Proceedings of the Fifth Artificial Intelligence for Interactive Digital Entertainment Conference

IMPLANT: An Integrated MDP and POMDP
Learning Agent for Adaptive Games

Chek Tien Tan and Ho-lun Cheng
Department of Computer Science
National University of Singapore

Computing 1 (COM1), Singapore 117590
{tanchekt, hcheng} @comp.nus.edu.sg

Abstract

This paper proposes an Integrated MDP and POMDP Learn-
ing AgeNT (IMPLANT) architecture for adaptation in mod-
ern games. The modern game world basically involves a hu-
man player acting in a virtual environment, which implies
that the problem can be decomposed into two parts, namely a
partially observable player model, and a completely observ-
able game environment. With this concept, the IMPLANT
architecture extracts both a POMDP and MDP abstract model
from the underlying game world. The abstract action policies
are then pre-computed from each model and merged into a
single optimal policy. Coupled with a small amount of on-
line learning, the architecture is able to adapt both the player
and the game environment in plausible pre-computation and
query times. Empirical proof of concept is shown based on an
implementation in a tennis video game, where the IMPLANT
agent is shown to exhibit a superior balance in adaptation per-
formance and speed, when compared against other agent im-
plementations.

Introduction and Related Work

In modern game worlds, the game mechanics are often de-
fined stochastically to represent uncertainties for interesting
gameplay (for example agent actions in an RPG game are
defined with hit and miss chances). Virtual agents or non-
player characters (NPCs) in the game need to act plausibly
in such uncertain environments to provide a good gameplay
experience to the player. Moreover, these agents also need
to consider various types and styles of different players such
that the experience is appropriately customized. However,
these aspects of the players are not directly observable.
Therefore a motivation to this paper is the need for theo-
retically sound methods for game agents to act adaptively in
an uncertain and partially observable environment. Cutting
edge decision-theoretic methods are often avoided in mod-
ern game Al applications primarily due to high computation
overhead. Partially Observable Markov Decision Processes
(POMDPs) (Kaelbling, Littman, and Cassandra 1998) rep-
resent the state of the art in decision theory that naturally
models a game agent acting in an uncertain environment
with unobservable attributes. Unfortunately, POMDPs so-
lution algorithms suffer the same fate of being computation-

Copyright (© 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

94

ally intractable (Burago, Rougemont, and Slissenko 1996),
especially so in huge modern game worlds.

A related motivation to this paper is the need for a uni-
fied agent architecture that adapts to both the player and the
game environment. Current research in modern game agent
behaviors can be largely split into two camps, one targeted at
planning to adapt to the game environment (Remco Straat-
man and van der Sterren 2006; Hussain and Vidaver 2006;
Geramifard, Chubak, and Bulitko 2006; Christian J. Darken
2006; White and Brogan 2006), and the other targeted at
planning to adapt to the game player (Charles et al. 2005;
Donkers and Spronck 2006; van der Sterren 2006; Thue
and Bulitko 2006; Yannakakis and Maragoudakis 2005;
Tan and Cheng 2008b). For example Straatman et al (2006)
combines level annotation with sensor grid algorithm to al-
low the agent to dynamically find cover, but leaves the player
out of the equation, whereas Tan and Cheng (2008b) devised
a generic Tactical Agent Personality (TAP) model that ac-
complishes player adaptation, but do not consider the game
environment at all. This phenomenon can be attributed to
the fact that different considerations need to be met for the
two problem domains and substantial efforts are needed to
reconcile this disjunction. Model-free reinforcement learn-
ing (Sutton and Barto 1998) approaches appears to eliminate
the modeling problem by not having an explicit model of the
environment. However, it suffers from a similar problem of
intractability in which an impractical amount of time is usu-
ally required for online policy convergence.

