
and Game Master, and speed of play.

Analyzing this data, it quickly became apparent that
while games varied widely, all had similar internal
structure. Different Game Masters and different source
games had different flavors, say split-up story lines or long
drawn out combats, yet many seemed to share common
elements. Patterns emerged. For example, most all
encounters focused around a single big event. Many of
these elements were part of short sequences that could be
pre-determined, say, a 3-part arc. Others would be a single
element from a very long story arc, foreshadowing
background plotlines. The mixture of these elements
appeared semi-random, but post-questioning showed it was
determined by game pace and player goal more than
specific narrative need. The use of these element patterns
fulfilled that need. Pace or tension was clearly the most
significant factor, arcing the game towards a climax.
Different themes were also frequently invoked, such as
loyalty, comedy, or revenge, to better vary and explore the
story. Surprisingly, many of these elements were also
location-independent. In response to events, Game
Masters would subconsciously move major events and
characters around to maintain the game's pace and give the
players the appearance of local agency. This immediate
response to the player's actions created more agency then
an accurate world simulation does. Game Masters would
also unconsciously mix in “setting” elements – elements
that provided local color and character to the world or to a
particular faction or character.

Defining a Storytelling Algorithm

Discovering these patterns led to the creation of an AI
algorithm called the “Encounter Manager” that could
mimic a Game Master. Each game was defined by a
sequence of “encounters”, like scenes in a movie. The
sequences of related encounters, separated by time, were
termed “story threads”. Each story thread represents
independent plot lines in the narrative. Correspondingly,
each story thread contained “story knots”, pre-defined
short discrete setups that would lead to one encounter. I
discovered later these are similar to Façade's “story plots”
and “beats”.

The Encounter Manager began by taking these pre-
authored knots and trying to sequence them together into a
storyline to fit the designer's goals and the player's actions.
For simplicity, each knot corresponded to one encounter.
One story thread at a time would determine the current plot
line and the next pool of knots the Encounter Manager
could choose from.

While regular knots are tied to story threads,
independent “detail” knots were interleaved into the
sequence to represent setting elements that flesh out the
world or foreshadow future plot lines. Other times, these
detail knots represented long-term plot lines in a traditional
narrative intersecting the local encounters. Detail knots
mimicked story elements that don't directly advance any
particular plot, but create a sense of world and character
necessary to keep the story rich. The mix of available
thread knots and detail knots allowed the Encounter
Manager to break up a story thread when reactively
desirable. Stylistically, all of the one-off details tended to
be the easiest to author and some of the most creative,
while thread knots showed the most narrative range,
tending to start small and then grow into important
narrative plot points and big moments.

In the data representation (Figure 1), each thread was
given a narrative theme and each knot was given a pacing
level from 1-10. The thread would contain an average
pace to keep thread selection relevant. The algorithm
would choose a thread based on a currently desired themes
using a weighted pick, taking into account player and
designer input. Then it would pick the next knot from the
chosen thread and available one-off knots and apply it to
an encounter, looking to gradually increase the desired
pace of the game. Once that encounter finished, the game
would update the designer's chosen narrative inputs and the
algorithm would run again. Completed knots could be
flagged by a designer to be available again after a certain
encounter time-frame. Failed knots could be re-queued or
aborted. When a thread finished, the algorithm would drop
the current game pace by a level-designer tuned amount,
automatically creating a narrative pacing curve with peaks
and valleys.

114

This Encounter Manager is reactive because it takes
external input and uses it to create the next step in the
narrative at each point. Players who give the same input
and share the same random seed would see the exact same
story result. The Encounter Manager shares parts of both
the structured and simulated narrative forms, but is distinct
from each. The pieces of each encounter are authored
similar to structured narratives, but these pieces are
sequenced together based on the game state similar to
simulated narratives. This reactive storytelling occupies a
granularity between the two – not so large as to lay out the
entire story, but not so small as to be completely defined
by game actions and systems.

Pen-and-Paper Playtests

Early playtests of the Encounter Manager algorithm

replacing a live Game Master in specially designed pen-
and-paper games led to many iterative improvements. We
found longer threads were usually unnecessary and ran the
risk of blocking the algorithm, so story threads were kept
deliberately short – 3-4 knots. Often a designer would just
come up with a dramatic climax and then work backwards,
choosing one or two setup knots that built to the climax
and then one subtle entry knot that would kick the thread
off. Intriguingly, broken-up long threads did not need to
be explicitly tied together. They could simply be indirectly
grouped by theme and faction, using the pacing arc of the
level to automatically spread them out. Testing showed
different designers could even independently author short
threads with the same theme and characters in mind and
have them work together naturally, each replay of the test
feeling unique. The Encounter Manager made all these
thread knots interweave with the detail knots and appear to
be part of one authored narrative with multiple complex
thematic layers happening simultaneously.

