
Optimizing Motion-Constrained Pathfinding

Nathan R. Sturtevant
Department of Computing Science, University of Alberta

Edmonton, Alberta, Canada T6G 2E8
nathanst@cs.ualberta.ca

Abstract

High-quality motion planning can be quite expensive to per-
form, yet is critical for many video games. As a result, many
approximations are employed to reduce costs. Common ap-
proximations include pathfinding on a grid or on a naviga-
tion mesh instead of in a real-valued world. As a result, the
paths that are found are not immediately appropriate for use,
and often require post-processing, such as smoothing. An al-
ternate approach is to incorporate pathfinding constraints di-
rectly into A* search. This approach is expensive and so it
hasn’t been widely applied in games. In this paper we ana-
lyze the complexity of planning with complex motion con-
straints and suggest optimizations which make such planning
feasible for use in modern games. We propose the use of two
ideas, abstract perimeter heuristics and intermediate search
truncation, which can reduce the cost of search by an order of
magnitude or more.

Introduction and Background

In this paper we are concerned with the study of pathfinding
with more realistic motion models. As pathfinding is often
quite expensive, especially considering the need for many
different units to successively plan, the costs for planning
with more realistic motion models is often considered too
expensive for practical use. We analyze three motion models
and propose a variety of optimizations that can be applied to
make planning with more realistic motion models feasible.
There are a number of approaches that are currently used

for pathfinding in games. For many games that can afford
the memory costs, grids are attractive, as they are easy to
compute and update. But, grids can have large memory
overheads, and so a variety of other data structures have
been used for pathfinding such as navigation meshes (Tozour
2002) or waypoint graphs. Navigation meshes and waypoint
graphs are essentially an abstract representation of the un-
derlying state space which reduce the cost of pathfinding.
When grids are used, similar abstractions are often created
as well (Sturtevant 2007). In general, paths are planned in
the abstract state space, and then refined into paths in the
actual state space.
These abstract representations do not adequately repre-

sent motion constraints which may be present with vehicular

Copyright c© 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

or creature movement. Thus, once an abstract path (eg one
that follows obstacles constraints but not motion constraints)
has been created, it must be transformed into a path which
can be followed (and animated) by a character in the game.
A comprehensive introduction to pathfinding with more

realistic motion constraints was described by Pinter (2001).
This article has many practical suggestions which are nec-
essary for building a good pathfinding system, but also con-
tains many ad-hoc techniques which require engineering by
hand. Our goal here is not to duplicate this work, but to
complement it with the suggestion of additional techniques
as well as a full study of these approaches.
Some of the ideas suggested by Pinter have been sub-

sumed by the recent θ∗ (Theta*) algorithm (Nash et al.
2007). θ∗ attempts to do smoothing as part of the plan-
ning process instead of as a post-processing step. While this
reduces some of the need for post-processing, it does not
eliminate it completely. For instance, θ∗ does not take mo-
tion constraints into account during planning. However, it is
possible that θ∗ can be combined with the ideas discussed
here for even more efficient search.
Researchers in robotics have also been concerned with

motion-constrained pathfinding, as motion planners must
generate plans that can be executed by a robot. Thus, some
of the heuristic-building ideas here overlap both with work
in robotics (Knepper and Kelly 2006; Likhachev and Fergu-
son 2009) as well as problems like road layout (Mandow and
de-la Cruz 2004), which has similar constrains.
This work makes the following contributions: We per-

form a systematic study of search with motion constraints,
demonstrating that this search is not only feasible, but that
it can be, given a proper heuristic, no more expensive than
normal A* search. This is made possible first by breaking
long paths into shorter paths using abstraction and refine-
ment. The shorter paths can then be solved cheaply due to
abstract perimeter heuristics and intermediate search trun-
cation. These techniques will be described in more detail in
the following sections.

