Proceedings of the Fifth Artificial Intelligence for Interactive Digital Entertainment Conference

A Unified Spatial Representation for Navigation Systems

Michael Ramsey
Blue Fang Games, LLC
1601 Trapelo Road Suite 105, Waltham MA, 02451-7333
miker@masterempire.com

Abstract

The purpose of this paper is to outline the core components
of a practical navigation system which uses a novel
technique for spatial representation in a commercial
entertainment product. This paper is based upon the
navigation system developed for The World of Zoo (WOZ)
by Blue Fang Games, LLC and published by THQ. WOZ
placed the following requirement on our in game agents
(which are animals, such as tigers and penguins): depending
on the animals species they were required to locomote
across land, water, exhibit the ability to climb and
eventually to fly — all in a seamless manner. Animal
locomotion in WOZ is driven by accumulating the root
motion of multiple blended animations; this required a
unique approach to the spatial representation of our
environments. The system needed not only to take into
account the defacto static environments that were created by
the level designers, but also the dynamic structures that the
animals use (depending on the players interactions at that
particular moment). There was also the extra challenge of
developing a system that was as straightforward as possible
for level designers to work within. As Anthony J.D' Angelo
so succinctly stated, “Don't reinvent the wheel. Just realign
it.” It is with this sage advice in mind that we reevaluated
traditional navigable representations, in conjunction with
how our animals should move through their environments.
As important as the navigation framework was to the
development of WOZ, the way the thought processes
developed preceding the implementation is also of interest;
as the re-understanding of what navigation is composed of
(in virtually any environment) guided our decisions through
the design and implementation stages.

Introduction

WOZ is an entertainment product for both the Wii and PC
platforms. The fundamental experience for the player is to
interact with a variety of different animals in a series
physically credible exhibit. Players interact with the
animals by not only providing the basic requirements —
food and rest, but also by providing enrichment objects. A
typical selection of objects that can enrich an animals
experience are: balls, chewable stuffed animals and food

Copyright © 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

119

dispensers. The player can also build structures in an
animals exhibit, which not only provides interesting eye
candy for the player, but it also provides points of
interaction (e.g. flee, drink, graze, hide etc.) that
depending on an animals mood and personality can be
used.

WOZ provided us with the fundamental challenge of an
environment that could be altered by the player at runtime
in multiple spaces. WOZ has three distinct spaces — land,
water and air (Reichenbach 1958). The shipping version of
WOZ has support for land and water, whereas air will be
implemented in the future (support for the air-space is
really just further parameterization of the fundamental
spatial construct that WOZ uses — which will be discussed
below). This paper will outline the core components of the
navigation system — particularly how the world is spatially
created and utilized by the animals in WOZ.

Core Components and the Approach

Every navigation system has an atomic element that it's
pathfinding system uses; for the majority of commercial
games it is typically a system based on either a way point
or a navigation mesh. Each approach has its benefits and
drawbacks (Waveren 2001). A similar system to the one
detailed here is the circle-based waypoint graph (Tozour
2003). WOZ's approach to navigation was unique in that
we did not place an emphasis on the traditional 3-space
point (Bergen 2004) in the world, as the atomic navigable
element - instead we focused on the representation of
space in the world. This fundamental realignment allowed
us to pursue for an element that is in itself simple, but
allowed us to construct a system for locomotion that is
unified across the previously mentioned game spaces.
While WOZ is typical in that it has it's fair share of goto
position (x,y,z) and execute a specific action — such as
eat; it is also atypical in that the motion and approach of
the animal, is just as important as it's eventual end of route
interactions. This fundamental understanding directed
many of our decisions.

Our basic primitive for spatial representation is a sphere
(in development we typically referred to it as a navsphere).



Figure 1 shows a typical navsphere layout for one WOZ's
exhibits. The navsphere is considered the atomic
component, because when combined with other
navspheres, we are able to form a navigable representation
(a navrep) of our world. The navrep represents the
interactable spatial extents of the environment at any given
moment. The navrep not only informs the game side
systems of where the animals can go in 3-space, but also,
and perhaps more importantly, where they cannot go. The
later being important for critical aspects of locomotion

Figure 1: A subset of a Zebra's exhibit from WOZ showing
a representative navsphere layout.

