
Examining Extended Dynamic Scripting in a Tactical Game Framework
Jeremy Ludwig1 and Arthur Farley2

1Stottler Henke Associates
San Mateo, CA 94404

ludwig@stottlerhenke.com

2University of Oregon
Eugene, OR 97403
art@cs.uoregon.edu

Abstract
Dynamic scripting is a reinforcement learning algorithm
designed specifically to learn appropriate tactics for an
agent in a modern computer game, such as Neverwinter
Nights. This reinforcement learning algorithm has
previously been extended to support the automatic
construction of new abstract states to improve its context
sensitivity and integrated with a graphical behavior
modeling architecture to allow for hierarchical dynamic
scripting and task decomposition. In this paper, we describe
a tactical abstract game representation language that was
designed specifically to make it easier to define abstract
games that include the large amount of uncertainty found in
modern computer games. We then use this framework to
examine the effectiveness of the extended version of the
dynamic scripting algorithm, using Q-learning and the
original dynamic scripting algorithms as benchmarks.
Results and discussion are provided for three different
abstract games: one based on combat in role-playing games
and two based on different aspects of real-time strategy
games.

 Introduction
Dynamic scripting (DS) [Spronck et al., 2006] is one
example of an online reinforcement learning algorithm
developed specifically to control the behavior of
adversaries in modern computer games and simulations as
defined by Laird and van Lent [2001]. The DS algorithm
was designed especially to support efficient learning based
on a limited amount of experience and to maintain a
diversity of selected behaviors, both of which are
significant requirements for online learning in modern
computer games [Spronck et al., 2006]. The DS algorithm
has been tested in both role playing games (Nevewinter
Nights) and real-time strategy games (Wargus), with
promising results. That is, agents using DS quickly learn
how to beat their opponent.

This reinforcement learning algorithm has previously
been extended to support the automatic construction of
new abstract states to improve its context sensitivity and
integrated with a graphical behavior modeling architecture
to allow for hierarchical dynamic scripting and task
decomposition [Ludwig & Farley, 2007, 2008]. The aim of
these extensions was to improve the learning performance,

Copyright © 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

applicability, and flexibility of dynamic scripting-based
learning in games and simulations. Learning performance
is measured in terms of the relative score achieved by the
agent and how quickly the agent was able to achieve this
score, given a set number of learning opportunities.
Applicability is evaluated by examining whether or not the
learning algorithm can be used to play a particular game.
Flexibility is demonstrated by the ability of the author to
express different types of domain knowledge in the
authoring of agent behaviors. While the results presented
by Ludwig and Farley demonstrated improved learning
performance in an abstract predator/prey game [2007] and
improved learning performance in the role playing game
NeverWinter Nights [2008], the remaining two claims
were not addressed.

In this paper we describe a tactical abstract game
framework used to further evaluate the extended version of
the dynamic scripting algorithm. The results generated by
the extended algorithm (EDS) are compared to results from
the standard dynamic scripting algorithm in three different
abstract games. The general framework, and the three
specific games created with it, have all been designed to
support efficient examination of all three criteria: improved
learning performance, applicability, and flexibility.
 The remaining introduction presents an overview of the
DS algorithm and a description of the extended version of
DS (EDS) built into a behavior modeling architecture. The
tactical abstract framework is described in the next section.
The third section contains the methods, games, and results
for each of three experiments. The final section of this
paper offer discussion of these results and concluding
remarks.

Overview of Dynamic Scripting
This section outlines the more standard Q-learning [Sutton
& Barto, 1998] followed by DS [Spronck et al., 2006] as a
way to highlight the main elements of the DS algorithm. In
both cases, an agent makes use of the learning algorithm to
determine what action to take given a perceived game
state. Note that DS makes relatively little use of game state
information, which makes it more useful for higher-level,
tactical decisions and less useful for decisions that rely
highly on current context such as movement through a
grid-world.

Q-Learning:
� Actions have a value Q(s,a), where the set of states, S,

can contain actual or abstract game states. Abstract

Proceedings of the Fifth Artificial Intelligence for Interactive Digital Entertainment Conference

76

game states are collections of game states that are
treated as a single state.

� Actions are selected during an episode with value
proportionate selection, based on their Q values.

� When a reward is given, selected actions are updated
using a Q-learning update function combined with a
domain-specific reward function created by the
behavior author.

