

Bowyer: A Planning Tool for Bridging

 and Procedural Domains

Steven P. Cash and R. Michael Young

Liquid Narrative Research Group
North Carolina State University

Raleigh, NC 27695
spcash@ncsu.edu, young@csc.ncsu.edu

Abstract
Traditionally, there have been two large obstacles faced in
attempting to apply AI techniques to games and other
virtual environments. The first obstacle is the gap between
the largely declarative representations used by many AI
techniques and the largely procedural approaches used in
virtual environments. The second obstacle is the gap
between the skill sets and knowledge bases of the two
domain experts with AI researchers often lacking
experience using virtual environment APIs and development
environments and virtual environments developers often
lacking significant AI knowledge. In this paper we present
Bowyer, a tool designed to address these two obstacles to
the integration of AI planning algorithms into virtual
environments. Bowyer bridges the gap between the
declarative representations in a planning domain and the
procedural framework of a virtual environment via the use
of code generation techniques. Bowyer’s functionality also
allows planning researchers to integrate their planning
research into virtual environments without the need to have
extensive knowledge of virtual environment development.

 Introduction
Traditionally there have been two large obstacles faced in
attempting to apply Artificial Intelligence (AI) techniques
in games and other virtual environments. The first obstacle
is the gap between the largely declarative based domain of
AI and the largely procedural based domain of most
games, simulations and virtual environments. The second
obstacle, that may be largely a reflection of the first, is the
lack of virtual environment development knowledge by
most AI researchers and conversely the lack of AI
knowledge by most virtual environment developers.

Copyright © 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

 Given these obstacles the AI support in most
commercial games and other virtual environments have
been based on relatively simple procedural AI techniques
such as finite state machines (FSM) and variants of the A*
search algorithm. Games and other virtual environments
can benefit greatly from more advanced declarative AI
techniques such as planning. These benefits can be seen in
the recent success of the F.E.A.R. (Monolith 2005)
commercial video game that uses a planning based AI. As
noted by one designer of F.E.A.R. the three main benefits a
declarative planning approach gives over traditional
procedural AI approaches are: decoupling goals and
behaviors, layering simple behaviors to achieve more
complex behaviors and adding dynamic problem solving
abilities (Orkin 2003).
 In this paper we present Bowyer, a tool designed to
address these two obstacles to adding AI planning
techniques to virtual environments. Bowyer allows a user
to specify a declarative planning domain and then
automatically generates a procedural representation of that
planning domain for use in the virtual environment.
Bowyer breaks this process into three general steps. The
first step involves the user specification of a planning
domain. The second step involves the generation of
procedural representations of the planning domain
operators and objects for use in the virtual environment
through code generation techniques. The final step consists
of integrating plans into the virtual environment by a)
creating a planning problem, b) automatically retrieving
solutions to the planning problem from a planner and c)
executing the resulting plans in the virtual environment
using the code generated by Bowyer in the second step.

Related Work
In general, Bowyer’s functionality can be broken into three
sections: planning domain specification, code generation
and virtual environment and planner interaction. In this

the Gap between Declarative

14

Proceedings of the Fifth Artificial Intelligence for Interactive Digital Entertainment Conference

section we present an overview of previous work in these
three areas that is most relevant to our discussion of
Bowyer.

Planning
The aspects of planning that Bowyer addresses are
primarily planning domain specification and planning
problem specification. Bowyer’s functionality in these
areas is based on its integration into the Zocalo planning
framework (Vernieri 2006). Zocalo’s default planner
Crossbow is the C# implementation of the Longbow
planner (Young, Pollack and Moore 1994.) which is an
extension of the UCPOP planner (Penberthy and Weld
1992) that adds hierarchical planning support. As a result
Bowyer’s planning domain and planning problem
specification support is based on the STRIPS planning
language (Fikes and Nilsson 1971).