Problem Definition

The grid-based pathfinding problem is defined as finding a
sequence of legal actions from a start state (xs, ys) to a goal
state (xg, yg), where x and y are positive integers. The agent
can move to any of the immediate 8 neighboring cells, but

Proceedings of the Fifth Artificial Intelligence for Interactive Digital Entertainment Conference

88



can only pass through a cell if it is not blocked. In this pa-
per we extend the state of an agent to include heading and
speed. Thus, the goal is to find a path from the current state,
(xs, ys, θs, vs), to a goal state, (xs, ys, θs, vs), where θ and v
are the current heading and velocity. In this case the move-
ment must obey both map constraints (blocked cells) and
movement constraints, which are implied by the given mo-
tion model. It is assumed that an underlying grid exists and
planning occurs on this grid, although this does not require
that a grid is used as the underlying representation of the
map. Motion is restricted to grid centers, although this can
be relaxed slightly in practice.
We define and use three motion models. As there are a

wide variety of design decisions that can be made regarding
movement, these are used to show the generality of the tech-
niques introduced, and to understand better how design de-
cisions affect the computation costs for planning in a game.
Our three models are:

• Humanoid model: The humanoid model only moves for-
ward, but can turn when stopped. There are two speeds,
walking and running. Turns are discretized into 16 direc-
tions (22.5◦), as shown in Figure 1, and characters using
the model can move up to 67.5◦ in a single action.

• Tank model: The tank model can move forward and
backwards, but only has a single speed. Turns for the tank
model are discretized into 24 directions (15◦ resolution)
and characters using the model can turn up to 45◦ in a
single action.

• Vehicle model: This is the most complicated model. Ve-
hicles can move in forward or reverse, but cannot turn
when stopped. In reverse the model can only move slowly,
but has three speeds when moving forward. The vehicle
can only increase or decrease speed by two levels per ac-
tion. Turns are discretized into 16 directions. The vehicle
can turn faster at slow speeds than at high speeds. At high
speeds no turning is allowed. At a medium speed 22.5◦
turns are allowed, and at low speeds up to 67.5◦ turns are
allowed. In reverse turns of up to 45◦ are allowed.
It is important when designing such models that there is

always a way to reach even difficult locations in the world. If
a model can turn when stopped, this will always be possible.
As a design issue, it may be worthwhile to add a turn action
even to units which are not able to turn in place. If this
action has high cost, then a search will only use this action
if absolutely necessary. In this way the use of the action by
the planner will help indicate that the model is being asked
to perform a maneuver which is too difficult for the model
constraints.

State-space analysis

Adding motion constraints can be seen as adding extra di-
mensions to the search space, however these extra dimen-
sions are relatively constrained. Assuming there areN states
in the original state space before adding motion constraints,
we compute the size of the state space that results from im-
posing the motion model onto search.
In the humanoid model there are three speeds (stopped,

walking and running) and 16 possible headings. This means

Figure 1: Humanoid and vehicle models: 16 possible move-
ments staying on an underlying grid.

that the size of the state space increases to 48N . The tank
model also has three possible speeds. But, there are 24 pos-
sible headings, so the new state space has 72N states. Fi-
nally, in the vehicle model there are five speeds (backwards,
stopped, and three forward speeds) as well as 16 possible
headings, meaning the state space grows by a factor of 80
over the original state space.
While these factors significantly increase the size of the

state space, the cost of storing the representation of the un-
derlying map does not change. They can, however, increase
the average branching factor. As long as we can restrict the
number of states explored during search adding motion con-
straints does not add significant other costs.

Search Optimizations

There are a variety of optimizations required for an effi-
cient implementation of directional pathfinding. We de-
scribe these optimizations here and then will perform ex-
periments to measure their effectiveness.
We will search with each of these models using A* (Hart,

Nilsson, and Raphael 1968). We assume the reader is famil-
iar with A*, but a few features of the algorithm are partic-
ularly relevant to this work. A* expands nodes by f -cost,
where f(n) = g(n) + h(n). A common variant on A* is
weighted A*, which places a weight, w, on the heuristic
value. Weighted A* searches with f(n) = g(n) + w · h(n).
Weighted A* tends to make greedy moves early in the search
when the h-cost is decreasing. Later in the search when
many nodes have similar h-costs, more emphasis is placed
on minimizing the g-cost.
A* maintains two lists, an open list of nodes being con-

sidered for expansion and a closed list of nodes which have
been expanded. A* will never re-open a node off the closed
list if the heuristic being used is consistent. In an undirected
domain, an consistent heuristic is one for which the heuris-
tic between two nodes never changes more than the edge
cost (Martelli 1977). The heuristic we propose here is not
always consistent, so it is important to understand this, al-
though in practice the heuristic is nearly always consistent.
Most simple implementations of A* do not consider the

possibility of re-opening nodes. But, some combinations of
motion models, heuristics, and weighted A* search make it
possible for a shorter path to a node to be discovered after
the node was closed. In some cases it is advantageous to re-
open closed nodes while in other cases it is not. While not

89



Figure 2: Abstraction overlaying a portion of a map.

discussed in detail here, it is an important to be aware of.