To effectively adapt towards both the game environment
and player in acceptable computation times, the IMPLANT
architecture is presented in this paper. Since the only true
partially observable attribute of the game world is the player
model, and that the rest of the handcrafted game world are
completely observable, the IMPLANT agent extracts a small
POMDP model of the player and a large MDP model of the
game world. Hence separate action policies can be solved
quickly since MDPs are much more tractable than POMDPs.
The agent then combines the two policies into a single com-
bined policy whereby a small amount of online learning is
performed to ensure that the eventual action is adaptive to
any in-game changes. By having the majority of the adap-
tivity pre-computed, it also ensures that the agent has an Al
that works plausibly right out of the box, without having to
let the player wait long periods for the learning to converge.

In the remaining sections of this paper, essential back-
ground is first given followed by a description of the IM-
PLANT architecture. The experimental setup is then de-
picted along with the experimental results as empirical proof
of concept. Finally a discussion is made on the results and
the paper is concluded along with the plans for future work.

Background of MDP and POMDP

A Markov Decision Process (MDP) can be described as a
tuple (S, A, T, R,~) where S is a finite set of world states
and A is a finite set of actions available to the agent. The
state-transition function T defines the probability 7'(s, a, s’)
of transitioning from state s to state s’ when the agent takes
action a. The reward function R defines the expected imme-
diate reward R(s, a) received by the agent for taking action
a in state s. The discount factor v < 1 is used to weigh the
rewards according to the time it was received.

Apolicy, m : S — A, is a mapping that specifies an action
to take for each state. The optimal policy, 7*, of an MDP
can be found exactly using a method called value iteration,
which involves iterating the following Bellman equation:

Vi = R T Wi(s' 1
t+1(s) = max{R(s,a) +7 Ze;g (s,a,8)Vi(s')}, (1)
where V}, is the value function that defines the expected total
reward with k steps left, and V5 (s) = R(s). In other words,
the optimal ¢ + 1 horizon policy, 7/, 4, is:

* / !/

w41 = argmax{R(s,a) + S%;T(s, a,8)WVi(s)}, @)

A Partially Observable Markov Decision Pro-
cess (POMDP) can be described as a tuple
(§,A,T,R,v,0,0,by) where S, A, T, R and ~ are
the same as in an MDP. O is a finite set of observations,
with the corresponding O an observation function such that
O(a, s',0) is the probability of making observation o if the
agent takes action a and the world transits to state s’.

Now that the state is hidden, the agent needs to keep an
internal belief state, b, that summarizes its previous expe-
rience. It is basically a vector of probabilities such that
b= {b(s)[s € S}, 0 < b(s) <1, .sb(s) = 1. by is
the agent’s initial belief state. Given that the agent makes
observation o after taking action a in belief state b, the next
belief state b’ can be computed using a state estimator func-
tion based on Bayes rule:

V(s) = O(a, s, 0) ZSES T(s,a,s’)b(s)7 3)
P(o|b,a)
where P(o|b,a) =3 csb(s)> . csT(s,a,8)0(a, s, 0).
To obtain a policy for a POMDP, the agent needs to map
each belief state into an action. To solve for the optimal pol-
icy, one needs to view the POMDP as a continuous space
“belief MDP”. With this concept, the transition and reward
functions can be converted to their counterparts in this “be-
lief MDP” and value iteration equations similar to those of
Equations 1 and 2 can be derived:

Vir1(b) = max{p(b, o) + 5 b;ﬂb, a. V)i (¥)},

95

i1 = argmax{p(b, a) + b/ZEBT(ZL a, 0" \Vi(b')},

where B is the set of all belief states, and 7 and p are the
“belief MDP” transition and reward functions respectively.
These equations serve as the basis for POMDP value iter-
ation, which are highly complex due to its continuous na-
ture. Solution algorithms have been based on the fact that
the value function of POMDPs are piecewise linear and con-
vex, which can be represented as finite collections of |S|-
dimensional vectors, commonly known as a vectors. Still,
the problem is intractable when the number of states grow
moderately large.