Code Generation
Code generation is an establish field of research in
computer science and has proven to be a useful technique
in research based and commercially viable systems.
Bowyer’s code generation functionality is based on a
partial class generation approach. Bowyer uses a code
library of small code modules or code “chunks” that can be
specified using Bowyer’s interface. These code modules
are mapped to planning operators and objects and an XML
representation is created for the planning operator or
object. XSLT templates specific to the virtual environment
being used are then applied to the XML to generate the
virtual environment source code. Other tools such as
Captool (Perrin, Benoit and Foulloy 2002) and the MOmo
compiler (Bichler 2003) use a similar approach to code
generation to bridge the gap between domain experts and
software engineers.

Planning Tools
The planning tools covered in this section are, like
Bowyer, tools that were designed to help planning
researchers conduct their planning research. We make this
distinction to differentiate these planning tools from tools
that incorporate planning techniques as an AI technique to
accomplish other tasks but are not aimed at improving
planning research.
 GIPO (Simpson et al. 2001) and its successor GIPO II
(Simpson et al. 2003) are designed to aid planning
researchers in defining planning domain models. Their
functionality includes a graphical interface to define
planning domain models, tools for checking the validity of
the developed domain models, tools to validate the domain
models against existing plans, import and export of
planning domains and an interface for integration with
external planning algorithms.
 ViTAPlan (Vrakas and Vlahavas 2003) is a visual tool
used for the highly adjustable planning (HAP) system.
Similar to GIPO, ViTAPlan also supports execution of a
plan, checking the consistency of a plan, and similar to

Bowyer uses a graphical interface for specifying planning
domains and planning problems and generates domain and
planning problem specifications.
 Bowman (Thomas and Young 2006) is a system that
was developed to aid planning researchers, game designers
and other users interested in utilizing planning for
interactive narrative. Bowman was also built as a part of
the Zocalo framework and uses similar planning domain
and planning problem specification interfaces as Bowyer.

ScriptEase
ScriptEase (Cutumisu et al. 2007) is designed to be a visual
tool for generating scripts for a commercial computer role-
playing-game; to create scripted sequences to control non-
player characters in the game world. ScriptEase consists of
two basic components, the Atom Builder and the Pattern
Builder. The Atom Builder is designed to be used by
programmers to create small “atoms” of scripting code.
The Pattern Builder is designed to be used by designers
(nonprogrammers) and uses the atoms to create patterns of
actions referred to as situations.
 ScriptEase’s approach to generation of source code
using code modules and common patterns is similar in
concept to the approach Bowyer takes to generate code.
The use of patterns to generate common source code is
prevalent in code generation techniques in general.
Bowyer’s differentiation from ScriptEase can be seen in its
planning support, through its visual specification of
planning domains and mapping of planning objects and
operators to virtual environment representations for
execution of plans in the virtual environment. Bowyer also
utilizes an approach to code generation, discussed in the
next section, which allows new languages and new virtual
environments to be supported without the need to rebuild
the Bowyer application code base to support the new
virtual environments.

Bowyer Overview
This section provides an overview of Bowyer’s
functionality. Bowyer’s approach to addressing the two
obstacles covered in the introduction can be broken down
into a series of distinct steps divided into three stages used
to translate planning domain representations into virtual
environment representations. These steps are represented
in Figure 1 grouped by stage.
 Also in order to help ground the description of Bowyer,
simple examples will be given. The context for these
examples is a bank world scenario which includes a bank
robber character whose goal is to steal the gold from the
bank vault. Due to length constraints this entire scenario
cannot be fully described but to aid understanding some
examples from this scenario will be given.
 Also, while all of Bowyer’s functionality is overviewed
in this section and available to all users, most users will not
use all of the functionality. Planning researchers will
generally be able to download the shared resources needed

15

for the virtual environment domain specification and game
designers and developers will be able to use and modify
existing planning domain and planning problem
specifications to gain a better understanding of how to
define them.

