

Using Semantics to Improve the Design of Game Worlds

Tim Tutenel

Delft University of
Technology
Mekelweg 4

2628 CD Delft
The Netherlands

t.tutenel@tudelft.nl

Ruben M. Smelik

TNO Defence, Security &
Safety

Oude Waalsdorperweg 63
2509 JG The Hague

The Netherlands
ruben.smelik@tno.nl

Rafael Bidarra

Delft University of
Technology
Mekelweg 4

2628 CD Delft
The Netherlands

r.bidarra@ewi.tudelft.nl

Klaas Jan de Kraker

TNO Defence, Security &
Safety

Oude Waalsdorperweg 63
2509 JG The Hague

The Netherlands
klaas_jan.dekraker@tno.nl

Abstract
Design of game worlds is becoming more and more labor-
intensive because of the increasing demand and complexity
of content. This is being partially addressed by developing
semi-automated procedural techniques that help generate
(parts of) game worlds (e.g terrains, cities and buildings).
However, most level editors rather deficiently capture and
deploy designer's intent. For example, common positional or
functional relationships between objects are usually limited
to pre-processing a number of anticipated cases.
In this paper we propose a novel scheme for specifying
high-level semantics of objects within a game virtual world,
and in particular we illustrate its application to a variety of
layout solving problems raised by procedural generation
methods. Our approach combines the genericity of a
semantic class library with the power of a layout solver, and
it shows to be both very flexible and effective. Moreover,
this scheme can be useful for improving both manual,
automated and mixed modeling techniques, always leading
to a more efficient layouting process for game worlds.
We conclude that by allowing designers to capture more of
their intent and real-life knowledge in the objects with
which they populate a game world, the integration of
semantics will strongly contribute to stimulate content
reusability, enrich the game play, and eventually also
significantly cut down design duration and cost.

 Introduction

In current games, especially in role-playing games and
shooters, one finds a tendency towards larger game worlds
that stimulate exploration and free roaming. This means
more game content is to be made, while maintaining the
level of detail in game models that is expected by gamers.
However, the discrepancy between the high quality, almost
lifelike, appearance of game worlds and the plainness of
the interaction with their objects becomes even more
noticeable.

Copyright © 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

In Tutenel, et al. (2008) we explained how introducing
semantics to game worlds can help to close this gap. We
define object semantics as all information, beyond the
actual 3D model, related to a particular object within the
game world including e.g. physical attributes like the mass
or material, functional information like how one can
interact with an object. Other examples could be the
subject of a book, the power of a car or the comfort level of
a sofa. On the one hand, capturing more detailed
information about objects and the game world will enable
games with more interesting gameplay possibilities, and
new opportunities for smarter AI or advanced visual
effects. On the other hand, during the design of a game
world, semantic information proves useful as well:
relationships between objects can then be used to guide the
layout of a game world level, whether designing it
manually or generating it procedurally. In this paper, we
focus on the deployment of semantics in this design phase.

To be able to include semantic information in the design
phase, we integrated a semantic class library with rule-
based layout solving, an approach that can be applied to
any combination of both manual design and procedural
generation of game worlds; see (Tutenel, et al. 2009) for
more details. Summarizing, based on the relationships
described between the classes in the library, the constraints
for the layout solver are derived. Our class library provides
two methods of defining relationships between objects:
i) classes can contain layout rules describing relationships
between other classes, and ii) they can be linked through
the use of feature areas defined in the class representation.
By associating a class to feature areas specified in another
class, hierarchies and other relationships can be expressed.
Our layout solving approach allows for evaluating the
validity of a location for a particular class instance in a
given layout, to accommodate user-assisted design. In
combination with a layout planner, which draws objects
from the semantic library as well, we can create fully
automatic procedural game worlds.

In this paper we discuss the added value of semantics in
the design phase of game worlds. We do this by explaining

Proceedings of the Fifth Artificial Intelligence for Interactive Digital Entertainment Conference

100

how the integration of semantics into our layout solving
approach puts more of the designer’s knowledge to good
use, effectively aids the designer by automating several
tasks and, moreover, significantly improves game play. In
the next section we briefly survey research on using
semantics in the design of virtual worlds and how game
play can benefit from semantics. Next, we discuss the
design of our semantic class library and the use of features
in the class representations. Finally, we briefly describe the
layout solver which maintains the class relationships
between objects, and illustrate its results with some scenes
generated by our integrated prototype system.