To compute practical solutions in reasonable timings,
there have been significant efforts in the development of
approximation algorithms. In terms of performance, point-
based algorithms have been particularly successful (Pineau,
Gordon, and Thrun 2003; Shani, Brafman, and Shimony
2007; Doshi and Roy 2008; Kurniawati, Hsu, and Lee 2008),
which basically computes value functions iteratively from
sampled points in the belief space. The work in this paper
is partly inspired by the idea in Forward Search Value It-
eration (FSVI) ((Shani, Brafman, and Shimony 2007)) but
approached in a totally different manner. They made use of
the MDP to guide their main POMDP value iteration whilst
the work in this paper decomposes the problem domain into
two parts (MDP and POMDP), obtain the abstract policies
separately, then combines them into a single policy.

IMPLANT Architecture

The overall architecture of IMPLANT (Integrated MDP and
POMDP Learning AgeNT) is as shown in Figure 1. The
central idea is to decompose the game world into an MDP
and a POMDP abstract with their respective policies com-
puted. Current states and observations are individually ob-
tained from each abstraction and processed via an Action
Integrator (AT) function, which computes a resultant opti-
mal action that the agent performs and affects the underly-
ing game world, which then provides a reward signal that
reinforces the action.

The mechanics of the game world as devised by the game
designer is normally represented as states and transitions
coupled to actions, with the agent behaviors normally driven
by some goals. These coincides nicely with the MDP model
parameters. The mechanics can therefore be extracted and
formatted into the ground MDP specification, denoted as
M = <S7 A’ T7 R’ /-Y>'

Built upon concepts from abstraction theory (Li, Walsh,
and Littman 2006), the abstraction process can be formally
defined. First a state abstraction function, ¢ : S — S, can
be defined, where S represents the set of abstracted states.
Hence ¢(s) € S is the abstracted state corresponding to the

ground state s € S, and typically, |S| < |S|. Inversely,
¢~ 1(3) € S represents the set of states corresponding to
the abstract state § € S. This function basically means that
each abstracted state, 3, is a collection of ground states, s.
Now, since the states are changed, the transition function,
T, and reward function, R, would also need to be converted

Game World
MDP Abstract POMDP Abstract
State Observation
Y
State Estimator
Belief State
Y
MDP POMDP
Policy Policy
MDP POMDP
Action Action
Reward Action
Integrator
Action
Game Agent

Figure 1: An overview of the IMPLANT architecture. The
agent maps a separate MDP and POMDP abstract from the
game world and finds optimal policies according to each ab-
stract. For each game state and observation, the agent then
obtains a single action via the Action Integrator from the two
policies. The action is then reinforced by the reward after-
wards.

into their abstracted forms. To ensure that they are well-
defined, a weighting function, Ws : S — [0, 1] , needs to be

imposed, where 3,1 () Ws(s) = 1 foreach 5 € S.

Additionally, an action abstraction function, ¢ : A — ./[l,
can be defined, where A represents the set of abstracted
actions. Similar to state abstraction, a weighting func-
tion for actions, W4 : A — [0,1] , is imposed, where
> aeyp-1(a)y Wala) = 1foreacha € A.

Hence the abstract transition function, T, is defined as
follows:

T(,a,8") 4)
= Z Wa(a) Z Z Ws(s)T(s,a,s'),
acyp~1(a) s€p™1(8) s'ep (%)

where it is relatively straightforward to prove that its proba-

bilities are well-defined (3, ¢ T'(3,a,8") = 1). Next, the
abstract reward function can be defined sumlarly:

R(s,a)= > Wala) Y Ws(s)R(s.a).
acy~1(a) s€<z> 1(3)

Therefore the MDP abstract, M., and the POMDP abstract,
M., can now be defined as:

po»
< TCO7 Rcoa 7>7 and
P = <‘§ Tp07Rp0177@aOAab0>a

)

0, Aco (6)
Ao

96

where the subscripts ., and ,, label the MDP and POMDP
parameters respectively.

With the MDP and POMDP abstracts defined, they can be
solved to produce the optimal policies 7., and ,, respec-
tively. With the policies generated, the agent needs to decide
the current resultant action a to take, computed via the Ac-
tion Integrator which consists of a two-stage process. The
first stage obtains a combined abstract action a whereby:

. {a Napo if deo o # 0,

deoUapo else.