Dynamic Scripting:
� Actions have (i) a value Q(s, a), where the set of

states, S, contains only a single abstract state; (ii) an
optional IF clause that describes when an action can be
applied based on the perceived game state; and (iii) a
user-defined priority (or learned, see [Timuri et al.,
2007]) that captures domain knowledge about the
relative importance of this action.

� Action values are used to create scripts of length n
prior to an episode by selecting actions in a value-
proportionate manner (softmax) from the complete set
of actions available to the agent.

� During an episode, applicable actions are selected
from the script in priority order first, the action value
second. Applicability is determined by the perceived
game state and the actions IF clause.

� At the end of an episode, action values are updated
using the dynamic scripting updating function
combined with a domain-specific reward function
created by the behavior author. In contrast to Q-
learning, each action has its value updated, not just the
selected action(s). The reward is distributed primarily
to the actions selected in the episode and then to
actions in the script that were not selected, with a
smaller negative reward given to actions not included
in the script.

Extending Dynamic Scripting
While the dynamic scripting algorithm has shown

significant promise in controlling agent behavior in
modern computer games, there were a number of issues
that were previously addressed in an extended version of
dynamic scripting [Ludwig & Farley, 2007, 2008]. In their
work, the authors create an extended version of dynamic
scripting that is integrated with a graphical behavior
modeling architecture to allow for hierarchical dynamic
scripting and task decomposition and that supported the
automatic construction of new abstract states to improve its
context sensitivity.

The end result of this effort is a graphical behavior
modeling tool [Fu & Houlette, 2002] that supports the use
of dynamic-scripting based choice points. An example
behavior is shown in Figure 1. This figure consists of
actions (rectangles), conditions (ovals), and ordered,
directed connectors. Within a graph (called a behavior), the
actions and conditions can reference other behaviors (bold
rectangles) to form hierarchical behaviors. Control flows
from the top shaded node to the bottom shaded node.

The dynamic-scripting based choice point in this
particular behavior is indicated by the

choose(choicePointName) action. Choice points, as used in
extended dynamic scripting, are based on the choice points
found in the Hierarchy of Abstract Machine and ALisp
architectures [Andre & Russell, 2002]. Each choice point
has a corresponding reward point indicated by the
reward(choicePointName) action. This reward may be
immediate or episodic as determined by the behavior
author in placing the reward point.

Figure 1. Example behavior with dynamic scripting-based choice
point.
 Table 1 illustrates the dynamic scripting specific data
associated with this particular choice point. Control enters
the top node and flows to the choice point. The choice
point then generates a script of two actions from the four
available actions based on the action values; one possibility
is indicated by asterisks. When executing the script, If the
condition canKnockdown(opponent) is true, action 1, with
higher priority, will be selected; otherwise, action 2 will be
selected. When the reward point is reached, the values
associated with the actions will be updated and the script
emptied.
Table 1. Action priority, value, and script selection data for the
"AttackChoice" choice point.

Action Priority Value Script
1 High 112 *
2 Low 88 *
3 Low 50
4 Med 117

The addition of choice and reward points to a

hierarchical modeling architecture allows the behavior
author to perform both task decomposition and manual
state abstraction with dynamic scripting-based choice
points. An example of manual state abstraction is deciding
to have one script (choice point) for when a Fighter is
present on the opposing team and another for when not
present.

In adding DS-based choice points to a behavior
modeling architecture, the authors build on and generalize

77

previous research on hierarchical dynamic scripting
[Dahlbom & Niklasson, 2006; Ponsen et al., 2006] and
dynamic scripting with manual state abstraction [Ponsen &
Spronck, 2004]. Additionally, there is significant related
work on game behavior architectures that include
hierarchical reinforcement learning such as ALisp [Andre
& Russell, 2002] , Icarus [Shapiro et al., 2001], and Soar
[Nason & Laird, 2004] to name a few. The main difference
between the hierarchic learning implemented in these three
architectures and the work described in this paper is the
reinforcement learning algorithm being used.

The automatic state abstraction component of EDS uses
data-mining techniques to automatically create
classification trees that identify the most relevant variables
in the perceived game state based on historic state and
reward data. Once these trees are created, each leaf node
in the tree is given its own set of dynamic scripting data
(Table 1). The main idea behind this feature is to identify
states where the current script appears to be working and
states where the script is not working. Following this,
separate scripts are created for the different state sets. This
is known in machine learning as ‘boosting’, and in fact
boosting algorithms such as Decision Stump [Witten &
Frank, 2005] have proved effective when used in EDS
[Ludwig, 2008]. This is the default used for automatic state
abstraction in EDS. The tree-based automatic state
abstraction utilized by extended dynamic scripting is based
on previous research that showed promising results in the
context of more standard reinforcement learning
algorithms (e.g., see G-Algorithm [Chapman & Kaelbling,
1991] and U-Tree [McCallum, 1996]).