Related work

Up until now, the use of generalized semantic information
in video game worlds is almost non-existing. However
much of the research regarding this topic is very well
applicable in games. Many ontology languages initially
developed for semantics in web documents, for example
OWL (Smith, et al. 2004), use data structures and
relationships inherent to entities in game worlds. Ontology
languages are used to define classes, properties and
relationships between classes. Furthermore, they provide
generic rules on classes and class instances, e.g. we can
define that no instance of the Person class can have blood
group O, having parents with blood groups A and AB. In
research circles, OWL is already used in combination with
virtual environments, e.g. to improve data for planning
techniques, as surveyed by Gil (2005), or to improve
interaction in virtual environments (Vanacken, et al. 2007).

Otto (2005) used the RDF language (Hayes and
McBride 2004), for which OWL is a vocabulary extension,
to create a semantic virtual environment focused on multi-
user interaction. The general goal of creating more
‘intelligent’ virtual environments appeared already earlier,
e.g. in Aylett and Luck (2000), who discuss the issues in
combining artificial intelligence with virtual environments.
At an object level, adding intelligence was proposed
before, for example in the form of so-called smart objects.
Kallmann and Thalmann (1998) define smart objects as
objects in virtual environments that contain knowledge on
how a user can interact with them. For a desk drawer, for
example, you can specify the pulling motion to open it.

This approach was used by Peters, et al. (2003) to steer
the behavior of non-playable characters (NPCs) in virtual
worlds. In their approach the objects are central in the
interactions between characters. A smart bar object
contains user slots where an NPC can order a drink,
following a number of steps (customer orders a drink,
bartender hands over the drink, customer pays, etc).

Abaci, et al. (2005) use action semantics to improve
planning by intelligent agents. The agents use the semantic
information to decide what actions can or cannot be
performed on a certain object. They define features on the
3D models to facilitate animations, e.g. where to position
the hands to grasp the object. To perform the planning, an
agent can query possible and relevant actions it can take on

objects in its surroundings, in order to reach a goal. This
way the agent can, for instance, find out that it can open a
door that is blocking him from bringing a crate inside.

Since we focus on the design process of game worlds,
relationships between objects are very important. We
already discussed an example of an ontology language that
allows the definition of high-level relationships between
classes of objects. Huhns and Singh (1997) use these
relationships to handle communication between agents
with different knowledge domains. Agents with a complex
knowledge base can still communicate with an agent with
less knowledge by reasoning on the relationships between
classes unknown by the second agent and classes the agent
does know. Next to the basic data modeling relationships
of inheritance, aggregation and instantiation, they use
relationships like owns, causes and contains.

Functional relationships between objects can be useful
in planning applications. Levison (1996) describes a
system to decompose a high level task into a set of action
directives. For this he created a functional hierarchy
between classes. When the task of an agent is to make
light, he can both use candles or a flashlight to perform this
task. The functionality can therefore be defined on a
common parent of these two classes.

On a lower level, we see many geometric relationships
between objects in a virtual world. These are often used in
scene editing applications to assist the user with placing
objects. Xu, et al. (2002) use parent-child relationships to
define which objects can be supported by others. And in
Smith, et al. (2001) these relationships are created with
offer and binding areas that can connect with each other.

In the WordsEye system of Coyne and Sproat (2001),
relationships expressed between objects in natural
language sentences are parsed and transformed to
constraints between different 3D models and on the
properties of these models, to create a layout that depicts
the given sentence. Each object has information like its
different subparts or the default size. Objects also contain
functional information: cars and other road vehicles are
linked to the verb ride. When parsing a sentence John rides
to town, one of these objects is chosen to depict this scene.

The examples of the use of semantics discussed above
highlight the importance of capturing relationships
between classes in virtual worlds in general, and in the
design phase in particular. However, despite many
convincing research results shown, most of these
techniques have not seeped through to commercial game
development yet. One notable exception is the idea of
smart objects used in The Sims™ (see Forbus et al. 2001).
In the next section we show how we integrated semantics
with our layout solving approach to improve the design of
game worlds.

