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Abstract

In this paper, we propose a language grounding method that
relates verbs which imply body manipulation to motor angle
patterns in a humanoid robot to make robots more entertain-
ing. In established methods, verbs are represented by statisti-
cal models based on trajectories or motor patterns of a trajec-
tor. In our method we use a novel representation model that
has six features including both trajector-reference point rela-
tionships and the trajector’s trajectory. By using this model,
some verbs which do not depend on a trajectory, e.g. ”move
the right hand close to the left hand.” are represented more
adequately. In our language grounding method a humanoid
robot generates abstract verb meanings independent of con-
text. As input it uses sets of a user input textual command
and a motor pattern. The motor pattern is taught using direct
physical feedback resembling playing with child. We imple-
mented the algorithm in a humanoid robot and conducted a
verb acquisition experiment. As a result, four problematic
verbs, ”place-on”, ”move-close-to”, ”move-away-from”, and
”touch-with” were acquired correctly.

Introduction

Recently, many robots are developed to amuse people at
home (Kato et al. 2004; Tanaka and Suzuki 2004), not to
perform tasks in a factory. Some of such robots are able to
have a conversation with human and to output movements.
Many people use them to relax, have fun, or perform reha-
bilitation (Burgar et al. 2000). However, the robots have
a problem to entertain us for longer time. That is, they al-
ways talk using limited vocabulary, reply patterns, and kinds
of movement. For this reason, users soon become bored.
Therefore, we strongly believe that robots having an ability
to learn language and movements through interaction with
human make people happier. That ability is the same as the
language acquisition ability. However, as far as acquiring
language by robots, we have to face the symbol grounding
problem (Harnad 1990) how the computer automatically re-
lates the symbolic language system to the non-symbolic real
world.

There are several research activities on language acqui-
sition of embodied systems and several ways of symbol
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grounding are proposed. Nouns and adjectives ground-
ing have been established by connecting object names to
perceptual categories in visual and audio perception of an
arm robot using a statistical cross-modal model (Roy 2002;
2008) or the Hidden Markov Model (Iwahashi 2003). Steels
developed a language grounding model through language
game (Steels and Kaplan 2001; Steels 2006).

Whereas nouns and adjectives acquisition have been suc-
cessful, we believe that there are still many problems
which should be resolved in verbs acquisition from the re-
search focused on connectives acquisition in a humanoid
robot (Hasegawa, Rzepka, and Araki 2009), although many
researchers have tried to realize the system. This is be-
cause a motor pattern that robots have to generate com-
pletely changes corresponding to both language context (ob-
jectives) and physical context (initial position, end position,
obstacles) which are input a verb.

State of the Art

We believe that verbs acquisition difficulties in a computer
are derived from higher ambiguity than nouns’. When a
robot makes a movement for ”place-on”, the motor patterns
which should be generated will change significantly depend-
ing on contexts such as an initial motor pattern, a position
of objects referred by objectives, an existence or nonexis-
tence of obstacles, and so on. That is why the robot needs
a representation which is able to describe meanings of verbs
independent of context.

There are some research activities in verb acquisi-
tion (Siskind 2001; Peters and Campbell 2003). Tani et
al. (Sugita and Tani 2005) described a system using Recur-
rent Neural Network, where a movable arm robot acquires
nouns and verbs from pairs of a two words phrase like ”push
green” and a motor pattern. Sugiura et al. (Sugiura and Iwa-
hashi 2008) also developed a verbs acquisition model for
an arm robot. They used Hidden Markov Model to learn
object-manipulation-verb meanings from sets of a sentence
and a trajectory of robot’s arm. The trajectory was in the
trajector1-reference point2 specific coordinate system.

1A trajector is what moves mainly in a movement. It can be an
object or a body part.