This process aims to choose a set of actions optimal to both
the POMDP abstract (player model) and the MDP abstract
(game environment). In the normal case, this set will be
an intersection between d., and a,, (as shown in Figure 2),
but in case the intersection is an empty set, the union set
provides a backup utility, in which the agent falls back to
choose any action that is optimal to either the POMDP or
MDP abstract.

The second stage in the Al function defines a further ac-
tion selection process which determines a single most opti-
mal action a € a based on the in-game situation. Since the
offline policy already defines an action set optimal to both
the POMDP and MDP abstracts, only a minimal amount of
learning needs to be performed online. A simple and effi-
cient learning algorithm is adapted from a previous work by
Tan and Cheng (2008a), whereby each action a is assigned
a weight w,. Action selection then follows a standard e-
greedy algorithm (Sutton and Barto 1998) and weight up-
dates are performed via the function w, = w, + a(v: —),
where ~y; is a variable reward signal generated at time 7, 77
is a reference point to determine the relative size of ~y,, and
« is a positive step-size parameter to control the magnitude
of change.

It can be seen that the majority of adaptation is computed
offline and leaves a little online learning capability which
can be efficiently performed in-game. This ensures a game
Al that can already work very well out of the box, but ad-
ditionally allows for a small amount of online adaptation to
take place as necessary. In the case where the Al function in
Equation 7 falls back to the backup union set, the usefulness
of this online learning process will become more obvious,
where it is given greater responsibility for selecting the op-
timal action.

In a nutshell, an agent that uses the IMPLANT architec-
ture will fundamentally act optimally with respect to the
static game environment, and in addition, as the POMDP
belief state becomes more accurate via observation updates,
the actions it takes becomes more tailored towards the style
of the player as well. It is this ideology that drives this ap-
proach.

)

Results

The architecture is implemented and illustrated in an NPC
agent in a tennis video game. In the first set of experiments,
the IMPLANT tennis agent acts as an opponent towards the
player. Then the implementation is extended to a doubles
tennis game settings whereby the IMPLANT agent now act

GoNetRight goBaselineLeft

goBaselineRight
w1

hitBaselineRight
Wo

hitNetRight hitBaselineLeft

Figure 2: The Action Integrator in a tennis game. The cur-
rent optimal POMDP abstract action a,, indicates that the
agent should use a strategy biased to towards the baseline
whilst the current optimal MDP abstract action a.,, indicates
a strategy biased towards the right. The intersection results
in the abstract action a that contains the actions hitBase-
lineRight and goBaselineRight. Thereafter a final action is
selected based on the learnt weights w; and wa.

as a cooperative agent as the partner to the player, where the
game complexity increases substantially with 2 more oppo-
nent agents. A screenshot of the doubles implementation is
shown in Figure 3. The results show that in both noncoop-
erative and cooperative settings, the IMPLANT agent is the
most feasible in terms of both adaptation performance and
speed when compared to various other common Al archi-
tectures. Details of the results are given in the subsections
that follow.

Basically the states and transitions follows that of a nor-
mal tennis sports game. The actions available to each agent
basically allows for agent movement and hitting of the ball
to target positions. Each hit-type action has a high probabil-
ity of landing in the targeted region, and some small chance
of landing in any of the remaining regions (plus the out posi-
tion). It is assumed the agents do not fall down or get disori-
ented, so the movement actions have a deterministic chance
in reaching the target regions.

In the states, a player model attribute defines the player’s
model of play. There are basically 2 player models de-
fined here which are simplified versions of the two common
styles of play in tennis, namely the volleyer and the baseliner
(Matsuzaki 2004). The volleyer basically likes to stay near
the net and take volleys whilst the baseliner likes to stay near
the baseline and take lobs and ground shots. Note that there
is also an all court style which is deliberately not included
in the player model attribute so as to test the adaptive capa-
bilities of the architecture in the experiments. The all court
style is basically an all-rounded player which can choose to
play either the baseliner or volleyer style, and switches be-
tween the two during the game.