Semantic Layout Solving

We developed a layout solving approach to accommodate
both user-assisted design and fully automated procedural
generation. Given an initial layout, the solver can position

101

a new object in that layout, complying with a set of rules.
This initial layout can be empty or e.g. contain walls when
creating a layout for the objects inside a room. By
iteratively providing a set of objects to the solver, a valid
layout is created. This process is represented in Figure 1.

In a manual design application, the user adds the new
object. The locations deemed valid by the solver, can either
be shown as guidance to the user, or the application can
place the new object immediately on a valid location.

The objects can also be added to the solver by the
planner. Based on a user-created plan, objects are step by
step added to the solver, which in turn generates a new
valid layout. This plan is a high-level procedure for the
automatic generation of a game world layout. The planner
will be discussed in more detail later in this section.

Semantic Class Library
The semantic class library, conceived for integration with
our solving approach, has a hierarchic setup: classes inherit
the properties, the feature-based representation and the
placement rules of their parent classes. The class properties
are available in each step of the solving process.
Cupboards, for example, have a storage volume property,
which is usable to evaluate the amount of available storage.

After creating a new 3D model, the designer associates it
to an existing class in the library, or creates a new class for
it with the desired properties, feature elements (explained
in more detail in the next subsection) and rules. The class
property values, specific to the 3D model, are defined by
the designer. Based on the mesh part names and materials
in the 3D model, some basic properties are calculated
automatically, as e.g. the volume and mass of a model or
the quantity of certain sub parts. When the class properties
are defined, the model is ready to be used in the solver. An
instance of the 3D model can be added directly to the
solver or by referencing to the class, in which case a
suitable model will be picked from the library.

Feature-based Class Representation
For each class in the library, we define a generic
representation, valid for all instances of that class, that
consists of a number of object features, which are 3D
shapes containing a tag. In our solving approach, these
features are used to derive valid and invalid positions for

each instance of that class. Each feature type, which is
designated by the tag, has overlap rules to other feature
types. For example, an OffLimit feature cannot overlap
with any other feature type and is therefore used to indicate
solid areas in an object. The Clearance feature is used to
indicate areas that should remain free to interact with the
object or to reach it, e.g. the area in front of a cupboard.
The Clearance feature cannot overlap with any other
features except for other Clearance features, since this
open area can be shared between multiple objects. An
additional step of our solving mechanism consists of
checking whether every Clearance feature is reachable
from e.g. the entrance of the room. When one or more of
the Clearance features in the proposed layout cannot be
reached, the entire layout is deemed invalid.

The Area feature is meant to be used as a sort of
placeholder for other objects and is particularly suited for
the planner. An Area feature cannot overlap with any other
feature when it is placed, but once placed, every feature
type can overlap with it. This guarantees a free area, which
can be filled with appropriate objects later. Figure 2 depicts
this in a factory layout: first some Area features are added
to designate a storage area, an area for some lockers and an
area for forklifts (top); once these areas are positioned, the
desired objects can be placed inside these areas (bottom).

The size and position of a feature shape are defined
relative to the volume of the class instance, e.g. on top of,
to the left of or at the center of the model, etc. This
facilitates reusing the class representation for all instances
regardless of the size or shape of the used 3D model. A
possible extension to this approach could be unbound
features, i.e. features that are not yet fixed to a shape.
When the designer associates the 3D model to a class, a
position and a size for each unbound feature would need to
be designated either by hand, or possibly through the use
of tags in the names of sub meshes of the 3D model. This
way the features could be attached automatically to these
sub meshes, and the model can be directly linked to the
class library, without an extra processing step.

In any case, it will always take some extra time to define
these feature areas and to create the class representations.
However, as explained in the Related Work section, they
are useful not only in the design phase of a game world.
For example, Clearance features can be used in path
finding algorithms. Every object of the Seat class contains
one or more features designating where a character can sit
down. In the layout solving phase, these features are used
to, e.g. place a drink as close as possible to the Seating
feature as one would do in a real situation. But these
features can just as well be used in behavior planning or in
the animation of NPCs. Since all these features can be
applied in other phases of the game development cycle as
well, that extra time investment is more than justified.