High-Level Optimizations

The first set of optimizations are relatively high-level and
apply to any pathfinding operations, not just directional
pathfinding.
Finding long paths is expensive and so, as much as pos-

sible, a pathfinding engine should only be used to find short
paths in the world. This is most often done with an abstract
representation of the world for which high-level plans can
be built. We give an example of this in Figure 2. This figure
shows a map with open spaces in white. The lines across the
map show the abstract graph processed from the underlying
state space. A path is originally found in this graph. Then,
each edge in the graph can individually be refined into a path
in the underlying state space, with intermediate goals at the
nodes in the graph.
A high-level plan usually defines a corridor in the world

in which a model can be expected to travel, although when
turning the abstract path into a walkable path, it may or may
not be desirable to constrain the model to stay within the
corridor (Bulitko et al. 2007). Additionally, the high-level
path does not necessarily need to take into account the di-
rectional constraints. If there are areas in a map which are
problematic for a particular model, they can be tagged and
avoided by the high-level planner.
The second optimization we call intermediate search

truncation. When refining abstract paths, it is not necessary
to reach the goal state, as it is only an intermediate step on
the complete path. Instead, any state near the goal is suffi-
cient. Thus, the search can be terminated not when the goal
is reached, but when any state near the goal is expanded.
Particularly with directional constraints, the final steps of
orienting a model on the goal location can be quite diffi-
cult. Doing so optimally may require actions early in the
search which are not immediately obvious, which increases
the cost of search. This work can be avoided by terminating
the search when it nears the intermediate goal but does not
exactly reach it. In a navigation mesh this can be handled,
for instance, by stopping the search when it enters the same
polygon as the intermediate goal. In a grid-based abstrac-
tion this can be handled by terminating the search when it

reaches the same sector (square) as the intermediate goal.
Finally, many searches can be improved simply by us-

ing weighted A*. Weighted A* allow small suboptimalities
early in the search and focuses its effort on finding good
paths near the goal.

Heuristic Optimizations

It is difficult to build a good heuristic for directional search
problems. A simple heuristic would be to take the straight-
line distance between the start and goal locations, dividing
this by the maximum speed. This is the minimum time pos-
sible to travel between the start and the goal, but it is clearly
only a lower bound if the model is beginning and ending at
rest, as it takes time to accelerate and decelerate. However,
straight-line distance is a weak heuristic in a problem with-
out directional movement. When a motion model causes the
state space to grow by an order of magnitude, it becomes
quite costly to have a poor heuristic.
The first possibility for improving the search is to do a re-

verse A* search and use it for heuristic values, as has been
done for cooperative search between multiple agents (Silver
2005). In this way, the distance portion of the heuristic will
be exact, and only the directional constraints of the search
will not be taken into account by the heuristic. This ap-
proach offers improvement, but the most difficult part of the
search is the restrictions imposed by the model dynamics, so
this is most important to model with the heuristic.
It is possible to analyze the dynamics of the world by hand

in order to build a better heuristic function. This process,
however, is difficult and error prone. Once completed, it
makes it difficult to modify the motion parameters, as the
heuristic analysis will have to be redone. Instead, it is more
desirable for this process to be performed automatically.
An idea which has been used in other domains, such as

the sliding tile puzzle, is perimeter search (Manzini 1995).
In perimeter search, a perimeter of exact heuristic values is
built though reverse search around the goal state. Then, in-
stead of searching to the goal state, the search is performed
towards the perimeter nodes. When a perimeter node is
found, the exact distance to the goal is known and the search
can optionally terminate. (There are termination conditions
for optimality which we do not discuss here.) This idea has
been applied in domains where there is only a single goal
state, as opposed to pathfinding, where there are many dif-
ferent goal states.
We use a modified version of the idea that we call an ab-

stract perimeter heuristic. First, we abstract the state space
by assuming that the goal is in open space with no barriers.
In this case, we can build a perimeter by doing a breadth-
first search in all directions to a fixed distance, storing the
resulting distances efficiently in an array. This is analogous
to an endgame database in a two-player game, which stores
exact information on how to finish off a game. The memory
required by the perimeter depends on the model being used,
but, given a number optimizations, small perimeters can be
stored in reasonably amounts of memory.
The memory required for building a heuristic radius 15