Adaptation Performance

The game is ran for 1000 rounds for each player model.
The experiments are ran for both the noncooperative sin-
gles game and the cooperative doubles game, and scores
are plotted in Figure 4. In each experimental set, a dif-

97

Figure 3: The IMPLANT Tennis Agent (bottom right). The
agent at the bottom left is the player, and the two agents
above are the opponents. In this doubles tennis game set-
ting, the IMPLANT agent makes use of the IMPLANT ar-
chitecture to adapt to the player and cooperatively defeat the
opponent agents

ferent setup of the player model is configured, namely the
volleyer, baseliner, and all court models. As mentioned,
the all court model is deliberately excluded from the state
attribute player model as defined in the architecture. This
all court model is implemented and included in the exper-
iments to purposely test the adaptation capabilities of the
architecture.

In a single experimental set, the performance of the
IMPLANT agent is compared against a random agent, a
scripted agent, a Reinforcement Learning (RL) agent and
a POMDP agent. The random agent simply acts ran-
domly. The scripted agent follows a scripted rule which
basically hits the ball whenever it is near and switches po-
sition in other times. The RL agent uses a Q-learning al-
gorithm (Sutton and Barto 1998) to perform online learn-
ing. The POMDP agent contains a pure POMDP architec-
ture whereby all state attributes are modeled in a generic
POMDP model. It chooses actions for each belief state
based on the POMDP policy it has pre-computed. In the
doubles game sets, the opponent agents follow a scripted Al
approach.

Generally it can be seen that the IMPLANT agent out-
performs all the other 4 types of Al implementations, in
both noncooperative and cooperative situations. Firstly,
it is a proof of concept whereby it outperforms naive Al
implementations (the random and scripted agents). Sec-
ondly, it also outperforms other modern adaptive architec-
tures (the RL and POMDP agents) on the whole. Note that it
marginally underperforms in the volleyer singles setup when
compared to the POMDP agent, which possesses a closely
related architecture. However, this slight underperformance
is insignificant when the tremendous speed superiority of the
IMPLANT agent is shown in the next subsection. It can also
be noted that the scripted Al performs rather well in relation
to the other adaptive architectures. This can be attributed to
the simplification of the tennis game which makes it harder
for the adaptive architectures to exploit regularities in play
style.

Adaptation Performance for Singles Tennis

H Random
M Scripted
HRL

1 POMDP

Number of rounds won (IMPLANT)

All Court

Baseliner Volleyer

B IMPLANT

Number of rounds won (IMPLANT)

Adaptation Performance for Doubles Tennis

l Random
M Scripted
HRL

1 POMDP
M IMPLANT

Baseliner

Volleyer All Court

Figure 4: Adaptation performance for the singles (left) and doubles (right) tennis game experimental setups. Each bar set
represents a comparison amongst the 5 agent implementations as depicted in the legend, for a particular player model.

Adaptation Speed

Next, a speed test is also performed to evaluate the improve-
ments in pre-computation and querying, and the results for
the noncooperative and cooperative setups are as shown in
Table 1. Pre-computation time indicates the amount of time
it takes for the offline computation of policies whilst query
time indicates the time needed for the agent to fetch and per-
form any online computations to finalize an action for each
state during the game. The computation times are based on
a machine running an Intel Core 2 Duo 2.33Ghz CPU with
3.25GB of RAM.

To ensure that the pre-computation process for the
POMDP runs relatively fast, a modern finite grid PBVI algo-
rithm (Pineau, Gordon, and Thrun 2003) is used for the pure
POMDP agent. For the IMPLANT agent, the same PBVI
algorithm is used for computing the POMDP policy whilst
a classic value iteration algorithm is used for computing the
MDP policy.