2A reference point is what is referred by a trajector in a move-
ment.
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However, their verb representation models are statisti-
cal models based on direct motor patterns or the trajector’s
trajectories. We propose a novel representation model for
movements based not only on trajectories but also trajector-
reference point relationships, because the model based only
on trajectories can not represent meanings of some verbs
which are independent of the trajectories. For instance,
”move the right hand close to the left hand” does not mean
the way how the right hand moves to the left hand but how
the distance between the right hand and the left hand was
shorten independently of its trajectory.

Original points of our method proposed in this paper are
a feature based representation model for verbs and a move-
ment teaching method using direct physical feedback. We
will describe a feature based representation model that has
six features including both trajector-reference point relation-
ships and the trajector’s trajectory for body manipulation
movements. Body movement verbs, our targets, are verbs
which imply body movement and which have two objectives
which also imply body parts. Our representation model has
merits that some verbs which are independent of the trajecto-
ries are represented appropriately and it is easy for designer
to understand how verbs are represented. Above mentioned
probabilistic and connectionist method do not have these
merits. We also show an algorithm where a humanoid robot
acquired abstract verb meanings from sets of a textual com-
mand and a motor pattern which are taught by human using
direct physical feedback. At last, we give a brief explanation
about experimental results where the robot can learn four
actions: ”place-on”, ”move-close-to”, ”move-away-from”,
and ”touch-with” through interaction with human, and the
learned verbs have robustness in terms of changing objec-
tives, initial position, end position, and obstacles. In this
experiment, our target language is Japanese, and we will use
italic when giving Japanese examples. Because our method
is language independent, we will examine it with other lan-
guage, e.g. English, in the future.

Overview of Our System

We will show an overview of our system below (Figure 1).
It works in two phases: learning and testing. In the learn-
ing phase, a user inputs a Japanese textual command which
contains a body movement verb with two objects by using
a keyboard. Then, the user also inputs a proper movement
to the robot through direct physical feedback (see section of
Direct Physical Feedback). The feedback movements are
detected as motor angle patterns retrieved from each sensor.
Next, the system converts a set of a command and a motor
pattern to a set of the command and an movement repre-
sentation in Movement Cognition Module, and then adds it
to the Example Database. From actual and concrete exam-
ples of movement representation about a verb in the Exam-
ple Database, the system creates a meaning of the verb by
abstracting the examples and adds it to the Rule Database in
Abstraction Module.

In the testing phase, a user inputs an unknown sentence
which contains an already known verb in unknown language
context (objectives) and physical context (initial position,

end position, and obstacles). Then, the system generates a
motor angle pattern using a rule and outputs an movement.

1. Input Sentence
 

6. Reply Movement

2. Teaching Movement

Example Database

5. Movement Generation

    Module           

4. Abstraction Module

Rule Database

3. Movement Cognition

    Module 

Figure 1: System Overview

Prerequisite

In this verbs grounding algorithm, we assume that the
system already acquired Japanese morphology, because in
Japanese text processing the computer has to segment a sen-
tence into morphological elements first. In our system we
use a morphological analyzer MeCab3 to segment sentences.
Moreover, we also assume that the system has acquired
nouns about the robot’s body parts. That is, the system can
understand which part of body is ”the right hand” and can
calculate where ”the right hand” is exactly in the standard
coordinate system (see section of Humanoid Robot).

Humanoid Robot

For our experiments, we used a humanoid robot (KHR2-
HV4) shown in Figure 2. The robot is equipped with 17
motors but no sensors, and it sends signals describing only
its motor states.

We set the standard coordinate system where the origin is
at the robot’s chest, the x-axis is the horizontal direction of
robot’s front side, and the z-axis is vertical (see Figure 2).

Direct Physical Feedback

Several methods have already been developed where a hu-
man supervisor teaches movements to humanoid robots, e.g.
the vision based method (Mataric 2000; Schaal 1999) or the
motion capture based method (Inamura et al. 2004). How-
ever, we decided to implement a direct physical feedback
method where humans teach movements to a robot by actu-
ally moving its body parts. We claim that it is a universal
and natural method which allows teaching new movements
within the limits of any humanoid robot’s body structure.