Since a navsphere represents spatial information about
the environment, it thus inherently allows us to define
spatial information relative to that space in the world. We
attribute spatial biases to a navsphere (internally to make
the concept more palatable to level designers we use the
term pathing bias). Typical spatial biases attributed to a
shape were animal size, navsphere type — such as, water,
land or air shape, as well as other game related attributes.

Navspheres are placed during the level development
process (which is done through 3DS-Max). With only a
few guiding principles such as not placing navspheres in
solid geometry or not placing navspheres within each other
- the process is relatively straight foward when working in
conjunction with the WOZs built in visualization tools (the
figures in this paper show some of the visualization tools
developed).

For the navigation system to route efficiently over the
spatial representation of the world, there is the need to
build a basic connectivity graph for the environment.
Figure 2 contains a visual representation of the
connectivity graph that is generated from Figure 1's
navsphere layout. An initial algorithm for the construction
of a rudimentary connectivity graph is detailed in
Algorithm 1.

120

Loop over every navsphere in the scene (A)

A = currentOuterLoop navsphere
Loop over every navsphere in the scene (B)
{

B = currentInnerLoopNavSphere

if A is not the same shape as B

if Shapes A and B overlap

Establish a bidirectional pathway between navsphere
A and navsphere B and store link in shape
}
H
}

Algorithm 1: A straight forward algorithm to generate
navsphere connectivity.

The connectivity graph algorithm looks for navsphere
overlap. When a navsphere overlaps with any other
navsphere a bidirectional link is established; thereby
allowing movement out of and into the respective
navspheres. While the above algorithm is a good way to
get started, it is generally not leverage able in large scenes
with a large number of dynamic objects. A straight
forward to implement world partitioning system s
required to minimize the cost of generating the
connectivity graph. By implementing a loose quad-tree
(Samet 2006) partitioning system, connectivity generation
is significantly reduced and could be used in a shipping
product.

Figure 2: A generated connectivity graph from the
navsphere layout in Figure 1.
Routing

Routing over the generated connectivity graph is done
using the A* algorithm (Stout 2000). However, it is only



used in it's most direct form — to generate a possible route
from point A to point Z; not an exact path. WOZ has a
multitude of other systems in place to generate an animals
appropriate motion. We use the generated route to store
only the desired sense of progression through an
environment towards the goal location; as the actual
motion of the animal may cause it to deviate (which it
routinely does) from the exact route generated by A*. This
is very similar to how motion occurs in the real world —
animals and humans don't follow an exact course, but they
deviate according to not only their understanding of the
world, but also by the physicality of available space
(Lefebvre 1997). Some of the techniques that are in place
to facilitate this locomotion are: route collapsing for direct
paths, specific routes that are generated based upon an
animals facing and destination, and terrain biases.

Handling a Dynamic World

One of the exciting aspects of WOZ is the ability to alter
the environment in a nondeterministic manner. This is
achieved by constructing interactable structures for the
animals and by allowing the player to alter the basic
environment at runtime. WOZ is a real time game, working
in a constrained environment - so techniques needed to be
implemented that are not only memory and CPU efficient
but also allowed for the non-deterministic alteration of the
environment. The concept that came about was the cull
shape. The cull shape has initially been implemented as an
extension of the navsphere. Figure 3 illustrates the use of
cull shape in a penguin environment. Cull shapes are used
to cut-out aspects of the environment that a dynamic object
is intersecting with and then replace with it any potential
new navspheres. This cut and replace process worked out
well as it allowed our structures to be buildable at multiple
levels, e.g. we can cycle through the construction of a
series of ice floes on a lake in real-time without any
significant computation.

Figure 3: An example asset for WOZ that shows how an
attached cullshape (red sphere) is used to invalidate
surrounding navspheres for navigation.

121

The Core Navsphere API

The core API that is required is remarkably straightforward
(the support code for game-side interaction was more
lengthy then what was required for implementation of the
core navigation system). Since the entire world is spatially
represented as spheres we required only the following
functions:

* A function to determine if a sphere overlaps with another
sphere.