The RL agent is trained in a series of practice rounds until
convergence, which took almost an hour (as shown in Table
1), much longer than the pre-computation time for the IM-
PLANT agent (a matter of seconds). This training period
is necessary for a pure online learning algorithm or else the
results would be comparable to the random agent as the Q
values need to be updated via experiential learning. Even
with a much longer pre-computation time, the RL agent still
shows poorer adaptation performance (in Figure 4) than the
IMPLANT agent.

It can also be seen in Table 1 that the POMDP agent
takes immensely longer to pre-compute policies than the
IMPLANT agent. Although this process is offline, it still im-
poses tremendous overhead when updates need to be made
to the model, especially when it is a few hours long. What
is more unacceptable is the fact that it takes considerable in-
game time (20 seconds query time) to generate an action.
This is because at each belief state, it has to select the high-
est value action based on a dot product of the huge belief
state and alpha vectors. The same reason holds for the com-
putation of the next belief state, which adds to the time.

The IMPLANT agent however, is shown to be very fast
in both the pre-computation and query times. The low pre-

98

computation time is due to the majority of the problem size
being stored in the MDP which has much better tractability
than an POMDP in terms of policy computation. As for the
query time, it should be noted that it is even comparable
to the time needed to generate a random or scripted action,
which are almost instantaneous to a normal player. Even
though the POMDP agent seems to be almost on par with
the IMPLANT agent in terms of adaptation performance in
the singles setups, when the speed factor is included here,
the IMPLANT agent definitely outperforms convincingly.

Adaptation Speeds for Singles Tennis

Pre-computation Time Query Time
Random NA less than 0.001s
Scripted NA less than 0.001s
RL 45m32s less than 0.001s
POMDP 1h28m57s 0.059s
IMPLANT 1.41s less than 0.001s

Adaptation Speeds for Doubles Tennis

Pre-computation Time Query Time
Random NA less than 0.001s
Scripted NA less than 0.001s
RL 52m55s less than 0.001s
POMDP 4h38m48s 9.199s
IMPLANT 1.32s 0.005s

Table 1: Adaptation speeds for the singles (top) and doubles
(bottom) tennis game experimental setups. The policy pre-
computation and query times are tabulated for the setups.
For the random and scripted agents, the pre-computation
times are not applicable (NA) and the query times are less
than 1 millisecond, which is too fast to be captured in the
program.

Discussion and Conclusions

The IMPLANT architecture is proposed in this paper, a plan-
ning approach that exploits the fact that the virtual game

world can be decomposed into its MDP and POMDP ab-
stract constituents. Thereafter, optimal policies can be com-
puted separately and combined as a single policy for the
agent to act optimally with regards to both the game environ-
ment and the player. A small amount of online learning also
ensures adaptability when required. A tennis game is im-
plemented as an empirical proof of concept whereby good
adaptation performance of the IMPLANT agent is demon-
strated against conventional Al implementations as well as
a pure POMDP implementation of the same tennis game.
The merits in both offline pre-computation speed and online
query speed is also shown by comparing against the latter
implementations. In addition, the IMPLANT agent is shown
to perform well in both noncooperative and cooperative sce-
narios.

The empirical proof of concept is performed in a rather
simplified domain in this paper. As an initial proof of con-
cept, this is assumed to be plausible, but an immediate ad-
vancement is to evaluate the framework in an environment
in more complicated game domains like that of RTS and
RPG scenarios to provide a better generalization of the re-
sults. Also as future work, the player modeling compo-
nent of the architecture can be further formalized to have
a generic way of representing player personalities. One way
might be to use an action-based formalization like that of
Tan and Cheng’s (2008b).

The work in this paper also serves as an exploratory point
which reveals important research areas within. A further de-
velopment of the architecture is a generalization beyond the
scope of player types. The architecture can be structured
as a divide and conquer framework that solves the fully ob-
servable and partially observable attributes of the problem
state separately, and combines the solution policy for a sin-
gle agent. It is hoped that the architecture would be most
valuable in other problem domains where this characteristic
(where double observability can be assumed) is imminent.

Acknowledgements

Special thanks to Associate Professors Dr David Hsu and Dr
Lee Wee Sun for their help on the initial phase of the project
as well as suggestions on the tennis game implementation.