3MeCab: Yet Another Part-of-Speech and Morphological Ana-
lyzer, http://mecab.sourceforge.jp/

4Kondo Kagaku Co. Ltd, http://www.kondo-robot.com/
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Figure 2: KHR2-HV

In addition it needs no extra equipment as cameras and mi-
crophones and can be implemented in even very simple and
inexpensive toy humanoids.

Representation Model

The below is the proposed representation model for body
movements. In this model, we define six features to rep-
resent movements. Our target verbs depend on the robot’s
structure we use (e.g. the robot can not grab things), and
we set the six features to represent these verbs. The sys-
tem can represent movements which are independent of the
trajector’s trajectory, because the 3rd, 4th and 5th features
describe relationship between trajector and reference point.
The system automatically generates the representation from
a sentence and a motor pattern. Figure 3 is an example of
”Place the right hand on the head.”

1. A trajector name

2. A reference point name

3. The variation of distance between trajector and reference
from initial to final position

4. The distance between trajector and reference in the final
position

5. An above/under positional relationship of trajector to ob-
ject

6. A trajector’s trajectory in the coordinate system where the
origin is at reference point’s position, x-axis is the hori-
zontal direction of trajector’s initial position, and z-axis is
vertical.

Movement Cognition Module

A set of a textual command and a motor angle pattern which
is input by a user is transformed to an example with the rep-
resentation model. We will explain how the Movement Cog-
nition Module works, considering an example ”Put the right
hand on the head (Figure 4).” First, the motor angle pattern
is converted to trajectories of referenced body parts, ”the
right hand” and ”the head”, by solving the direct kinemat-
ics problem. Then, the system distinguishes which noun is

Figure 3: Example of the Model

a trajector and which one is a reference point. Next, the sys-
tem calculates values of other features. Finally, the system
adds the set of a command and an movement representation
to the Example Database.

  Sentence and Motor Pattern

  Cognition of Values of Other Features

     Addition Example to the Example Database

  Cognition of Trajector and a Reference Point 

 Transformation to The Standard Coordinate 

Figure 4: Movement Cognition

Cognition of Trajector and Reference Point

Cognition of a trajector and a reference point are based on
an assumption that a trajector moves the largest amount of
distance in all candidates. Thus, the system can distinct a
trajector as the one which has larger moving distance than
the other.

Cognition of Values of Other Features

The values of other features are calculated after cognition
of a trajector and a reference point. Where P0 is the initial
position of trajector in the standard coordinate system, PL

is the final position of trajector, O0 is the initial position of
reference point, OL is the final position of object. Then, the
3rd feature is calculated (1), the 4th feature (2), and the 5th
feature (3). The 6th feature is given by solving the forward
kinematics problem about Pi (i = 0...L).

3rd value = |P0 − O0| − |PL − OL| (1)

4th value = |PL − OL| (2)

5th value =

{
”above” if PLz >= OLz,
”under” if PLz < OLz

(3)
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Abstraction Module

In the Abstraction Module, all examples (which are sets of a
command and an movement representation) about one verb
are abstracted as one rule. We will describe details of the
process here (Figure 5). First, all examples’ strings of nouns
in language part are parameterized as ”@1” and ”@2”, and
corresponding first and second feature in the movement rep-
resentation part are parameterized as the same strings. In the
process from here, all examples which have both the same
abstract sentence and the same abstract first and second fea-
ture are regarded as targets of abstraction of a verb. Then,
the system determines feature importance from the 3rd, the
4th and the 5th by comparing all examples about each verb.
Next, values of determined features are averaged as values
of rule’s features. Finally, the system saves all rules to the
Rule Database.