When a decision is made in a choice point with
automatic state abstraction enabled, the correct set of
dynamic scripting data is retrieved based on the current
perceived game state. To continue our example, if the
behavior author does not know that different scripts should
be used depending on whether a Fighter is present on the
other team, automatic state abstraction could learn that this
is an important distinction and create distinct scripts for the
two cases. This is an example of a state abstraction actually
found by EDS when tested in Neverwinter Nights
[Ludwig, 2008]. EDS with state abstraction also
successfully improved performance of a character in a
predator/prey abstract game [Ludwig & Farley, 2007]

Tactical Abstract Game Framework
In order to better evaluate the claims of EDS, we created
an abstract game framework based upon high-level
(tactical) decisions in games and simulations. The Tactical
Abstract Game (TAG) framework is derived from simple
decision simulations such as the n-armed bandit problems,
where each of n actions has a different reward associated
with its completion [Sutton & Barto, 1998]. We extend this
type of simulation to include aspects commonly
encountered in modern computer games. With these
additions the TAG framework can be used to model some
instances of the class of decision problems referred to as

Markov Decision Processes (MDPs). An MDP is defined
by the tuple <S, A, T, R> [Kaelbling et al., 1998], where: S
is a set of states in the environment, A is the set of actions,
T is the state transition function, where T(s, a, s’) defines
the probability of ending up in state s’ when action a is
performed in state s, and R is the reward function, where
R(s, a) is the expected reward for performing action a in
state s.
 While there are a number of existing languages in which
to describe MDP-based games, such as the Game
Description Language [Genesereth & Love, 2005], the
TAG framework is designed to capture the essential
characteristics and considerable role of randomness found
in modern computer games while at the same time
minimizing the amount of the game that must be specified.
To this end, TAG can only represent some MDPs as the
language has limited representational capabilities with
respect to the set of games states, the transition function,
and the reward function. To be clear, TAG is an
implemented framework that includes (i) an XML-based
game specification language, (ii) a Java-based player
specification, and (iii) a general computer program that
instantiates a game based on the specifications, uses the
given player to make decisions in the game, and reports the
results generated by the player. Below we define the two
main components of the TAG framework, game and
player, and the major attributes of these components.
Following this, we illustrate how to run a TAG experiment
with these two components.

TAG Game
A game in the TAG framework is made up of a number of
components: a game feature set that corresponds to the
agent observations, F, a set of actions, A, and a set of state
transition rules for the observation features, R. The tuple
<F, A, R> defines a game with a particular set of
observations and actions available to the agent. Note that in
order to take up less space, we are using a formal
representation rather than the actual XML representation.
 The observation feature set of a game, F, contains the
game features observable to a player when it selects an
action and defines the set of game observation states, O.
Each observation state is defined as a distinct set of feature
values. This is a significant departure from MDPs, which
contain the actual set of game features, Fs, and the
corresponding set of game states, S, in addition to the set of
observation features, F, and observation states, O. The
TAG framework simplifies the process of game
construction by relying on the significant amount of
randomness seen in modern computer games instead of an
underlying game state model.
 The second basic component of a game definition is the
set of actions, A. Each action is defined by a set of
parameter value tuples < O, p, r-, r+, g>:
� O: a set of observation states where this action is

available.
� p: a positive reward likelihood, which defines the

probability of receiving a reward in the positive range

78

rather than the negative range. TAG is only capable of
producing a reward function, R(s,a), that generates a
random reward distribution within the given bounds.

� r+: a positive reward range, where the given reward is
selected randomly from within the given range
(inclusive) when a positive reward is given

� r-: a negative reward range, defined the same as r+
but used when a negative reward is given

� g: the probability that the action can be applied in the
current state, given that it is available according to O.
The applicability value is a significant simplification
that determines the applicability of an action randomly
without the need to specify information on the actual
or observed game state.

An action, a, is composed of multiple tuples: a = {< O1,
p1, r-1, r+1, g1 >, < O2, p2, r-2, r+2, g2>, < O3, p3, p-3, p+3, g3
> …}. Across the attributes sets that define an action, the
observation state sets (O1, O2, etc.) are distinct. All other
attributes may be the same or different in each attribute set.

