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Abstract 
We consider the task of developing an adaptive autonomous 
agent that can interact with non-stationary environments.  
Traditional learning approaches such as Reinforcement 
Learning assume stationary characteristics over the course 
of the problem, and are therefore unable to learn the 
dynamically changing settings correctly.  We introduce a 
novel adaptive framework that can detect dynamic changes 
due to non-stationary elements. The Surprise Triggered 
Adaptive and Reactive (STAR) framework is inspired by 
human adaptability in dealing with daily life changes.  An 
agent adopting the STAR framework consists primarily of 
two components, Adapter and Reactor. The Reactor chooses 
suitable actions based on predictions made by a model of 
the environment. The Adapter observes the amount of 
“surprisingness” and triggers the generation of new models 
accordingly. Preliminary experimental results show that 
STAR agents are competitive in performance as compared 
with current approaches, while being much more cost-
effective by avoiding the negative effects of historical data. 
Furthermore, since response and adaptability are decoupled 
in the framework, the adaptive component can benefit other 
autonomous agents in a variety of domains with non-
stationary environments. 

1. Introduction1  
The quality of modern games determines their 
entertainment values (Tozour 2002a). While recent games 
are able to deliver breathtakingly realistic simulations and 
animations, they are not so successful in demonstrating an 
equivalently convincing level of strategic and tactical 
intelligence (Schaeffer 2001). The online playing modes in 
most modern games aim to satisfy the customers’ demand 
of competing against other intelligent players. One 
observable difference between human gamers and Non 
Player Characters (NPCs) is the ability to adapt to different 
gaming styles.  It is usually possible to beat an NPC at any 
level given sufficient time, and repeat the same winning 
strategy without the NPC turning the table around; whereas 
maintaining superiority over a fellow gamer is more 
difficult. For a game, adaptability is therefore an important 
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AI feature that greatly contributes to its replayability and 
thus its entertainment value. In real life applications, 
adaptability can be very useful for agents working in new 
or unfamiliar environments, helping to increase their 
vitality. 
 In this work, we address the problem of online 
adaptation, i.e., the process of self-tuning while the agent is 
in action. Current approaches such as Reinforcement 
Learning (Kaelbling, Littman, and Moore 1996) aim at 
solving the adaptation problem through segmenting the 
workflow into short episodes, during each of which there is 
no adaptation, and interleaving them with learning phases 
so as to improve the agent’s performance in the next 
episodes. In an episode, the environment is assumed to be 
stable, and all collected observation data is valid for 
learning. This approach performs well for settings in which 
the workflow segmentation can be predefined easily, such 
as those described in Dynamic Scripting (Spronck et al 
2006) and Tactical Personality (Tan and Cheng 2008). It is 
not clear, however, how this approach can be applied to 
provide adaptability in more complex and continuous 
scenarios, such as a final clan battle in Massively 
Multiplayer Online Role-Playing Games (MMORPG). In 
these cases, adaptation needs to be done during the course 
of the battle; no clear-cut episode segmentation can be 
preset to ensure collected observations of strategic data in 
one episode are not obsolete and valid for learning.  
 We present here a new Reactive-Adaptive framework to 
facilitate online adaptability by supporting strategy 
adjustment using newly learnt and valid knowledge about 
the changing environment. The adaptation process is 
triggered by a surprise quantifier, hence the name Surprise-
Triggered Adaptive and Reactive (STAR) Framework. 
Each STAR agent is assigned a “personality”, which 
characterizes how responsive it is to surprising events, 
such as how shocking the event must be to be noted or how 
quickly the agent changes its internal belief since the point 
of first suspicion.  
 We have evaluated our framework based on an 
experiment setup inspired by the Rock-Paper-Scissors 
game, in which the agent competes with an opponent that 
acts as a non-stationary environment switching from one 
strategy to another at unknown time points.  Preliminary 
results show that a rational STAR agent is capable of 
noticing the strategic changes of its opponent, and 
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adjusting its belief model and actions accordingly to ensure 
competitive performance. 