 Examples of a Verb

   Addition Rule to the Rule Database

 Averaging of Values 

 Determination of Feature Importance

 Trajector and Reference Point Parameterization

Figure 5: Abstraction Module

Determination of Important Features

For the process of a feature importance determination, we
assume that features which have high similarity among all
examples are important. That is, despite the examples which
given in various contexts, having similar values means that
the features are the verb specific features to represent the
verb beyond contexts. Thus, we define similarity for the 3rd,
the 4th, and the 5th features using (4), (5), and (6).

the 3rd feature =

{
important if x < 0.1,
important if x > 0.9,
unimportant oterwise.

(4)

where x =
the number of positive samples

the number of samples

the 4th feature =

{
important if σ2 < 2.0,
unimportant oterwise.

(5)

where σ2= 1

N

∑
N

k=1
(f4−f4k)2, N :the number of samples,

f4:the average of values, f4k:value of sample k

the 5th feature =

{
important if x < 0.1,
important if x > 0.9,
unimportant oterwise.

(6)

where x =
the number of above samples

the number of samples

In these equations, we determined the thresholds in a pre-
liminary experiment.

Trajectories Averaging

The trajectories averaging process also includes a process
of minimizing them. Trajectories of samples have various
numbers of plots. However, we believe that the trajectory
has to influence movements as slightly as possible. For this
reason, the system averages and minimizes the trajectories
according to (7) and (8).

Pr = {Pr1,Pr2,Pr3, ...,PrL} (7)

Pri =
1

N
(P1i + P2i + P3i + ... + PNi) (8)

where N :the number of samples, L:the number of minimum plots,

Pri=(x,y,z): the plot i of rule, Pki=(x,y,z): the plot i of example k

We will show an example of rule as Figure 6.

Figure 6: Example of Rule

Movement Generation Module

In the testing phase, a textual command input by a user is
processed in the Movement Generation Module shown as in
Figure 7. First, the system distinguishes a trajector and a
reference point in a command which contains known verb
corresponding to the rule about the verb. Then, the system
determines the final position of an movement with the 3rd,
the 4th, and the 5th feature of the rule. Next, the trajectory
of overall movement is generated, suiting the final position.
Finally, the trajectory is translated to a motor angle pattern.
Below we will explain how the system distinguishes a trajec-
tor and a reference point, and how it creates the trajectory.

37



 Sentence

  Translation to Motor Pattern

  Trajectory Generation 

  Calculation of Target Coordinate

Trajector and Reference Point Discrimination

Figure 7: Movement Generation Module

Discrimination of Trajector and Reference Point

The discrimination of a trajector and a reference point is pre-
ceded as below. First, nouns of the input command are re-
placed by ”@1” and ”@2” in order of appearance. Then,
the system extracts a rule which has the same abstract com-
mand, and the 1st and 2nd feature values of rule indicate
which is a trajector and which a reference point between
”@1” and ”@2”, that is, the system can find out which noun
is a trajector and the other is a reference point.

Calculation of Target Coordinate

After the distinction of a trajector and a reference point, the
system calculates a target coordinate of movement with the
3rd, the 4th, and the 5th feature of the rule. The target coor-
dinate is the last position of movement. In this process, the
system uses only the features which are determined as im-
portant features for the verb. However, the 3rd and the 4th
feature are incompatible in the determination of the target
coordinate. Thus, we have to set two features priorities. For
this research, we decided that the 4th feature is prior to the
3rd one, though, we believe that this priority is not important
for generating movements. It is just a temporal treatment.
This is because if the proper teaching was enough then only
one feature would remain as an important feature between
the 3rd and the 4th feature. For this reason, the system cal-
culates the target coordinate with the 3rd or the 4th and the
5th feature. Moreover, we introduce another constraint in
this process. That is the minimum cost constraint where the
robot always selects the nearest point for an movement final
position from the candidates.