Figure 1: Bowyer Functionality Overview

Planning Domain Specification
Bowyer allows the user to create a planning domain
specification using its interface to define the types, objects,
literals and operators that exist in the planning domain.
 Types in Bowyer represent the types of objects in the
planning domain and consist simply of a type name. Types
are defined in a hierarchical manner with the root of the
hierarchy being the generic type anyThing and all types are
directly or indirectly derived from this type. One example
of a type from the bank world would be the key type which
is the type of the object that is used to unlock the bank
vault.
 Objects in Bowyer represent the physical objects and
locations in the virtual world that will be used in the
planning process. Objects in Bowyer consist of a name, an
optional description and can have one or more types
assigned to them. The gold in the bank value would be an
object in the bank world and would simply need to be an
object named “gold” with the type gold assigned to it.
 Literals are used as the operator’s preconditions,
constraints and effects and to define the initial and goal
states in the planning problem. Literals in Bowyer consist
of a name, optional description and a set of arguments for
the literal represented by their types. The has(character,
object) literal is used in the bank world scenario to
determine if a character in the world has a given object.
 Operators in Bowyer represent the actions that are
possible in the planning domain. Operator representations
consist of: a name, preconditions, constraints, effects and a
set of parameters similar to the way operators are
represented in the STRIPS planning language.
Preconditions, constraints and effects are represented as
lists of literals. A heavily used operator in the bank world
scenario is MoveTo. This operator has three parameters
representing the character that is going to move, the start

location and the end location. The preconditions for this
operator are at(character, start) and pathExists(start, end)
representing that the character is at the start location and
that there is a path between the start and end locations.
The constraints for this operator are isLocation(start),
isLocation(end) and isCharacter(character) that verify that
the parameters are of the correct type. Finally, the effects
of this operator are at(character, end) and notAt(character,
start) which represents that the character has moved and is
at the end location and no longer at the start location.
These planning domain specifications can be saved and
shared so that users not as familiar with planning domain
specification can use existing specifications.

Virtual Environment Domain Specification
Bowyer allows the user to specify Zocalo client
information for the virtual environment being used. The
functionality covered in this subsection is designed for a
user familiar with the Zocalo client for the virtual
environment, usually the developer of the Zocalo client.
The process described here should only need to be
completed once for each virtual environment and creates
representations saved as XML files that can be distributed
with the Zocalo client and loaded by Bowyer. This is one
of the steps taken in Bowyer’s functionality to help aid
nonprogrammer users of Bowyer with the code generation
process. The functionality for this subsection includes
specifying: the generic operator and object base class
representations, code libraries for the virtual environment
and the location of the XSLT templates for the virtual
environment. This creates a Bowyer virtual environment
client specification.
 The Bowyer client base classes represent the generic
operator and object classes in the Zocalo client, referred to
as action classes and world object classes respectively. The
definition of the Bowyer client’s base classes is necessary
for the code generation step to allow the methods in the
base classes to be mapped along with code library methods
and properties, to the planning operators and objects. The
process of specifying base classes consists of specifying
the name of each base class as well as the signature for all
of the methods in each base class. A method’s signature
consists of the scope, return type, name and parameters for
that method.
 Although some functionality for the generated source
code classes is inherited from the base classes, additional
functionality will be needed in the generated operator and
object representations. This additional functionality is
obtained from code modules that are saved in code
libraries using Bowyer’s interface. Each virtual
environment must have its own code library built using the
programming language that corresponds to that virtual
environment. As with the base class definitions the code
library is designed to be sharable between users,
downloadable with Bowyer and specified by developers
for the virtual environment. This portability of the code
library is another feature used to aid nonprogrammer users
in the code generation process. The code library for each

16

virtual environment is built by adding method and property
specifications that can be used to specify possible operator
and object functionality. Methods are specified by entering
the scope, return type, name, parameters, code body and a
description for the method. Properties are specified by
entering the type, name and default value of the property.
 Finally, Bowyer needs to know the location of the XSLT
templates for the virtual environment so that it can use
them in the code generation process to create source code
representations of the XML representations for the
planning operators and objects.