References

Burago, D.; Rougemont, M. D.; and Slissenko, A. 1996.
On the complexity of partially observed markov decision
processes. In Theoretical Computer Science 157:161-183.

Charles, D.; Kerr, A.; McNeill, M.; McAlister, M.; Black,
M.; Kcklich, J.; Moore, A.; and Stringer, K. 2005. Player-
centred game design: Player modeling and adaptive digi-
tal games. In Proceedings of the Digital Games Research
Conference 285,298.

Christian J. Darken, G. H. P. 2006. Findin Cover in Dy-
namic Environments, AI Game Programming Wisdom 3.
Hingham, Massachusetts: Charles River Media, first edi-
tion.

Donkers, J., and Spronck, P. 2006. Preference-Based

Player Modeling, A Game Programming Wisdom 3. Hing-
ham, Massachusetts: Charles River Media, first edition.

99

Doshi, F., and Roy, N. 2008. The permutable POMDP:
fast solutions to POMDPs for preference elicitation. In In
AAMAS, 493-500.

Geramifard, A.; Chubak, P.; and Bulitko, V. 2006. Biased
cost pathfinding. In AIIDE 112,114.

Hussain, T. S., and Vidaver, G. 2006. Flexible and pur-
poseful npc behaviors using real-time genetic control. In
Proceedings of The IEEE Congress on Evolutionary Com-
putation 785,792.

Kaelbling, L. P.; Littman, M. L.; and Cassandra, A. R.
1998. Planning and acting in partially observable stochas-
tic domains. In Artificial Intelligence 101:99—134.
Kurniawati, H.; Hsu, D.; and Lee, W. 2008. SARSOP:
Efficient point-based POMDP planning by approximating
optimally reachable belief spaces. In Proc. Robotics: Sci-
ence and Systems.

Li, L.; Walsh, T. J.; and Littman, M. L. 2006. Towards a
unified theory of state abstractions for MDPs. In In Pro-
ceedings of the Ninth International Symposium on Artifi-
cial Intelligence and Mathematics, 531-539.

Matsuzaki, C. 2004. Tennis Fundamentals. United States:
Human Kinetics Publishers, first edition.

Pineau, J.; Gordon, G.; and Thrun, S. 2003. Point-based
value iteration: An anytime algorithm for pomdps. In In
IJCAI, 1025 - 1032.

Remco Straatman, A. B., and van der Sterren, W. 2006.
Dynamic Tactical Postion Evaluation, AI Game Program-
ming Wisdom 3. Hingham, Massachusetts: Charles River
Media, first edition.

Shani, G.; Brafman, R. I.; and Shimony, S. E. 2007. For-
ward search value iteration for POMDPs. In In IJCAL
Sutton, R. S., and Barto, A. G. 1998. Reinforcement Learn-
ing: An Introduction. Cambridge, Massachusetts: The MIT
Press.

Tan, C. T., and Cheng, H. 2008a. A Combined Tactical and
Strategic Hierarchical Learning Framework in Multi-agent
Games. In Proceedings of the ACM SIGGRAPH Sandbox
Symposium on Videogames.

Tan, C. T., and Cheng, H. 2008b. TAP: An Effective
Personality Representation for Inter-Agent Adaptation in
Games. In AIIDE.

Thue, D., and Bulitko, V. 2006. Modeling goal-directed
players in digital games. In AIIDE 285,298.

van der Sterren, W. 2006. Being a Better Buddy: Interpret-
ing the Player’s Behavior, Al Game Programming Wisdom
3. Hingham, Massachusetts: Charles River Media, first
edition.

White, C., and Brogan, D. 2006. The self organization of
context for multi agent games. In AIIDE.

Yannakakis, G. N., and Maragoudakis, M. 2005. Player
modeling impact on players entertainment in computer

games. In Springer-Verlag: Lecture Notes in Computer
Science 3538:74.

	AIIDE09
	Contents
	Index
	AAAI Website