2. An Example Scenario 
The STAR framework is targeted at a large class of 
problems compatible with the following typical scenario: 
Suppose a robot agent is given the task to move from point 
A to point B. Initially, the robot is given a map to plan its 
route. After having planned out the route, it sets off from 
point A. On the way to B, it encounters an obstacle. The 
robot must decide whether this means a thorough or partial 
map change that requires it to send a request to a Control 
Centre for map update and replan the whole route, or this is 
just an obstacle on the road that does not invalidate its 
initial plan. The act of requesting for map update and 
replanning may be costly. If the robot is a STAR agent, it 
would behave as follows. The first obstacle, being an 
unexpected event, arouses the agent’s suspicion on a map 
change. Depending on the seriousness of this event, as long 
as the “accumulated surprisingness” has not reached the 
agent’s surprise tolerance, it continues to move according 
to plan. When there have been too many surprises 
encountered, exceeding the agent’s tolerance, it will carry 
out the expensive act of updating its internal planning 
system. 
 The agent in this example scenario shares the same 
objective as the STAR agent in many other cases, 
including our Rock-Paper-Scissors game: Achieving its 
goal while avoiding updating its internal reasoning system 
unless there is sufficient evidence to do so. Upon obtaining 
this feature, the agent is able to automatically segment its 
execution path into stationary episodes in a cost effective 
manner.   

3. Surprise Detection and Quantification 
Surprise is an important stimulus for human actions, 
causing between happiness and sadness to a thorough 
overhaul of one’s viewpoint (Ekman and Friesen 2003). It 
has been a long going subject of research in many different 
disciplines, dated as far as 1872 in Darwin’s thesis on his 
theory of evolution (Darwin 1872). Up to now, there are 
diverse looks on how surprise is ignited and its influence 
on the subject’s posterior behaviors. Although the defintion 
of surprise, i.e. what give rise to a recognizable surprising 
reaction and how to detect them, is still wildly debated 
(Kahneman and Miller, 1986; Ortony and Partridge, 1987; 
Meyer, Reisenzein and Schützwohl, 1997; Bartsch and 
Estes, 1997; Teigen and Keren, 2003; Maguire and 
Maguire 2009), it is generally agreed that surprise 
constitutes an important part of living experiences, being 
the driving force of maintaining the consistency of one’s 
belief system as part of an ongoing sense making process. 
Based on this view, our proposed adaptive-reactive 
framework relies on the computational quantification of 
surprise as a way to denote the demand for adaptation. 
 

3.1. Existing Computational Notions of Surprise 
Apart from psychological views on surprise, in 
computational sciences, surprise notions are characterized 
from two major perspectives, namely objective and 
subjective. 
 Objective surprise is data-dependant and perceived the 
same way regardless of transferring media or perceiving 
entities. Information entropy, as defined by Shannon E. C. 
(1948), is a typical example. The entropy denotes the 
amount of knowledge to be transferred; the more 
anticipated the observed data is, the less information it 
carries. Therefore, it can be deduced that the less entropy a 
piece of data contains, the less objectively surprising it is. 
 Subjective surprise is, on the other hand, context- or 
subject-dependant, which means the same data can carry 
different amount of “surprisingness” to different perceiving 
subjects. Silberschatz and Tuzhilin (1995) mentioned one 
such notion of subjective surprisingness, called “subjective 
interestingness”, to detect interesting patterns in 
Knowledge Discovery in Databases. In modeling visual 
attention, Itti and Baldi (2008) proposed a Bayesian notion 
of surprise, which is defined as the difference between 
prior and posterior distribution of model beliefs. This 
notion however bears a huge cost on surprise quantification 
at each turn of observation due to the frequent expensive 
model comparisons and updates. To apply it efficiently, 
special techniques based on domain knowledge are needed 
to execute these operations quickly and economically, such 
as using the Gamma probability density to facilitate 
complex visual model updates (Itti and Baldi 2008).  
 These existing computational models of surprise, 
however, are not intuitive to our daily handling of 
surprising events. In order to perceive surprising events, 
we first build up a belief system through a series of 
observations about related matters. Surprise is the event 
that challenges this system by conflicting with its 
predictions. The update of one’s belief system should not 
be carried out until there is sufficient evidence that the 
current system is likely to be dysfunctional.  
 