Mapping Between Declarative and Procedural
Domains
Bowyer is able to bridge the gap between declarative and
procedural domains using code generation and a process of
mapping from planning operators and objects attributes to
virtual environment code. This includes two steps:
mapping code modules to planning operators and objects
and mapping code variables to operator parameters. After
the mapping is complete the virtual environment code
representation of the planning operators and objects can be
generated, viewed, edited and saved for use in the virtual
environment.
 The first step in translating planning operators and
objects into their virtual environment representations is to
map code methods and properties to operators and objects.
For planning operators the mapping consist of mapping the
literals for the preconditions, constraints and effects to
their method representations as well as mapping the code
representations for the operator’s execution (the code that
actually performs the operator’s effects) and any code that
should be in the operator’s initialization code. For
example, a mapping for the MoveTo operator would
include mapping the at(character, start) precondition
literal to the isTouching(actor, location) method in the
code library.
 For planning object translation Bowyer allows the user
to map any methods or properties to the planning object
that reflect the object functionality. For example, the key
object would have the unlock() method mapped to it.
 After the mapping for all of the operators and objects
has been completed the next step is the operator parameter
to code variable mapping stage.
 After all methods have been added to an operator the
variables used in each of the method signatures (as method
parameters) need to be mapped to the operator’s
parameters. This is necessary because the variables used in
the code represent the world objects in the virtual
environment and the operator’s parameters are used by the
action classes to find the correct virtual environment world
objects. A simple one to one mapping is created for each
method’s variables. For example the at(character, start) to
isTouching(actor, location) mapping given earlier would
require a variable to parameter mapping to map character
to actor and start to location for the generated code to
function correctly.

 Code generation in Bowyer uses the mapped
relationships defined in the previous two steps to create an
XML specification of the planning operator or object. This
XML specification is then sent to be processed by the
current client’s XSLT templates to generate the source
code to be used in the virtual environment. The generated
source code is displayed to the user so that any possible
changes can be made such as specifying initial values for
properties. The source code can then be saved to file to be
used in the virtual environment. This code generation
technique was selected to allow Bowyer to generate code
for additional virtual environments without the need to
modify the Bowyer implementation. This can be achieved
by defining a Bowyer client, base class definitions, XSLT
templates and a code library for the new virtual
environment.

Integration with the Zocalo Planning Framework
The Zocalo planning framework is a web service based
framework made up of several independent components. It
is designed to facilitate planning support and testing in
virtual environments by removing the tight integration
between planners and virtual environments. This allows for
easy testing of different combinations of planners and
virtual environments. The architecture of the Zocalo
framework that is relevant to Bowyer’s functionality is
shown in Figure 2.

Figure 2: Components of the Zocalo Framework

 Bowyer provides functionality to allow the user to
graphically specify a planning problem and planning
domain, connect to a planner (default is Crossbow), request
a plan using the planning problem and planning domain
given, and display the returned plan to the user as a plan
graph. Bowyer’s planner support is based on the planner
support that the Zocalo framework provides and therefore
requires that planners support the same web service
interface that Zocalo uses. This allows planning
researchers and game designers to easily swap out planning
algorithm implementations.

17

 Before using a planner to find a plan the planning
domain and planning problem must be specified for use by
the planner. Bowyer allows the user to use the current
planning domain maintained by Bowyer or to specify the
location of a planning domain document. Bowyer also
allows the user to specify the planning problem by
specifying the literals in the start and goal state of the plan
using the Bowyer interface or by specifying the location of
a planning problem document.
 Bowyer’s planner interaction includes connecting to a
planner, specifying the domain and planning problem,
specifying some optional plan space search information
and retrieving the plan to display to the user. After the plan
has been created Bowyer allows the user to connect to the
virtual environment through the Execution Manager
component and execute the plan in the virtual environment.