(31×31 table) with no optimization is shown in the first line

90



Humanoid Tank Vehicle
Full Table 8.6MB 19.6MB 24MB
Speed-Limited 2.9MB 6.5MB 4.8MB
Symmetry-Reduced 360k 810k 600k
Rotated 90k 135k 140k

Table 1: Memory required by radius 15 extended perimeter
heuristics.

Goal State

Current State

Goal State

Current State

Rotational Symmetry

Goal State

Current State

Reflection Symmetry

Figure 3: Symmetric lookups in abstract perimeter heuristic.

of Table 1. As an example, the memory for the humanoid
model depends on the number of x/y cells in the table (961),
each of which must have information for all possible head-
ings and speeds (48). Additionally, one table is needed for
all possible goals and headings (48). Assuming 4 bytes per
entry, the total memory is 961 ∗ 48 ∗ 48 ∗ 4 = 8.6MB.

Memory Reductions

In an open world this perimeter provides a perfect heuris-
tic for any possible goal, although the memory overhead is
costly. The overhead can be reduced in several ways. First,
assuming that the goal is always to stop at a particular loca-
tion, a separate perimeter is only needed for each angle pos-
sible in a goal state, not each speed. As shown in the second
line of Table 1 this reduces the memory needed by a factor
of three for the humanoid and tank models, and a factor of
five for the vehicle model. For intermediate segments of a
longer path the intermediate path truncation, which can be
enhanced by further trimming, helps to avoid unnecessary
slowing in the middle of a path.
The tables also contain rotational and reflectional symme-

tries. These are illustrated in Figure 3. The heuristic distance
for the left-most state is clearly the same as both the rotated
and reflected states. For problems with a grid aligned (45◦ or
90◦) goal heading, the reflectional symmetry can be used to
eliminate half the entries in the abstract perimeter heuristic.
With 16 headings, a single perimeter heuristic is needed

as well as two half-sized perimeters due to reflectional sym-
metries. With 24 headings, two full perimeter heuristics are
needed along with two half-sized tables. Taking these sym-
metries into account reduces the total memory needed to un-
der 1MB.
There is one final optimization which further reduces

memory. Notice that the perimeter heuristic assumes an
empty map, and that the grid is arbitrarily overlaid on an un-
derlying map. Therefore, instead of building a heuristic for
each possible goal heading, it is possible to (virtually) rotate
the map for every search problem so that the heading at the

S

G

Figure 4: Visualization of search with perimeter heuristic.

d

Figure 5: Experiment 1 setup.

goal is always the same. Then, a single table can be used for
any search problem. This is the final entry in Table 1, and
should be affordable in most games.

Extended Abstract Perimeter Heuristics

The abstract perimeter heuristic is a perfect heuristic for
open space, but when obstacles are present it will be less
accurate. Additionally, it is possible that many nodes may
have to be expanded which are beyond the heuristic perime-
ter. This is seen in Figure 4. There are many nodes ex-
panded up until the perimeter, with relative few after that.
The solution to this is to scale the perimeter beyond the
initial area. Suppose that a unit is initially 22m from the
goal, while the perimeter is only built to 15m from the goal.
Then, the heuristic value at 22m will be roughly twice the
heuristic value from 11m. But there is a margin of error. So,
we choose a custom weight, wm, for extended distances for
each model, and use this to scale heuristic values to a dis-
tance twice the size of the actual heuristic table. We call this
an extended abstract perimeter heuristic.
This approach is now general and is quite effective in most

situations. It only requires a small pre-computation and a
small memory footprint, but significantly reduces the search
overhead in most situations. The one time when this ap-
proach fails is when the goal is highly constrained. In this
case it may worthwhile to dynamically build a perimeter or
to reverse the direction of the search, always searching the
direction that is least constrained. However, we leave this
concept for future work.