3.2. Our Notion of Surprise and Its Utility 

In our framework, we define surprise as the discrepancy 
between the actual outcome and its prior prediction.   
Surprise is therefore a subjective quantity, which is 
quantified differently by different subjects maintaining 
different hypothesis or reasoning systems. For example, if 
the agent A predicts that its opponent would issue an action 
with probability (.3 Rock, .6 Paper, .1 Scissors), the actual 
outcome Paper would be less surprising to agent A than it 
would be to an agent B predicting (.6 Rock, .1 Paper, .3 
Scissors). Also, note that the actual outcome can be 
expressed as a probability distribution, for instant, (0.0 
Rock, 1.0 Paper, 0.0 Scissors), or (.1 Rock, .75 Paper, .15 
Scissors) in the case of partial observation.  In either case, 
surprise, being the discrepancy of predicted and observed 
distributions, can be calculated using a suitable metric 
function, such as a simple Euclidean distance function or 
Kullback-Leibler divergence (Kullback 1959). For 
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example, in our experiment, we used a modified version of 
Squared Euclidean Distance 

 ,  

in which  is the emphasis coefficient,  is the 
issued action and  is the probability distribution of 
Opponent’s action predicted by the agent. The weight ! 
stresses on the contribution of   to S, the individual 
surprisingness, making it more influential than other 
possible outcomes . 
 Evaluating surprisingness contained in individual events 
serves as the building block of what we eventually want to 
detect -- systematic surprisingness resulted from the 
opponent’s strategic changes. This is achieved by using the 
Accumulated Surprisingness, which is the summation of 
consecutive event surprisingness. When the accumulated 
surprisingness observed in the opponent’s behaviors 
exceeds an upper threshold, this indicates an intrinsic 
change in the opponent’s strategy that would have caused 
the series of surprising events. These observed events serve 
as the evidence for the strategic change, and are used for 
learning the new opponent model. 
 At this stage, we need a mechanism to disregard 
surprising events caused by the effect of chance. The 
intuition is that surprises resulted from chance are by large 
followed by unsurprising events, as opposed to those 
resulted from a diversion of the underlying process. By 
discounting the accumulated surprisingness when the series 
of surprising events is discontinued with a predictable one, 
we allow unsurprising events to lessen the opportunistic 
surprises’ effect to a disposable value, under which the 
accumulated surprisingness is reset to zero. This approach 
enforces our agent’s immunity to random surprises. 

4. Surprise-Triggered Adaptive and 
Reactive (STAR) Framework  

The STAR framework consists of two components, the 
Adapter and the Reactor (Figure 1). The Adapter is in 
charge of updating the belief model of the agent to better 
capture the dynamic aspects of the environment. The 
Reactor determines the best actions to achieve the goals. 
The two components are decoupled so they can be used to 
equip other intelligent agents with adaptability, without 
any principle change on the agents’ original design. 

4.1. Designing a STAR agent’s personality 
Similar to humans, each STAR agent is surprise-avert to 
different levels, depending on its “personality”, which are 
reflected by five thresholds set at the point of creation. 
These values are categorized into three characteristics.  
 Stubbornness denotes the agent’s resistance to changes. 
It takes more evidence to convince a stubborn agent than 
that for a docile one. This characteristic is reflected by the 