Discussion and Evaluation
A small pilot study with five participants was conducted to
create an initial evaluation of Bowyer. The pilot study was
setup to get potential users, for this study planning
researchers, evaluation after giving them an opportunity to
interact with Bowyer to complete a set of simple tasks
associated with the bank world scenario. The study was
broken down into three stages that corresponded to the
three sections of Bowyer functionality so that each stage
could be evaluated separately. The pilot study used an
initial implementation of the Bowyer tool and the Zocalo
framework with a client for the Unreal Tournament 2004
game engine.
 In general planning domain and planning problem
creation is an iterative, trial and error process. In order to
conduct the study in a reasonable time period each
participant was given a script for the bank world with a set
of instructions for steps to complete for each stage. The
instructions were written in natural language and included
no Bowyer interface specific instructions. The study was
meant to give the users a general feel for the functionality
of Bowyer and the types of tasks they would be able to
complete using Bowyer. At the end of each stage and at the
end of the session the participants were given a set of short
answer and survey questions to rate their experience using
Bowyer and give feedback.
 The first stage of the study was used to evaluate
Bowyer’s ability to allow the user to specify a planning
domain. In general the participants found that Bowyer’s
functionality allowed them to efficiently and intuitively
create the planning domain and that it matched well with
the STRIPS paradigm. All of the suggested improvements
noted by the participants were related to Bowyer’s user
interface and the fact that defining the types, objects,
literals and operators was done separately and is less
intuitive then being able to define them together.
 The second stage of the study was used to evaluate
Bowyer’s ability to allow the user to create virtual
environment representations of the planning domain
operators and objects. The participants stated that while the

mapping process was not as intuitive as the planning
domain specification process, once the general flow of the
mapping process was understood they found it efficient
and easily understandable. The main problems found with
this stage were that the participants would like more
information about the virtual environment code library and
a drop and drag interface to do the mapping.
 The third stage of the study was used to evaluate
Bowyer’s ability to allow the user to specify a planning
problem, get a plan from the planner and execute the plan
in the virtual environment. The participants found the
functionality for this stage the most useful in that it would
allow them to test planners and plans in the virtual
environment and could be used separately with other
aspects of their planning research given the ability to save
and load planning domains and planning problems. The
main concerns and suggested improvements for this stage
were usability improvements such as displaying more
information about the Zocalo framework and about the
current state of the plan and virtual environment.
 In general the study participants found Bowyer to be a
useful tool that they would use to integrate their planning
research into virtual environments, test their research and
give demos of their research. Most of the participants’
criticisms of Bowyer can be attributed to Bowyer currently
being in a proof of concept state with the usability
concerns being addressed in future development of the
tool. In all the results of the pilot study were promising,
showing that Bowyer could be useful to aiding in
integration of planning into virtual environments.

Benefits Provided by Bowyer
Bowyer is designed to provide several benefits to the
planning researchers and other users integrating planning
AI into virtual environments. Bowyer’s main benefit is to
aid the user in bridging the gap between the planning
domain and the virtual environment domain. This provides
the additional benefit of allowing planning researchers, and
game designers with basic planning knowledge, to
incorporate planning techniques and functionality into
virtual environments to create more robust experiences,
add dynamic narrative structure and allow new elements of
narrative and game play to be integrated into the virtual
environment that go beyond what is possible with simpler
AI techniques. Also Bowyer has been designed to aid
planning researchers in testing planning algorithms, plans
generated by planning algorithms and other aspects of
planning such as interactive narrative in virtual
environments by requiring much less knowledge about
virtual environment development and allowing researchers
to easily swap out components of the testing framework.

Conclusion and Future Work
Future work for Bowyer can be divided into the separate
sections of Bowyer functionality.