Experimental Results

We have proposed a number of methods for searching with
directional constraints. Our goal is to evaluate each of these

91



Octile

Perimeter Heuristic

Extended Perimeter

N
o

d
e
s
 E

x
p

a
n

d
e
d

10

100

1000

Start/Goal Separation

5 10 15 20 25 30

Humanoid Model

Octile

Perimeter Heuristic

Extended Perimeter

N
o

d
e
s
 E

x
p

a
n

d
e
d

101

102

103

104

Start/Goal Separation

5 10 15 20 25 30

Tank Model

Octile

Perimeter Heuristic

Extended Perimeter

N
o

d
e
s
 E

x
p

a
n

d
e
d

101

102

103

104

Start/Goal Separation

5 10 15 20 25 30

Vehicle Model

Figure 6: Work done planning for the humanoid, tank, and vehicle models for empty-map planning.

methods independently and as part of a complete search im-
plementation. We begin with optimal search.

Search in an Empty Map

The first problem we test is pathfinding in a open world.
This is trivial in normal grid-based pathfinding, but much
more difficult in an environment with directional constraints.
With each of our model types we being with a model facing
due east, and ask the model to move a fixed distance south,
arriving facing due east. This is illustrated in Figure 5. We
then vary the distance travelled and the combination of tech-
niques used, measuring the cost of search.
We use three possible heuristics with each model: The

first, (octile) is the straight-line distance divided by the max-
imum speed. The second is the abstract perimeter heuristic.
The third is the extended abstract perimeter heuristic. We
scale the heuristic by a factor of two in the tank and hu-
manoid models, but by a factor of 1.5 for the vehicle model.
Figure 6 shows the results with the humanoid, tank and

vehicle models. The x-axis is the distance between the start
and goal state. The y-axis is the number of nodes expanded.
Note that the y-axis is on a logarithmic scale, meaning that
even for small distances, the octile heuristic can expand
thousands of nodes.
The perimeter heuristic is very effective when searching

from inside the perimeter, limiting the search to around ap-
proximately 10 nodes. Beyond the perimeter, the extended
heuristic is also effective at minimizing the amount of work.
We tried adding weighted A* on top of these techniques, but
the gains were insignificant, so we do not report them here.
Weighted A* on its own without an improved heuristic is
also effective, but not nearly as effective as the perimeter
heuristics.
We show a visualization of the effect of the non-extended

perimeter in Figure 4. In this model a vehicle starts at S and
plans towards G. It is clear where the heuristic values are
available, as they immediately cutoff the search. Only a sin-
gle path is explored within this region, which leads directly
to the goal.

Full Pathfinding on Real Maps

In this section we consider the cost of full-path planning. We
took a set of 75 maps from a commercial game and asked an
agent to move to and return from 200 pairs of waypoints

Figure 7: Example map used in experiments.

on each map. This results in 30k total paths, over which
300-500k planning steps were performed, depending on the
model. The underlying search was performed with weighted
A* with a weight of 1.2. Abstract paths were formed over
sectors of size 6 (Sturtevant 2007), and we experimented
with refining abstract paths of length 3 and 4, which means
each low-level pathfinding task was length 12-18 or 18-24
respectively, and low-level searches were cut off when an
agent was within 3 steps of the goal.
We compare the work done by the octile heuristic and the

extended abstract perimeter heuristic with and without in-
termediate search truncation for each of the models. The re-
sults from the shorter paths are found in Table 2 and results
from longer paths are in Table 3. We report the median cost,
as well as the 90 and 99th percentiles. These percentiles are
important, because 99% of all pathfinding operations will
cost less than this. Thus, if the 99th percentile cost is small
enough, the technique is affordable in a game.
Without intermediate search truncation all costs are too

high too be feasible in real-time games. With shorter paths
and the extended perimeter heuristic, all models should be
affordable. But, as the path lengths increase to the 18-24
range, the models become less feasible. This is primarily
due to obstacles in the world, as they are not accounted for
in the heuristic. The longer the path, the more room for
obstacles.
Regardless, the techniques described represent a major re-

duction in planning costs for motion constrained path plan-
ning. For many of the models work is reduced a factor of
100 or more over planning with an octile heuristic and no
intermediate search truncation.