The set of state transition rules, R, move the agent
through the observation state based on the completed
actions. Each rule, r � R, contains both an action a and a
feature f. By default, when action a is selected while
running a game, the observation feature f is randomly
changed to create a new observation state. Alternate rule
types exist to change the observation state in a more
principled way, such as setting a feature to a particular
value or (in the case of integers) adjusting the existing
value up or down.

TAG Player
A TAG Player is responsible for making decisions in a
TAG Game, where each player implements a different
action selection method. The player implementations
examined in this paper are Q, DS, and EDS. The Q player
implements the Q-learning algorithm as described by
Sutton and Barto [1998]. The Q-player provides a baseline
for informational purposes only – the performance of a
standard reinforcement learning algorithm on the same
problem. There are a number of standard ways the Q-
learning algorithm could have be extended to improve
performance that are not investigated, though it does take
advantage of manually constructed abstract states when
available. The DS player implements the standard dynamic
scripting algorithm, without manual or automatic state
abstraction and without task decomposition. The EDS
player makes full use of the behavior architecture and
choice points to support all three of these.

TAG Experiment
Running a TAG experiment to generate empirical results
involves both a TAG game and player. The primary
measure when performing an experiment is the reward
received after each action selection. The player selects an
applicable action, a, from A based on the current settings of
the player, the current observation state o and the
applicability threshold g. The information in a is used to

supply a numeric reward to the player for the selected
action. After the reward is given, the game play rules, R,
are used to change the game observation state o. Rewards
can be delayed to require multiple actions per reward (an
episodic reward).

Experiments
We define three distinct games in the TAG framework,
with a number of different players for each game: Anwn,
Resource Gathering, and Get the Ogre. The first is an
abstract role-playing game, based in part on the
NeverWinter Nights computer game. The Resource
Gathering game builds on a real-time strategy subtask
studied by Mehta et al. [2008]. Get the Ogre is derived
from another real-time strategy game subtask, previously
explored with ALisp [Marthi et al., 2005]. These three
games represent a range of different problems encountered
in modern computer games.

In the abstract role playing game, Anwn, the current
observable state plays little role in the expected utility of
the high-level decisions made in the game. In this type of
game, EDS and DS should perform very well. The other
two games require a sequence of actions to complete the
game. It is predicted that DS will perform poorly on the
Resource Gathering and Get the Ogre games without the
additional domain knowledge that can be encoded in EDS.
For each of these games, we present a description of the
game followed by the main results and discussion of their
significance.

Anwn
Anwn is an abstract version of the combat portion of a role
playing game. The tuple <F, A, R> is defined as:
• F: 10 features (Boolean and Integer)
• A: 40 actions - 10 good (low applicability, high

reward); 20 medium (moderate applicability and
reward); 10 poor (high applicability, low reward);
Current observation state has little affect on rewards

• R: Randomly change 1 observation feature after each
action

For the DS and EDS players, the priority assigned matches
the rating of the actions (i.e. good = high priority). In all
cases, the score is the average reward received in the
episode. Rewards are immediate after each selection.
 The results of this experiment are shown in Figure 2.
Manual state abstraction indicates the construction of three
abstract game states based on domain knowledge. The
EDS and Q players use this to learn which actions perform
best in each of three abstract game states. EDS with
automatic state abstraction comes in second, performing
nearly as well as the manually constructed state
abstraction. With automatic state abstraction, the EDS
player is learning to create distinct scripts for different sets
of game states. The DS learner learns a single script that is
used in all game states. This game demonstrates the utility
of both manual and automatic state abstraction in EDS.

79

Figure 2. Performance of learners in the Anwn game. Higher
scores indicate better performance (average reward received in an
episode) (n=1000).

Resource Gathering
In the Resource Gathering game, the goal is to send out a
peasant to collect 100 wood and 100 gold by making one
trip to the forest and one trip to the gold mine. However,
the locations of the gold, wood, and town hall (where
resources are to be returned) are not known ahead of time.
• F: 10 features (Boolean and Integer)
• A: 13 actions - Move to 1 of 9 possible line-of-sight

locations (9 distinct actions); Mine gold (if gold mine
visible); Chop wood (if forest visible); Drop off wood
(if carrying wood and town hall visible); Drop off gold
(if carrying gold and town hall visible)

• R: Changes the observation states in predictable ways,
such as moving the peasant to the location, gathering a
resource into a peasants arm, and dropping off the
resources to increase the amount of stored wood or
gold.