18

 The approach Bowyer takes to the specification of
planning domains can be further improved by adding
validation checks for the domain, adding decomposition
support for hierarchical planning and adding mediation
support to the planning domain specification so that
Bowyer can use all functionality provided by the Zocalo
framework.
 The specification of virtual environment representations
as Zocalo client’s can be improved by allowing more the
one level of inheritance in the generated code as well as
allowing the user to use virtual environment classes,
previously generated by Bowyer, to be the parent class of
newly generated Bowyer classes. The code generation can
be improved by adding more intelligence to the code
generation process. An additional improvement to code
generation is to add functionality to Bowyer to generate
planning domain and planning problem specifications in
planning languages such as PDDL and STRIPS in the same
manner in which virtual environment source code is
generated.
 The plan generation and execution support can be
improved by adding planning mediation support and
making the plan execution support more robust to allow for
smoother interactions with the virtual environment and
more control over the virtual environment.
 Bowyer is meant to be a first step towards bridging the
gap between declarative and procedural domains. It is
designed specifically for planning domains and developed
as a proof of concept implementation. Given this, Bowyer
is able to accomplish the two goals for which it was
designed. It is able to create translations between
declarative planning domains and procedural virtual
environments and, under the assumption that appropriate
virtual environment client specifications and code libraries
exist, it is able to allow nonprogrammer users to complete
this translation process. Bowyer and its descendent tools
should prove to be useful in the development, testing and
application of planning research and as a part of the larger
Zocalo framework will serve as a robust platform for
integrating planning into virtual environments for research
based as well as commercial projects.

Acknowledgements
The authors wish to thank the members of the Liquid
Narrative research group for their assistance in the
creation of the Zocalo framework and for their support
in the development of Bowyer.

References
Bichler, L. 2003. A Flexible Code Generator for MOF-
based Modeling Languages. OOPSLA Workshop on
Generative Techniques in the context of Model Driven
Architecture. Anaheim, California, USA 2003.

Cutumisu, M.; et al. 2007. ScriptEase: A
Generative/Adaptive Programming Paradigm for Game
Scripting. Science of Computer Programming 67:32–58.

Fikes, R. E. and Nilsson, N. J. 1971. STRIPS: A new
Approach to the Application of Theorem Proving to
Problem Solving. Artificial Intelligence 5(2):189-208.

Monolith Productions, Inc. 2005. F.E.A.R., Los Angeles,
California: Vivendi Universal Games.

Orkin, J. 2003. Applying Goal-Oriented Action Planning to
Games. AI Game Programming Wisdom 2, Hingham
Mass.: Charles River Media.

Penberthy, J. S. and Weld, D. 1992. UCPOP: A Sound,
Complete, Partial-Order Planner for ADL. Third
International Conference on Knowledge Representation
and Reasoning (KR-92), Cambridge, MA, October 1992.

Perrin, S.; Benoit, E. and Foulloy, L. 2002. Automatic
Code Generation based on Generic Description of
Intelligent Instrument. 2002 IEEE International
Conference on Systems, Man and Cybernetics. Volume: 6.
Hammamet, Tunisia, October 2002

Simpson, R. M.; et. al. 2001. GIPO: An Integrated
Graphical Tool to support Knowledge Engineering in AI
Planning. Proceedings of the 6th European Conference on
Planning. 2001.

Simpson, R. M.; et. al. 2003. GIPO II: HTN Planning in a
Tool-supported Knowledge Engineering Environment.
Proceedings of the Thirteenth International Conference on
Automated Planning and Scheduling (ICAPS 2003),
Trento, Italy, June 2003.

Thomas, J. and Young, R. M. 2006. Author in the Loop:
Using Mixed-Initiative Planning to Improve Interactive
Narrative. In Proceedings of the ICAPS-06 Workshop on
AI Planning for Computer Games and Synthetic
Characters, Cumbria, UK.

Vernieri, T. 2006. A Web Services Approach to
Generating and Using Plans in Configurable Execution
Environments. Masters Thesis. North Carolina State
University.

Vrakas D. and Vlahavas, I. 2003. ViTAPlan: A Visual
Tool for Adaptive Planning. Proceedings of the 9th
Panhellenic Conference on Informatics, Thessaloniki,
Greece, 2003.

Young, R.M. Pollack, M.E and Moore, J.D. 1994.
Decomposition and Causality in Partial-Order Planning.
Proceedings of the 2nd Int’l Conf. AI Planning Systems
(AIPS-94), AAAI Press, 1994.

19

	AIIDE09
	Contents
	Index
	AAAI Website