upper bound of observations’ accumulated surprisingness, 
Supper, to trigger the hypothesis proposal process. 
 Hastiness denotes the agent’s eagerness to adopt a new 
hypothesis, given a series of its trials. The hastier an agent 
is, the fewer expected trials a new hypothesis on the 
environment model needs to go through before it 
substitutes the old one. This characteristic is reflected by 
the number of required trials, Ntrials, and the ratio of correct 
predictions over the total number of trials, !succ. 
 Skepticism denotes the agent’s attitude to single 
surprises. It is reflected through the threshold which the 
observation surprisingness must remain higher to be noted, 
Slow, and the discount factor applied on total surprisingness, 
!surp. In other words, these values define how significant a 
surprise must be in order to catch the agent’s attention, and 
how quickly surprise decays over time. 
 Each STAR agent thus has different perception of and 
reaction to the same surprising event, even though their 
prior knowledge and assumptions may be the same.  
 In a more sophisticated game scenario such as 
MMORPG, a STAR personality can be used to define the 
adaptive behaviors of the overall strategic AI at a game 
level or in a gaming land. For example, an NPC, as 
World1, has modeled a human player’s style as being 
biased towards air attack. Now, suppose the player has 
changed his style to bias ground attack. If World1’s 
personality is very stubborn, or Supper is very high, the 
human player must have used a huge army of ground based 
units to attack him before the NPC accumulates enough 
surprises to realize the switch in his opponent’s game style. 
This NPC is therefore inflexible in adaptation and deemed 
an easy target, suitable for early game levels. Deeper into 
the game, the NPCs can be made less stubborn, so as to 
make its adaptation process more sensitive to changes and 
quicken its reactions to the human player’s strategic 
switches. Other parameters defining the adaptive style 
allow the designer to specify a wide range of NPC’s 
adaptability to better challenge different players at 
different levels.  

Figure 1. The Surprise-Triggered Adaptive and Reactive 
(STAR) Framework.  

84



4.2. Adapter 
This module encapsulates the agent’s adaptability. It 
consists of two subcomponents, the Surprise Quantifier and 
the Hypothesis Factory. The Surprise Quantifier 
accumulates the values of surprisingness contained in the 
opponent’s actions, as defined in section 2.2. Note that 
only actions from the current hypothesis’ nearest suspicion 
point (NSP) till the present account for the accumulated 
surprisingness. The NSP of an active hypothesis is defined 
as the latest time point from which the accumulated 
surprisingness has not been reset to zero (Figure 2).  
 When the accumulated surprisingness observed in the 
opponent’s actions surpasses the preset threshold, the 
Surprise Quantifier triggers the Hypothesis Factory’s 

process to create a new hypothesis (of the opponent’s 
strategy) using the accumulated series of surprising data. 
This new hypothesis will then be matched with the new 
opponent actions observed, and only get adopted by the 
Reactor upon reaching the desired level of performance in 
prediction. The trials are conducted concurrently to current 
game flow, taking observations from the real environment 
to challenge the newly proposed hypothesis. The new 
hypothesis is given one point for correct prediction and 
none otherwise. After the trial period, the score acts as the 
performance indicator, and compared against the desired 
success ratio. If this new hypothesis fails, another 
hypothesis is generated, using more recent data. This way, 
the agent is able to discard unsystematic surprising 
outcomes. 

4.3. Reactor 
This module represents a structured guideline for 
individually tailored reactive agents. These agents do not 
follow predesigned scripted series of actions, but react 
according to their perceptions of the opponents’ behaviors. 
The Reactor consists of two subcomponents, the Actor and 
the Predictor (Figure 1). The Predictor maintains an 
internal opponent model that estimates the probability 
distribution on the opponent’s upcoming action at each 
turn. Whenever the Adapter has a well-tested new 
hypothesis of the opponent model, it will update the 
Predictor with this newly formed model so that future 
predictions can be made more accurately. The Actor issues 

a suitable action in each cycle based on the Predictor’s 
suggestion and its own strategy. 
 For example, if the Predictor suggests that the 
opponent’s next action outcome would have a probability 
distribution of (.2 Rock, .7 Paper, .1 Scissors), and the 
Actor’s winning strategy is to beat the most probable 
predicted action, its rational choice will be Scissors. Note 
that this is only one possible strategy to achieve one goal 
namely “Beat the Opponent.” The Actor could have more 
than one strategy to achieve other goals.  

5. Experiment and Analysis  
As discussed in Section 3.1, each STAR agent is designed 
to adopt a different personality which characterizes its 
surprise aversion. As with humans, there is no universally 
good personality which guarantees top performance in all 
circumstances; therefore, in different settings, a suitable 
personality should be identified and adopted by the desired 
STAR agent, possibly through a training phase with 
sample datasets. This issue of personality training will be 
left as part of our future work. In this paper, we will 
observe the sensitivity of our STAR agent's performance 
with regards to two different settings, one with high and 
one with low factor of randomness. 
 In addition, we will also compare a STAR agent’s 
performance with two other representative agents of 
current approaches in online adaptation and a baseline 
random player. We will analyze the results based on the 
agents' performance scores and the costs taken to exhibit 
their respective performances. 
 Rock–Paper–Scissors Game. As a proof of concept, we 
created a toy game, a Rock–Paper–Scissors duplicate. In 
this game, the agent is to issue suitable symbols in the set 
{Rock, Paper, Scissors} to compete with a non-stationary 
opponent which changes its strategy at times unknown to 
the agent over an infinite number of turns. 
 We assume the opponent is Markovian and model 
opponent strategies as Non-deterministic Finite State 
Machines, which depict the transition probabilities from 