The DS player assigns the highest priority to the drop off
actions, medium priority to gathering actions, and lowest
priority to moving actions. For all players, the reward
given is -1 * the number of actions taken in the episode.

Figure 3. Results of the resource gathering experiment. Lower
scores indicate better performance (shorter solution) (n=1000).
 The results in show that while the Q player (no state
abstraction) starts out performing the same as random, it
starts to approach the optimal solution of eight actions
relatively quickly. The DS player is able to perform better
than random by making use of action priorities. For
example, if the agent is over a forest and is not carrying

anything it will chop wood (assuming that action is in the
script) rather than move to a new location. However, the
DS player demonstrates no learning since the script cannot
take the context of the move actions into account. That is,
if a peasant is holding gold it should be sent somewhere
different than when it should be gathering gold.

The EDS player makes use of task decomposition,
supplied by the behavior modeling architecture to break the
problem into distinct learning subtasks as shown in the
partial plan in Figure 4. In this figure, the FindForest and
FindTownHall sub-behaviors (indicated by bold
rectangles) contain distinct choice points that are quickly
able to learn how to solve the subtask while the ChopWood
and DropOffWood actions capture known action ordering
that was specified as priorities in DS. This game
demonstrates the utility of task decomposition as supported
by EDS.

Figure 4. Task decomposition solution to Resource Gathering
expressed with EDS.

Get the Ogre
In Get the Ogre, the goal is to perform a sequence of
actions that creates a small squad of soldiers and attacks a
nearby Ogre. The actions available to the player consist of
building a farm, creating wood or gold gathering peasants,
creating a solider, and attacking the Ogre with 3, 4, or 5
soldiers.
• F: 4 features (Integer)
• A: 13 actions - Build farm (if has wood); Gather

wood-gathering peasant (if has food); Gather gold-
gathering peasant (if has food); Create solider (if has
wood and gold); Attack ogre (if has 3, 4, or 5 soldiers)

• R: Changes the observation states in predictable ways,
such as spending resources, gathering resources, or
attempting an attack on the ogre which is more likely
to succeed with more soldiers.

The optimal sequence of actions includes creating two gold
peasants, one wood peasant, four soldiers, and then
attacking the Ogre. The DS / EDS assigned priorities to the
actions as follows (from high to low): attack, soldier, gold,
wood, farm. One difference with this game is that it is easy
for the player to get into a state where no actions are
applicable or to get into loops and not solve the problem
within a limit of 50 actions. The episodic reward is based
on defeating the Ogre with the least number of soldiers (4
is optimal), or a large negative reward if not solved.

The DS player was not able to solve this problem since
there exists no single script that can perform this task
without getting into an infinite loop or reaching a state
where no action was available. The EDS player with
automatic state abstraction is able to find a reasonable set

6

8

10

12

14

16

18

20

1 10 19 28 37 46 55 64 73 82 91 100

Episode

Sc
or

e

EDS Manual
EDS Automatic
Q Manual
DS

0

10

20

30

40

50

60

70

80

90

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99

Episode

So
lu

tio
n

Le
ng

th

Random
DS
Q
EDS

80

of abstract states after a minimum of five episodes and is
outperforming the Q player by episode 25. This game
demonstrates the ability of EDS to solve games that could
not be solved by dynamic scripting without the inclusion of
additional domain knowledge.

Conclusion
In this paper, we developed an abstract tactical game
framework and three abstract games based on particular
aspects of modern computer games. Each game was tested
using a number of different learning algorithms in order to
examine the capabilities of the extended dynamic scripting
algorithm.

Taken together, the results from the three abstract games
provide evidence for the hypothesis that EDS improves
upon the basic dynamic scripting algorithm. EDS
demonstrated increased learning performance, shown
through faster learning and improved scores in all three
games. EDS also demonstrated increased applicability and
flexibility. By allowing additional means for including
domain knowledge in the form of manual state abstractions
and task hierarchies and through automatic state
abstraction, EDS demonstrated learning in games where
dynamic scripting alone could not as shown in the
Resource Gathering and Get the Ogre games.

These extensions are especially important for dynamic
scripting as the DS algorithm is designed to learn very
quickly when applied in modern computer games, in part
by ignoring game state information. The extended dynamic
scripting algorithm allows the behavior modeler to start
with the speed of learning and diversity of behavior
supplied by dynamic scripting and improves upon it by
allowing for a number of ways in which to add (or learn)
domain knowledge that can be used to improve learning
performance.