92



Humanoid Tank Vehicle
Octile Perimeter Octile Perimeter Octile Perimeter

No intermediate search truncation

Median (50th perc.) 6874 2062 1705 79 9638 595
90th percentile 13197 4373 8138 776 30164 1051
99th percentile 24284 6538 12429 1308 34394 12429

Intermediate search truncation

Median (50th perc.) 25 13 7 7 82 14
90th percentile 82 30 17 10 248 22
99th percentile 1638 260 981 105 3065 104

Table 2: Results from full planning task, planning segments length 12-18.

Humanoid Tank Vehicle
Octile Perimeter Octile Perimeter Octile Perimeter

No intermediate search truncation

Median (50th perc.) 12325 4171 4591 137 14234 909
90th percentile 28387 8189 22482 1290 41325 1750
99th percentile 50741 17185 36023 4764 48279 3452

Intermediate search truncation

Median (50th perc.) 56 162 11 11 157 64
90th percentile 338 565 103 98 770 273
99th percentile 5486 2541 4030 1683 7454 746

Table 3: Results from full planning task, planning segments length 18-24.

Conclusions

This work has shown that pathfinding with motion con-
straints is feasible under several conditions. First, an ab-
stract path must be used to divide the planning problem
into smaller, more feasible components. Then, intermediate
search truncation and extended abstract perimeter heuristics
can be used to reduce the search effort to reasonable levels.
The final cost is well within commercial game constraints.
There are a number of open questions. The quality and

cost of low-level paths is dependent on the high-level paths
from which they are derived. Work is needed to investigate
how a high-level path can be optimized for low-level use.
Additionally, the heuristics assume the world is empty. It is
likely that information about static obstacles in the map can
be used to improve performance and dynamically increase
the accuracy of the heuristics. These techniques can be ap-
plied to any type of motion constraints for movement. We
hope to see games using these technologies and plan to de-
velop playable prototypes which use them.

Acknowledgements

This work was supported by the Alberta Informatics Circle
of Research Excellence (iCORE). Thanks to Oliver Dou for
early discussion and prototyping of this work.

References

Bulitko, V.; Sturtevant, N.; Lu, J.; and Yau, T. 2007. Graph
abstraction in real-time heuristic search. Journal of Artifi-
cial Intelligence Research (JAIR) 30:51 – 100.
Hart, P.; Nilsson, N. J.; and Raphael, B. 1968. A for-
mal basis for the heuristic determination of minimum cost

paths. IEEE Transactions on Systems Science and Cyber-
netics 4:100–107.
Knepper, R. A., and Kelly, A. 2006. High performance
state lattice planning using heuristic look-up tables. In
2006 IEEE/RSJ International Conference on Intelligent
Robots and Systems, 3375 – 3380.
Likhachev, M., and Ferguson, D. 2009. Planning long
dynamically-feasible maneuvers for autonomous vehicles.
International Journal of Robotics Research (IJRR) (to ap-
pear).
Mandow, L., and de-la Cruz, J.-L. P. 2004. Model and
heuristics for the shortest road layout problem. In ECAI,
740–744.
Manzini, G. 1995. Bida: an improved perimeter search
algorithm. Artif. Intell. 75(2):347–360.
Martelli, A. 1977. On the Complexity of Admissible
Search Algorithms. Artificial Intelligence 8(1):1–13.
Nash, A.; Daniel, K.; Koenig, S.; and Felner, A. 2007.
Theta*: Any-angle path planning on grids. In AAAI, 1177–
1183.
Pinter, M. 2001. Toward more realistic pathfinding. In
gamasutra.com.
Silver, D. 2005. Cooperative pathfinding. In AIIDE, 117–
122.
Sturtevant, N. R. 2007. Memory-efficient abstractions for
pathfinding. In AIIDE, 31–36.
Tozour, P. 2002. Building a near-optimal navigation mesh.
In AI Game Programming Wisdom. (S. Rabin, ed.), 171–
185.

93


	AIIDE09
	Contents
	Index
	AAAI Website