Trajectory Generation

The system generates a movement trajectory corresponding
to the decided target coordinate. However, the target coor-
dinate is represented in the standard coordinate system but
a rule’s 6th feature, the averaged trajectory, is represented
in the trajector-reference point specific coordinate system.
Thus, the system, in advance, transforms the trajectory from
the trajector-reference point specific coordinate system to
the standard coordinate system after creating the trajector-
reference point specific coordinate system which depends

Table 1: Results (1 is proper, 3 is wrong)
Verb Ave. of A Ave. of B Ave.

place-on 2 1.6 1.8
move-close-to 2 1.3 1.6
move-away-from 1 2 1.5
touch-with 1 1.6 1.3
stroke 2.3 2.6 2.5
peck-with 2.3 3 2.6

on current positions of both a trajector and a reference point.
Finally, the system also calculates a parallel transformation
of the trajectory to suit its final position to the target coordi-
nate.

Experiment

We implemented the above mentioned algorithm in the hu-
manoid robot, and conducted body movement verbs ac-
quisition to confirm if the robot can acquire verbs which
have robustness in terms of combination of objectives, ini-
tial position, end position and an obstacle. We set tar-
get verbs as ”oku (place-on)”, ”chikazukeru (move-close-
to)”, ”hanasu (move-away-from)”, ”sawaru (touch-with)”,
”naderu (stroke-with)”, ”kosuru (peck-with).”

Our experimental design is described below. First, for
each verb, the robot learn two training sentences with dif-
ferent combination of objectives, e.g. ”place the right hand
on the head” and ”place the left hand on the right hand”,
three times each in different initial and end position. Then,
a test sentence with unknown combination of objectives is
tested three times in different initial and end position. We
set training combinations of objectives as ”the right hand
and the head” and ”the left hand and the right hand.” Then
we also set the test combination as ”the left hand and the
head.” If the robot output proper movements, we regard the
verb is acquired.

Two participants, which are a male and a female aged 20-
30, conducted both learning task and test. Then they evalu-
ated the output movements of a test sentence three time on a
three point scale (1 is proper, 3 is wrong). Table 1 shows the
experimental results.

Discussion

The experiment showed that the robot properly acquired four
problematic verbs, ”place-on”, ”move-close-to”, ”move-
away-from”, and ”touch-with” by being taught the move-
ments only six times in different contexts. Figures 8 and 9
show how the system acquired the meanings of the verbs.
These representations clearly show what the important fea-
tures are for verb acquisition for robots. That is an important
part of a robot design process. Using our method makes it
easier to understand how the robot represents verbs and to
consider the capacity and limitations of the model than the
statistical representation models.

Moreover, our representation has another merit. That is,
the robot can apply the acquired verbs knowledge to situ-
ations where an obstacle in its way. We simulated an ob-
stacle and made the robot output movement using a simple
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program that the robot manipulates its arm around obstacle
unless important features change. As the result, the robot
properly output movements for the acquired four verbs. Fig-
ure 10 shows the internal representation about ”put-on” in
this simulation.

While, the representation model could not represent
”stroke-with” and ”peck-with” that the movement process
is important. This is because our representation does simple
averaging for trajectories. We need an abstraction algorithm
for trajectories in the future, and we also have a plan to eval-
uate efficienciy of our method in other robots.

Figure 8: place-on Figure 9: move-close-to

Figure 10: trajectory of ”place-on” with obstacle

Conclusion
We proposed an algorithm where a humanoid robot ac-
quires body manipulation verbs for entertaining users with
its learning capability. The algorithm includes: a novel
representation model with six features containing both the
trajector-reference point relationships and trajector’s trajec-
tory for movements, a mechanism that creates the abstract
verb meanings from sets of a textual command and a move-
ment representation, and a process that generates move-
ments for unknown inputs. As a result of our experiment, the
humanoid robot properly acquired four problematic verbs
”oku (place-on)”, ”chikazukeru (move-close-to)”, ”hanasu
(move-away-from)”, and ”sawaru (touch-with)”and the ab-
stract meanings of verbs were independent of contexts. In
the future work, we would like to investigate how efficient
our language acquisition mechanism is in entertaining.
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