This 3-level layering of long plots from detail knots,
story threads, and local setting detail knots created lots of
depth and kept the story fresh. This meant the overhead of
executing simultaneous story threads wasn't needed to
create complex stories. Additional refinement showed it
was very powerful to combine several detail-style knots
with each story thread, or “one-off knots”. Like thread
knots, these un-sequenced knots would build on the
thread's characters and themes, and were only allowed to
run while that thread was active. One-offs gave the
Encounter Manager supporting material, so as extra
encounters were needed the algorithm could easily
interweave one-offs with the detail knots to build up the
theme and pace simultaneously.

Informal questionnaires from the role-players in the pen-
and-paper playtests showed player satisfaction with the
Encounter algorithm was very high – most of the pen-and-
paper players who tried both approaches said they thought
the sequencing was a successful imitation. In particular,
difficulty balancing and pace management were much
improved over human Game Masters. Surprisingly, no one
noticed the lessened interplay of story elements in one
encounter, or that during the games the algorithm had
several times run out of content and left encounter spaces
empty or generic. In some ways the Encounter Manager
seemed better then a human director – a smoother
experience, more focused. In other ways it was worse -
there was less encounter variety and the model could get
caught without enough content in for the space. But these
limitations actually fit modern video game design well.
Video game play encourages more gameplay repetition
then pen-and-paper. Players will naturally avoid boring or
empty areas and move to more interesting ones.
Furthermore smooth play is known to be a major factor in
player flow and player retention. Overall, the study of
pen-and-paper role-playing encounter sequences for
algorithmic imitation showed promise, and more rigorous
analytic study in this area could prove fruitful. These
results encouraged us that Encounter Management could

115

be a major step towards better stories in single-player
video games, and led to several different in-game
implementations of the concept.

Taking Reactive Storytelling In-Game

In-game testing showed the concept was both flexible
and avoided many of the traditional designer fears about
interactive storytelling. While heavily scripted location-
based encounters were still difficult to author and limiting
for the player, Encounter Management made other
encounters simpler to pull off and achieve more narrative
significance, particularly agent-focused, audio, or player-
reactive events. Furthermore, Encounter Management
created opportunities for new gameplay. Encounter
Management allowed for new types of event triggers such
as time-based and player-performance-based triggers in
addition to the typical location-based triggers. To maintain
game pace an encounter could fire if a player hung out in
one place for too long, or hadn't had a conflict for a while.
Another encounter could fire if the player had been in an
encounter for a certain period of time. This kind of new
gameplay helped break up what is traditionally a trigger-
bound experience, and combined with the playtest content
examples helped convince designers encounters would not
be too difficult to author.

In another example, knots could sometimes require a
particular location or precondition to be selected. If this
knot was next in line, the algorithm would just delay or
abort its thread. Uniquely however, the system could also
attempt to push the player towards a goal location, using
encounters that move the player like chases, escapes,
follows or empty space. These features helped overcome
design concerns that the Encounter Management wouldn't
be able to handle running out of content or encourage
players not to explore. As playtests had shown, empty
space in particular felt like a clue to game players, and
encouraged them to avoid that direction.

Encounter Management also had other benefits. The
Encounter Manager's dynamic spawning and pace tracking
lent itself naturally to dynamic difficulty adjustment.
Each play-through became unique – both tailoring the
game to the player's play style and pace and encouraging
replayability. This also made level backtracking quite
possible – a space would be different every time it was
visited. Interesting backtracking made the world feel much
less canned and more alive and natural, similar to
simulations. This new way of designing and authoring led
multiple times to more creative and exciting approaches to
addressing a traditional linear level space.

Having the Encounter Manager interpret player input in
an otherwise traditional video game was a challenge. The
range of possible inputs varied widely depending on a
particular game's design and the type of encounters used.
The best suited designs have transparent “game-y” player
input into the Manager. Other cases used clever design or
world setting to make player feedback easy to incorporate.
In the worst, and unfortunately common case, the game

only lets the Encounter Manager treat the player's actions
as pass/fail/abort, limiting reactiveness. However, even
then Encounter Management was worthwhile because it
was still more reactive then the obvious alternative model,
branching, retains many of its other gameplay and
workflow benefits, and was easily extensible to designs
more ambitious later in the project, even after content had
been produced.