References
Andre, D., & Russell, S. (2002). State abstraction for
programmable reinforcement learning agents. Paper presented at
the AAAI-02, Edmonton, Alberta.
Chapman, D., & Kaelbling, L. P. (1991). Learning from delayed
reinforcement in a complex domain. Paper presented at the
Twelfth International Joint Conference on Artificial Intelligence,
Sydney, Australia.
Dahlbom, A., & Niklasson, L. (2006). Goal-directed hierarchical
dynamic scripting for RTS games. Paper presented at the Second
Artificial Intelligence in Interactive Digital Entertainment,
Marina del Rey, California.
Fu, D., & Houlette, R. (2002). Putting AI in Entertainment: An
AI Authoring Tool for Simulation and Games. IEEE Intelligent
Systems(July-August), 81-84.
Genesereth, M., & Love, N. (2005). Game Description Language
[Electronic Version]. Retrieved October 15, 2008 from
http://games.stanford.edu/competition/misc/aaai.pdf.
Kaelbling, L. P., Littman, M. L., & Cassandra, A. R. (1998).

Planning and acting in partially observable stochastic domains.
Artificial Intelligence, 101, 99-134.
Laird, J. E., & van Lent, M. (2001). Human-level AI’s killer
application: Interactive computer games. AI Magazine, 22(2), 15-
26.
Ludwig, J. (2008). Extending Dynamic Scripting. Department of
Computer and Information Science, University of Oregon, Ann
Arbor: ProQuest/UMI.
Ludwig, J., & Farley, A. (2007). A learning infrastructure for
improving agent performance and game balance. In Optimizing
Player Satisfaction: Papers from the 2007 AIIDE Workshop.
Stanford, CA: AAAI Press.
Ludwig, J., & Farley, A. (2008). Using hierarchical dynamic
scripting to create adaptive adversaries. Paper presented at the
2008 Conference on Behavior Representation in Modeling and
Simulation, Providence, RI.
Marthi, B., Russell, S., & Latham, D. (2005). Writing stratagus-
playing agents in concurrent ALisp. In D. W. Aha, M.-A. H.M. &
M. van Lent (Eds.), Reasoning, Representation, and Learning in
Computer Games: Proceedings of the IJCAI Workshop
(Technical Report AIC-05-127). Washington, DC: Naval
Research Laboratory, Navy Center for Applied Research in
Artificial Intelligence.
McCallum, A. R. (1996). Learning to use selective attention and
short-term memory in sequential tasks. In Fourth International
Conference on Simulation of Adaptive Behavior (pp. 315-324).
Cape Cod, MA: The MIT Press.
Mehta, N., Ray, S., Tadepalli, P., & Dietterich, T. G. (2008).
Automatic discovery and transfer of MAXQ hierarchies. Paper
presented at the 25th International Conference on Machine
Learning, Helsinki, Finland.
Nason, S., & Laird, J. E. (2004). Soar-RL: Integrating
reinforcement learning with Soar. Paper presented at the Sixth
International Conference on Cognitive Modeling, Pittsburgh, PA.
Ponsen, M., & Spronck, P. (2004). Improving adaptive game AI
with evolutionary learning. Paper presented at the CGAIDE 2004
International Conference on Computer Games, Reading, UK.
Ponsen, M., Spronck, P., & Tuyls, K. (2006). Hierarchical
reinforcement learning in computer games. Paper presented at the
ALAMAS'06 Adaptive Learning and Multi-Agent Systems, Vrije
Universiteit, Brussels, Belgium.
Shapiro, D., Langley, P., & Shachter, R. (2001). Using
background knowledge to speed reinforcement learning in
physical agents. Paper presented at the Fifth International
Conference on Autonomous Agents, Montreal, CA.
Spronck, P., Ponsen, M., Sprinkhuizen-Kuyper, I., & Postma, E.
(2006). Adaptive game AI with dynamic scripting. Machine
Learning, 63(3), 217-248.
Sutton, R., & Barto, A. (1998). Reinforcement Learning: An
Introduction: MIT Press.
Timuri, T., Spronck, P., & van den Herik, J. (2007). Automatic
rule ordering for dynamic scripting. Paper presented at the
Artificial Intelligence in Interactive Digital Entertainment,
Stanford, CA.
Witten, I. H., & Frank, E. (2005). Data Mining: Practical
machine learning tools and techniques, 2nd Edition. San
Francisco: Morgan Kaufmann.

81

	AIIDE09
	Contents
	Index
	AAAI Website