Object Relationships
We mentioned before that features are used in placement
rules as well. Feature tags do not need to link to specific
feature types and can get any tag a designer wants to use.

User input
or

Planner
Object

Library

Class

Solver

Class
Rules

Possible

locations

Figure 1: Scheme of the semantic layout solving approach: either
the user or the planner adds an object to the existing scene; based

on the associated class, the placement rules are chosen and the
solver determines the possible locations for the new object.

102

Therefore, features not linked to a specific type do not
have overlap rules, but they can still be used in placement
rules. For example, when defining rules for a dining table
setup, plates and glasses can be placed on top of the table.
In the representation of the Table class, a TableTop feature
on top of the table model is present. By adding a rule that
the plates and glasses should be restricted to TableTop
features, we are guaranteed they will be positioned on top
of the table. Since walls in a room are stamped with
features too, they can be used to position objects with their
back against a wall, i.e. against a Wall feature.
These types of feature rules indirectly specify relationships
between classes, but we can define rules based on direct
class relationships as well. Some of these relationships
hold in every case and some are specific to the situation.
The latter ones are expressed in rules in a planner step, as
we explain in the next subsection. The general
relationships are formulated in rules directly linked to the
classes. For example, we can define as a rule of the Sofa
class, that when there is an instance of the TV class present
in the same room, a sofa should be facing that TV.

Layout Planner
So far we have explained the basics of the semantic library
integrated in the solving approach. To use this approach for
procedural generation of (parts of) game worlds, a layout
planner was created that iteratively provides the solver
with new objects, for which the solver creates a valid
layout. We mentioned that the solver finds all valid
locations for a new object in a layout, and when used in

combination with the planner, a certain location (scored on
the basis of weight factors, as discussed in the next section)
is selected. The planner works based on a procedure or a
plan: a list of statements and rules that need to be executed
in order. Examples of such rules might be: “place X
instances of class Y”, or “place as many objects of class Z
as possible”. We also added rule control elements as if-
then-else statements or loops. In the plan’s steps, we can
refer to the property values of the already placed objects in
a scene. This way we can create rules like “keep adding
cupboards until the sum of all Storage Volume properties
exceeds 1.3 cubic meters”. In a rule like “place one
instance of the Seat class”, the planner picks an object
from the library associated to the Seat class or one of its
child classes. We can use the property values to guide this
choice. For example, when creating a plan for a modern
house, we could put a maximum constraint on the Age
property. When the planner is unable to execute a step (e.g.
when there is not enough space), the planner can use
backtracking to retry parts of the procedure without
necessarily rejecting the entire layout up to that point.

A virtual world is built up hierarchically. A building lot
consists of a house and possibly a garden; the house
consists of multiple rooms, etc. For a designer, most of
these hierarchies are obvious, so he or she can employ this
knowledge by creating sub-plans. The designer can make a
plan to layout rooms in a house and another plan to layout
objects in a room, for example. This makes the planner
useful in manual scene editing as well. Procedural content
generation cannot, and should not, take over the job of a
game world designer, but it can alleviate it by automating
some tasks. For example, when we create a sub plan for an
office setup, the designer can use this as a building block
for the game level. One could drag and drop an abstract
office setup block into the game world and have the
planner place a desk, a chair, a computer, etc. Instead of
using fixed blocks of objects, you would then get unique
blocks every time you drop one. This is somewhat
comparable to the nowadays common function of terrain
editors, with which the designer can draw a region that is
automatically filled with randomly placed trees and shrubs.

Layout Solver Setup

In this section we briefly describe how the solving
approach works. A more detailed overview of the layout
solver, with all its advantages and limitations can be found
in (Tutenel et al. 2009). When adding an object to the
current layout, first the representation of the associated
class is instantiated for this particular object. When a
position is found for the new object, the features from the
instantiated representation are added to the layout. Based
on the new object’s features and those already present in
the layout, all possible locations for the new object are
found. For this, the feature type rules are used: for the new
object only those positions are kept that do not generate
conflicts. On these possible placement areas, the class rules

Figure 2: A factory floor layout created with the use of Area
features: at the top we see the first steps of the layout plan where

empty areas are reserved. At the bottom we see the areas
populated with the appropriate objects.