Player modeling AI is an obvious addition to the
Encounter Manager to help solve this player input
problem. But in commercial game production it still seems
most effective to simply track common player actions and
use design sense to predict what those inputs mean,
followed by playtesting and QA verification to find places
where this breaks down. Debugging tools would are also a
huge help. Recording playthroughs and player inputs
allows the Encounter Manager to easily recreate bugs.
Going a step further, randomized player styles can generate
large numbers of encounter sequences in text or the content
author's tool, rapidly identifying narrative holes, authoring
mistakes, or system bugs. In fact, this is a great unit test
for the Encounter Manager as a whole. Clever state
tracking and player simulation in the unit test can even
support large-scale automated testing.

The in-game implementations of the Encounter Manager
have varied depending on the game's vision and team's
skill set. For example, an open world encounters could be
defined by player state, locale, and input, smoothly
integrating into an already procedural development
pipeline. In linear levels, such as actor/object-based
combat or exploration games, a different approach is
needed, where each space is typically divided up into
rooms or “zones” that define where an encounter can
occur. Upon entering these zones, the Encounter Manager
could pick an encounter and dynamically spawns the actors
and objects, activating any necessary behaviors or scripts.
Special care needs to be taken in the Encounter Manager to
make sure objects are streamed in ahead of time and to
spawn things within memory limits and out of sight. In
one such use case, spawned encounters were left fairly
generic, leaving the general AI and player to make the
scenario interesting. In another use case, each location was
filled with knots specifically authored for that spot, and
streaming was only done between larger areas. This
allowed the zones to be much closer together. While on the
surface this space-driven authoring would seem to fall back
into the content explosion problem, it critically felt
comfortable to designers used to old trigger-script style
systems, while still getting the narrative and workflow
benefits of an established Encounter Manager. Plus, the
design could then manageably encourage the player to
travel through the space many times. Testing showed that,
because some knots can be moved around and players are
used to poor pacing and sequencing, teams could get away
with much less overhead with this approach then initially
feared. There are many other possible implementations
possible depending on the game's event triggering
mechanism, including using time or experience-focused

116

models rather than spacial models.

Unexpected Benefits

Surprisingly, in development encounter construction was
generally faster with Encounter Management. Laying out
an encounter was simpler because it was independent of
what was around it. Encounters meant the game could still
feel locally full during iteration without already having
large amounts of interconnected linear content. And
because encounter creation was not necessarily dependent
on level layout, environment art construction could be
largely separated from in-game events or development
changes. If a room needed to be cut or changed, there
could be no significant re-work – knots would
automatically move and the game could be tested
immediately. Whole layouts could be iterated on with
ease. Encounter Management can thus sharply reduce
level art production times, the largest production hurdle in
most modern games. Game productions could naturally
scope based on how much art is completed, greatly
reducing production risk. This is likely the biggest success
of the Encounter Manager. Not the improved narrative and
player experience but the ability for content-driven game
stories to adapt to the developer's requirements
procedurally. Recent level design work in Far Cry 2
represents this new approach well. Level designers were
still effective at creating world spaces without guarantees
of what events might happen within or around them (Morin
2009).

Once the algorithm is implemented and the game design
adjusted, these development time and risk reductions can
be huge. Combined with the new gameplay opportunities
afforded there is ample reason to employ Encounter
Management techniques in modern video games.
Replayability, dynamic difficulty, player reactiveness,
unpredictability, encounter layering, time and player-based
events, even novelty makes Encounter Management ideal
for single-player story game designs. But this is not to
dismiss the narrative benefits. While in-game playtests
have shown that the basic Encounter algorithm can seem
invisible to players, the player experience is positively
affected. The pacing controls, in particular, give a more
natural ebb and flow to the play. Events move and shift
based on the player's actions. Themes can be
subconsciously communicated to the player, where scripts
and cutscenes were the only solution before. Reactive
difficulty can be measured and tied to pace, and the
player's tracked inputs into the system give an easy hook
for training. Storytelling and game making is, frankly,
simpler.

But players assume this is a linear experience unless the
difference is communicated or demonstrated to the player.
This becomes an exercise in game design – if the vision is
to expose the system then design mechanics and dynamics
need to be created that incorporate the player's deliberate
input into the thread and knot selection structure. Games
that encourage replayability, not surprisingly, have had the

most success with these procedurally created narratives.
This has the nice side effect of both reducing the minimum
game length and encouraging gameplay study – the
repetition of game systems is a play that encourages
learning. This variety also encourages player-to-player
word of mouth, particularly when players can actively
manipulate the storylines or the game design encourages
cross-player story pollination. Regardless, even in games
where Encounter Management is not obvious to the player,
the improved experience can act like a marketing or sales
driver. Left 4 Dead, using a similar sort of system, did this
very cleverly with its marketing for its “AI Director”, with
breakout success.