* A function to calculate separation between two spheres.

* A function to determine if a three dimensional point is
within a sphere.

Some of the utility functions that we found useful
(which we specifically added for route smoothing) were
the ability to calculate the exact points of overlap between
two spheres. This allowed us to bias the animals motion
over multiple points along the route without using the
origins of the navspheres. If the origins of the navspheres
were exclusively used as targets, the animals could move
in unnatural patterns. Also the ability to use tangential
information generated from overlapping navspheres was
initially useful in biasing motion away from objects in the
environment.

Conclusions and Future Work

WOZ has a solid foundation of navigable primitives to
build upon, but there are definitely aspects that could be
investigated further.

Interaction with objects in the world are not spatially
consistent. In the current implementation, when an animal
is the same navsphere as an object, the majority of the
interactions are driven by the standard “goto
position(x,y,z)”’; and while it is efficient, it does not lend
itself to maintaining a harmonious interaction with an
object when other agents are involved. A more prudent
approach is to define objects with a simple spatial
primitive (a recent test using a simple encapsulation sphere
yielded positive results) or perhaps if need-be, convex
hulls can be used to remove parts of the underlying navrep.
A simple area test could be used to essentially guide
animals to a spatial defined region within a navsphere. This
would also allow for the management of interactions with
an object in a potentially more natural and controlled
manner.

Another aspect that could improved is that entities
should have their internal connectivity graphs precomputed
at tool-time. This would have saved us a few ms of CPU
cost.

Some resources have been spent in investigating
methods of automating the construction of the navrep,
however, numerous challenges surface because of the
dynamic nature of WOZ's environments. (Waveren 2007)
discusses a method to automate the construction of an area
based system, however, it is predicated on a rigidly
constructed environment that has been partitioned already



via the binary space partitioning (BSP) algorithm (Ericson
2005). Some of the WOZ specific challenges are related to
stitching the dynamic objects into the scene, and the level
designer specified build hierarchies.

One of the main goals for our navigation system was to
have it developed around a spatially accurate
representation of our games environments, and by using
the components outlined in this paper, we have helped
achieve that goal in WOZ.

Acknowledgments

I wish to acknowledge the following individuals (in
alphabetical order) for not only their contributive efforts to
development of the WOZ Al system (as this paper was just
a slice of that system in it's entirety) but also as fellow Al
developers: Bruce Blumberg, Steve Gargolinski, Ralph
Hebb, and Natalia Murray.

References

Bergen, Gino Van Den. 2004. Collision Detection in
Interactive 3D Environments. San Francisco, CA: Morgan
Kaufmann.

Ericson, Christer. 2005. Real-Time Collision Detection
(The Morgan Kaufimann Series in Interactive 3-D
Technology). San Francisco, CA.: Morgan Kaufmann
Gibson, James J. 1986. The Ecological Approach to Visual
Perception. Hillsadale, New Jersey: LEA.

Hart, P. E.; Nilsson, N. J.; Raphael, B. (1968). A Formal
Basis for the Heuristic Determination of Minimum Cost
Paths. [EEE Transactions on Systems Science and
Cybernetics SSC4 4 (2): 100-107.

Lefebvre, Henri. 1997. The Production of Space. Malden,
Mass.: BlackWell Publishing.

Reichenbach, Hans. 1958. The Philosophy of Space and
Time. Mineola, NY.: Dover

Samet, Hanan. 2006. Foundations of Multidimensional and
Metric Data Structures. San Francisco, CA: Morgan
Kaufmann.

Stout, Bryan. 2000. The Basics of A* for Path Planning.
Game Programming Gems:254-263.

Tozour, P. 2003. Search Space Representations, A1 Game
Programming Wisdom 2: 94.

Waveren, Jean Paul Van. 2001. The Quake 3 Arena Bot,
Master's thesis. University of Technology Delft.

Week, Jeffrey. 2001. The Shaping of Space. New York,
NY.: Marcel Dekker, Inc.

122



	AIIDE09
	Contents
	Index
	AAAI Website