103

are evaluated. In addition, when using the planner, the
extra rules defined in the planner step are applied.

These feature and class rules would define either valid
or invalid locations, but such a black-or-white approach is
not always desirable. We want to be able to define that an
object of a particular class attracts or detracts objects of
another class. For this we use attractors and detractors that
assign weights for the possible placement areas. These
weights will deem some locations as unlikely, yet not
completely invalid, for a specific object.

The output is a list of areas where the new object can be
placed, possibly linked to a weight. When a designer is
manually creating a world, this output can be used as a
guide, e.g. by snapping to the nearest valid location or by
showing the valid locations visualizing the weights. As
mentioned earlier, for procedural generation, a random
valid location is picked, taking the weights into account,
and the object and its features are inserted into the layout.

Not every layout deemed valid is equally good. We
included the ability in the solver to compare two layouts on
multiple components. One score component consists of the
scores designated to the different objects: the more objects,
the better the layout. Because of the Clearance features, it
is guaranteed that there is at least a minimum of free space
to use the objects in the layout. In some cases, however,
one might wish to increase the score of a layout when it
has more open spaces (since e.g. this would imply more
comfort, maneuverability, etc.). These two score
components counteract each other, so we have a weight
factor to balance these components. A designer can add
score components based on the class properties, for
example a higher score when there is more storage space.

Results

As an example of our semantics-based layout solving
approach, we discuss a living room plan. Every 3D model
used in the examples is associated with a class that
contains, besides several properties, a set of placement

rules. Usually you only need between one and three simple
rules per class to obtain convincing results. The plan is a
list of fifteen steps, mainly to add a number of instances of
a particular class, with some constraints specified on this
class’ properties, such as a table with a 50 cm maximum
height for the coffee table, minimum comfort level for the
seats, etc. Figure 3 shows an example of a living room
based on this plan and automatically laid out with this
approach. On the left of Figure 3 is the 2D floor plan of the
house with the living room, showing also some of the
features, e.g. there are Clearance features in front of the
sofas, behind the chairs and on both sides of doorways.

Because of the integration with a semantic class library,
our solving approach is generally usable for many different
layout problems. To apply the solver to a new scenario,
one only needs to add the necessary classes to the library.
As a second example, the solver was used for the
automatic generation of a building floor plan; see the house
layout in Figure 3 (left). For this, some different room
types were added to the semantic class library, containing
rules about e.g. the neighboring rooms, and some specific
rules, e.g. requiring the hallway to be connected to a wall
facing the street. In the plan, areas for each room are
created with the minimum dimensions and a suitable layout
for these areas is generated. In the end, a post-processing
step is applied that grows the rooms to fit the building
shape.

Conclusions and Future Work

In this paper we showed the usefulness of the integration of
a semantic class library with our layout solving approach.
We also successfully exemplified a variety of cases with
the use of the planner. To further validate the approach, its
integration with an interactive design environment is
underway.

We also plan to extend the types of semantic
information. At the moment we deploy information about
the objects and their relationships. It is important, however,

Figure 3: Automated generation: (left) 2D floor plan of a house created with our solving approach; (right) 3D visualization of the
living room (from viewpoint indicated by camera in the left image).

104

to include more global semantic information like time and
contextual information or cultural preferences. A room will
look differently at dinner time or when the inhabitants are
having a party, and near Christmas there might be some
specific decorations. This solving approach is equally
useful for generating outdoor environments as well. For
this, it might use information about particular areas in the
game world like the soil type, the depth where bedrock is
reached, neighborhoods, etc.

In short, both manual and procedural game world design
can be greatly improved by capturing designer’s intent in
the semantics of game objects. As a result, content
becomes reusable and parts of the design process can be
automated, which in the end will cut down design costs.
Furthermore, once available, this semantics will likely
stimulate game play, and present new opportunities in
fields as diverse as AI, interaction and animation. Our
preliminary work on the integration of semantics to
improve object interaction and gameplay has been recently
proposed in (Kessing et al. 2009).