one action to the next (Table 1). We evaluate the agents 
using its final score against the opponent after several turns 
of playing, considering the fact that this is one of the most 
intuitive ways to judge an agent’s performance. The agent 
gets 1 for a win, 0 for a draw and -1 for a loss. 
 The temporal cost of each agent counts the total number 
of operations related to model construction and alteration 
they must execute in the course of the experiment. We 
argue that it is generally much cheaper to query a system 
than to build or modify it; therefore, operations such as 
outcome prediction can be neglected. 

Prior Action R P S 
Rock (R) .2 .3 .5 
Paper (P) .4 .1 .5 

Scissors (S) .1 .6 .3 

Table 1. A sample Opponent Strategy.  

Figure 2. Total surprisingness of a STAR agent plot against 
time.  If the agent is at time 200 (first broken circle), the 
current hypothesis’ nearest suspicion point (NSP) is not set, 
as the current hypothesis is well supporting the agent’s 
Predictor. If the agent is at time 350 (second broken circle), 
the corresponding NSP is 275 (black circle). 
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 To enable easier tracking of adaptation performance, this 
opponent is preset to switch its strategy after every 500 
turns in a total of 30000 turns spanning one simulated 
game’s course. This life cycle of strategies is determined to 
be long enough for a strategy to leave its impact on the 
agents’ observations, and reduce the random factor’s 
influence. None of the participating agents knows nor 
attempts to learn this characteristic of the opponent. 

5.1. Sensitivity test of STAR agents 
In this experiment setup, we assess one STAR agent's 
performance against two different opponents with the 
aforementioned manner of strategy switching but 
containing different amounts of randomness. Specifically, 
Opponent 1's strategies are less stochastic than Opponent 's 
(Table 2). The statistical data in Table 3 and 4 are collected 
over 100 runs of each of these two sub-experiments. 
 We can observe that it is easier to learn an opponent 
model given the same quantity of observations when 

competing against Opponent 1, the more deterministic, 
than Opponent 2. Our STAR agent was able to adapt 

timely to Opponent 1’s behaviors in a consistent way 
(Figure 3a). However, it is not possible to maintain this 
standard of performance when competing against 
Opponent 2. Action outcomes issued by Opponent 2 are 
heavily affected by random factor, confusing the learning 

process, and the agent’s score can fall as low as more than 
five times less than the maximal score (Table 3). This 
observation is reaffirmed in Table 4, when the mean cost 
for model building and update when challenged by 
Opponent 2 is eight times more expensive than that when 

challenged by Opponent 1. The STAR agent must build its 
hypotheses using more data and taking more attempts 
before finally finding the right ones.  

5.2. Competition with other agents 
The other agents involved in this performance evaluation 
are the random agent, naïve accumulative agent and history 
discounted accumulative agent.  
 Random Agent.  This agent issues an action randomly in 
each turn; therefore, its model cost is always 0. 
 Naive Accumulative Agent. This represents an online 
adaptation approach which assumes a stochastic but 