Comparisons

In the past year, several games have attempted to use
procedural techniques to sequence content. Perhaps the
best example of Encounter Management so far is
Dungeons & Dragons: Tiny Adventures, a Facebook
application developed in 6 weeks that used Encounter
Management to generate little 10-12 step story quests for
the player to undertake, and briefly became one of
Facebook's most popular games. But it is most insightful
to take a step back and compare the Encounter Manager
approach to that taken by another Drama Manager, namely,
Façade. There are differences in approach. For one,
Facade's Interactive Drama pushes towards highly
interactive scenes with lots of player verbs whereas
Encounter Management pushes towards fewer verbs with
longer narrative arcs, Yet both independently developed
approaches share remarkably eerie similarities (Mateas and
Stern, 2005). Both operate on story knots, which have a
local context that can change the meaning of the player's
actions. Façade uses conversation direction much like
encounters use story threads. Each requires a new way of
thinking about game structure. Each arguably has similar
limitations as well as additional freedoms. Both
approaches structure themselves around pace or tension
levels oriented towards a narrative arc, and strive to create
interesting variety in one discrete “chunk” of the game. It
seems there are a variety of chunks other then encounters
or conversation beats – characters themselves, character
traits, quests, level or object generation, even story moods
and themes might be chunked and directed towards a
designer's optimal player experience.

This points to a generic model of goal-directed
procedural content, content that is constructed or
sequenced with a procedurally determined purpose. So far,
such purpose-driven content generating models have been
relatively simple compared to other procedural methods.
Many games remain too linear and tightly scripted to truly
see benefits from managed encounters. Others, such as the
top tier open world games, still rely on managed
encounters to deliver narrative outside linear missions. Yet
when used the incentive to switch appears significant – by
directing even just the sequence of the content, the
experience as a whole achieves a direction that sharpens

117

the moments and builds narrative form within the
gameplay. The Encounter model, in particular, is a
promising step. Working on the encounter level provides a
bridge from the strict structured narratives to the broad
intensive character-driven narratives that Façade
represents. The larger scale of encounters as compared to
Façade’s beats allows Encounter Managers to build on
well developed moment-to-moment gameplay. This
further allows significantly less story content to be
perceived as significantly more meaningful to the storyline.
Encounter Manager narrative content itself can also be less
complex because at this higher scale of narrative the
number of player inputs and game states are much simpler,
and can be constructed in a similar way to traditional video
games. This makes the narrative content of Encounter
Management more authorable. Compared to Far Cry 2,
which tried using even grander yet still tightly controlled
character-driven plots as chunks, Encounter Management
avoids authoring nightmares by instead focusing on
independent pieces of plot that run on abstract
representations of theme, history, and game state (Hocking
2009).

Conclusions

Some have argued that this level of designer directorial
control actually fights player creativity and expression by
limiting the player's options and reducing the player's
ability to predict and manipulate the world (Hecker 2009).
In a sense they are correct - Drama Management systems
doesn't seem to promote those kinds of play and shouldn't
be judged that way. Their focus is different – on stories,
smoother experiences, simpler and more focused
development pipelines, better paces. Yet there is clearly a
market hunger for the stronger stories and directed
experiences procedural narrative brings. One could argue
narrative itself is the dominant market, if movies, books,
and television are considered. Player expression design is
just a parallel track. Ingrained design approaches to
narrative and fear of risk have so far kept Drama
Management out of industry. By addressing these beliefs
head on, and challenging designers with experimental data
and production examples, Drama Management can be
accurately weighed by development teams seeking
narrative solutions.

References

Hecker, C. 2009. “Meaning, Aesthetics, and User
Generated Content”. Game Developers Conference (GDC
'09), San Francisco, CA, USA, March 28-April 1, 2009.

Hocking, C. 2009. “Postmordem: Ubisoft Montreal's Far
Cry 2”. Game Developer Magazine, March 2009.

Mateas, M. and Stern, A. 2003. “Façade: an experiment in
building a fully-realized interactive drama”. Game

Developers Conference (GDC ’03), San Jose, CA, USA,
March 4 – 8, 2003.

Mateas, M. and Stern, A. 2005. “Procedural Authorship: A
Case-Study of the Interactive Drama Façade”. Digital Arts
and Culture (DAC). Copenhagen, Denmark, November,
2005.

Morin, J. 2009. “Player's Expression: The Level Design
Structure Behind Far Cry and Beyond?" Game Developers
Conference (GDC '09), San Francisco, CA, USA, March
28-April 1, 2009.

Wright, Will. 2007. “Will Wright Keynote Speech”.
South By Southwest (SXSW 2007). Austin, Texas, USA,
March 9-13, 2007.

118

	AIIDE09
	Contents
	Index
	AAAI Website