Acknowledgments

This research has been supported by the GATE project,
funded by the Netherlands Organization for Scientific
Research (NWO) and the Netherlands ICT Research and
Innovation Authority (ICT Regie).

References

Abaci, T., Cíger, J. and Thalmann, D. 2005. Planning with
smart objects. In Proceedings of the International
Conference in Central Europe on Computer Graphics,
Visualization and Computer Vision (WSCG), 25-28. Plzen
- Bory, Czech Republic.

Aylett, R. and Luck, M. 2000. Applying Artificial
Intelligence to Virtual Reality: Intelligent Virtual
Environments. Applied Artificial Intelligence 14(1): 3-32.

Coyne, B. and Sproat, R. 2001. WordsEye: an Automatic
Text-to-Scene Conversion System. In Proceedings of
International Conference on Computer Graphics and
Interactive Technologies (SIGGRAPH 2001), 487-496.
Los Angeles, California, USA.

Forbus, K. and Wright, W. 2001. Some Notes on
Programming Objects in The Sims™. Northwestern
University.

Gil, Y. 2005. Description Logics and Planning. AI
Magazine 26(2): 73-84.

Hayes, P. and McBride, B. 2004. RDF Semantics.
http://www.w3.org/TR/rdf-mt/. Visited April 1, 2009.

Huhns, M. N. and Singh, M. P. 1997. Ontologies for
Agents. IEEE Internet Computing 1(6): 81-83.

Kallmann, M. and Thalmann, D. 1998. Modeling Objects
for Interaction Tasks. In Proceedings of the 9th
Eurographics Workshop on Animation and Simulation
(EGCAS), 73-86. Lisbon, Portugal.

Kessing, J., Tutenel, T. and Bidarra, R. 2009. Services in
Game Worlds: A Semantic Approach to Improve Object
Interaction. In Proceedings of the 8th International
Conference on Entertainment Computing (ICEC). Paris,
France.

Levison, L. 1996. Connecting Planning and Acting Via
Object-Specific Reasoning. Ph.D. diss., University of
Pennsylvania.

Otto, K. 2005. The Semantics of Multi-User Virtual
Environments. In Proceedings of the 2005 Workshop
Towards Semantic Virtual Environments, 35-39. Villars,
Switzerland.

Peters, C., Dobbyn, S. and Mac Namee, B. 2003. Smart
Objects for Attentive Agents. In Short Paper Proceedings
of the 11th International Conference in Central Europe on
Computer Graphics, Visualization and Computer Vision,
Plzen - Bory, Czech Republic.

Smith, G., Salzman, T. and Stuerzlinger, W. 2001. 3D
Scene Manipulation with 2D Devices and Constraints. In
Graphics Interface Proceedings 2001, 135-142. Ottawa,
Ontario, Canada.

Smith, M. K., Welty, C. and McGuinness, D. L. 2004.
OWL Web Ontology Language Guide.
http://www.w3.org/TR/owl-guide/. Visited April 1, 2009.

Tutenel, T., Bidarra, R., Smelik, R. M. and de Kraker, K. J.
2008. The Role of Semantics in Games and Simulations.
Computers in Entertainment 6(4): 1-35.

Tutenel, T., Bidarra, R., Smelik, R. M. and de Kraker, K. J.
2009. Rule-based Layout Solving and its Application to
Procedural Interior Generation. In Proceedings of the
CASA’09 Workshop on 3D Advanced Media in Gaming
and Simulation (3AMIGAS), 15-24. Amsterdam, The
Netherlands.

Vanacken, L., Raymaekers, C. and Coninx, K. 2007.
Introducing Semantic Information during Conceptual
Modelling of Interaction for Virtual Environments. In
Proceedings of the 2007 Workshop on Multimodal
Interfaces in Semantic Interaction, 17-24. Nagoya, Japan.

Xu, K., Stewart, J. and Fiume, E. 2002. Constraint-Based
Automatic Placement for Scene Composition. In Graphics
Interface Proceedings 2002, 25-34. University of Calgary.

105

	AIIDE09
	Contents
	Index
	AAAI Website