stationary opponent. This means observation data is never 
obsolete and the more observations one can obtain, the 
more accurate one can model the opponent’s governing 
process. The agent learns the opponent model by 
incorporating its observations into the existing model right 
after each turns (Figure 4). Based on outcome predictions 
by this model, it issues actions that beat the most probable 
opponent outcomes.  
 Accumulative Agent with Discounted History. This 
agent is a generalized version of the aforementioned naive 
approach, by discounting history data so that outdated data 
is overshadowed by newer data in the internal opponent 
model (Figure 4). 
 One thing to note is that due to the stochastic nature of 
the opponent’s underlying process, a suitable discount 
factor must be chosen for this agent to perform adequately. 
An undervalued discount factor which disregards much of 
relevant history data would result in the loss of necessary 
information for learning, while an overvalued one loses its 
filtering effect, resulting in modeling of obsolete data. The 
discount factor is set to .99 in our experiment. 
 In order to facilitate timely adaptation, since these 
accumulative agents do not have any triggering mechanism 
for adaptation, they are allowed to fine tune their 
prediction model after each turn.  
 Results. As depicted in Figure 5, our STAR agent 
exhibits competitive performance as compared to the other 
agents in both cases. It is able to build up anticipation on 
the strategic changes of the opponent, and adapt its internal 
hypothesis model accordingly. Among the three other 

Figure 3. Charted graph of STAR’s scores in ten randomly 
chosen simulated runs.  

(a) Opponent 1 (b) Opponent 2 

Prior Action R P S 
R .3 .4 .3 
P .3 .3 .4 
S .4 .3 .3

Prior Action R P S 
R .05 .9 .05 
P .05 .05 .9 
S .9 .05 .05 

(a) (b) 

Table 2. Sample strategies adopted by Opponent (a) 1 and (b) 2. 

Figure 4. The structure of Discounted Accumulative Agent 
(DAA). The Naive Accumulative Agent is a DAA with

Score 
Statistics Min 1st 

Quartile Mean 3rd 
Quart. Max Std 

Opp. 1 19168 22013 22682 23556 24572 1156.5 
Opp. 2 1133 3119 3743.3 4431 6129 937 

Table 3. Statistical data on STAR agent against Opponent 1 and 2. 
 

Cost  Min Max Mean Standard Dev. 
Opp. 1 1009 1682 1444.1 104.5 
Opp. 2 8090 15132 11602 1156.5 

Table 4. Modeling cost against Opponent 1 and 2.  
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agents, except for the random agent, which performs 
arbitrarily bad, the other accumulative agents are able to 
adaptively compete with the opponent’s changes to 

different levels. While the naive approach suffers the curse 
of history heavily when encountering Opponent 1 (Figure 
5a), and is left behind, its history-discounted duplicate and 
our STAR agent performed comparably well. 

 However as mentioned above, the price accumulative 
agents have to pay in order to achieve good adaptive 
results is not always affordable. Our STAR agent requires 
few model operations (Table 5), especially when the 
random factor of the rotating strategies is not high 
(Opponent 1), in which it saved 94% of the total number of 
allowed model operations. The competing agents, on the 
other hand, need to update their opponent model after 
every turn. In complex scenarios when the operation is 
expensive, this approach bears a huge computational cost 
on the agent. Moreover, when model changes are locally 
confined, such expensive operations will greatly affect the 
agents’ performance, and often leave them incapable of 
timely adaptation.    

6. Conclusion 
In this paper, we have presented a novel approach towards 
online adaptation in non-stationary environments, where 
the governing process dynamically changes at times 
unknown to interacting agents. This is a missing piece in 
state-of-the-art online learning approaches, such as 
Reinforcement Learning, which do not have any proper 
mechanism to detect the non-stationary elements of the 
learnt target. Our agent adopting the proposed STAR 
framework has shown to perform competitively with 
representative agents of existing approaches in a more cost 
effective manner. Even though in these initial experiments 
the non-stationary property is in a fairly simple form, we 
believe that the triggers fired by surprisingness are 
reasonable and inexpensive ignitions for timely model 
updating. Moreover, since the adaptive and reactive 

components of our framework are essentially decoupled, 
our approach can be used as an augmentation of current 
learning approaches, bridging their episodes of adaptation 
into one continuous automatic adaptive experience. 
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Figure 5. Performance comparison of STAR, accumulative and 
discounted accumulative agents, and a random agent.  

(a) Opponent 1 (b) Opponent 2 

Cost 
Statistics 

Random 
agent 

Naïve 
Acc. 

Discounted 
Acc. STAR 

Opp. 1 0 30000 30000 1759 
Opp. 2 0 30000 30000 9247 

Table 5. Modeling cost against Opponent 1 and 2. 
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