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Abstract

Although in theory opponent modeling can be useful in any
adversarial domain, in practice it is both difficult to do accu-
rately and to use effectively to improve game play. In this
paper, we present an approach for online opponent modeling
and illustrate how it can be used to improve offensive per-
formance in the Rush 2008 football game. In football, team
behaviors have an observable spatio-temporal structure, de-
fined by the relative physical positions of team members over
time; we demonstrate that this structure can be exploited to
recognize football plays at a very early stage of the play us-
ing a supervised learning method. Based on the teams’ play
history, our system evaluates the competitive advantage of ex-
ecuting a play switch based on the potential of other plays to
increase the yardage gained and the similarity of the candi-
date plays to the current play. In this paper, we investigate
two types of play switches: 1) whole team and 2) subgroup.
Both types of play switches improve offensive performance,
but modifying the behavior of only a key subgroup of offen-
sive players yields greater improvements in yardage gained.

1. Introduction

By accessing the play history of your opponent, it is pos-
sible to glean critical insights about future plays. This was
recently demonstrated at a soccer match by an innovative,
well-prepared goalkeeper who used his iPod to review a
video play history of the player taking a penalty kick; iden-
tifying the player’s tendency to kick to the left allowed the
goalkeeper to successfully block the shot (Bennett 2009).
Although play history can be a useful source of information,
it is difficult to utilize effectively in a situation with a large
number of multi-agent interactions. Opponent modeling can
be divided into three categories: 1) online tracking, 2) online
strategy recognition and 3) off-line review. In online track-
ing, immediate future actions of individual players (passes,
feints) are predicted, whereas in online strategy recognition,
the observer attempts to recognize the high-level strategy
used by the entire team. In offline review, general strengths,
weaknesses, and tendencies are identified in an offline set-
ting and used as part of the training/learning regimen.

This paper addresses the problem of online strategy
recognition in adversarial team games. In physical domains
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Figure 1: Rush 2008 football simulator the blue players are
the offense (Pro formation) and the red the defense (2222
formation).

(military or athletic), team behaviors often have an observ-
able spatio-temporal structure, defined by the relative phys-
ical positions of team members. This structure can be ex-
ploited to perform behavior recognition on traces of agent
activity over time. This paper describes a method for recog-
nizing defensive plays from spatio-temporal traces of player
movement in the Rush 2008 football game (Figure 1) and us-
ing this information to improve offensive play. To succeed at
American football, a team must be able to successfully exe-
cute closely-coordinated physical behavior. To achieve this
tight physical coordination, teams rely upon a pre-existing
playbook of offensive maneuvers to move the ball down the
field and defensive strategies to counter the opposing team’s
attempts to make yardage gains. Rush 2008 simulates a
modified version of American football and was developed
from the open source Rush 2005 game, which is similar in
spirit to Tecmo Bowl and NFL Blitz (Rush 2005).

Although there have been other studies examining the
problem of recognizing completed football plays, we present
results on recognizing football plays online at an early stage
of play, and demonstrate a mechanism for exploiting this
knowledge to improve a team’s offense. Our system eval-
uates the competitive advantage of executing a play switch
based on the potential of other plays to improve the yardage
gained and the similarity of the candidate plays to the cur-
rent play. Our play switch selection mechanism outperforms
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both the built-in offense and a greedy yardage-based switch-
ing strategy. Calculating the relative similarity of the current
play compared to the proposed play is shown to be a nec-
essary step to reduce confusion on the field and effectively
boost performance. Additionally we investigated the utility
of limiting the play switch to a subgroup of players; by only
modifying the actions of small subgroup of key players, we
can improve on the total team switch.

2. Related Work

Previous work on team behavior recognition has been
evaluated within the following domains: American foot-
ball (Intille and Bobick 1999), basketball (Jug et al.
2003), Robocup soccer simulations (Riley and Veloso 2002;
Kuhlmann et al. 2006), and tabletop games (Sukthankar
and Sycara 2007). In Robocup, most of the research on
team intent recognition is geared towards designing agents
for the coach competition. Techniques have been developed
to extract specific information, such as home areas (Riley
et al. 2002), opponent positions during set-plays (Riley
and Veloso 2002), and adversarial models (Kuhlmann et al.
2006), from logs of Robocup simulation league games. This
information can be utilized by the coach agent to improve
the team’s scoring performance. For instance, information
about opponent agent home areas can be used as triggers
for coaching advice and for doing “formation-based mark-
ing”, in which different team members are assigned to track
members of the opposing team. However, the focus of the
coaching agents is to improve performance of teams in fu-
ture games; our system immediately takes action on the rec-
ognized play to evaluate possible play switches and perform
play adaptations.

Rush 2008 was developed as a platform for evaluating
game-playing agents and has been used to study the prob-
lem of learning strategies by observation (Li et al. 2009).
Intention recognition has been used within Rush 2008 as part
of a reinforcement learning method for controlling a single
quarterback agent (Molineaux et al. 2009); in this paper, we
present an approach for optimizing policies across multiple
agents.

3. Rush Football

Football is a contest of two teams played on a rectangular
field bordered on lengthwise sides by an end zone. Unlike
American football, Rush teams only have 8 players on the
field at a time out of a roster of 18 players, and the field is
100× 63 yards. The game’s objective is to out-score the op-
ponent, where the offense (i.e., the team with possession of
the ball), attempts to advance the ball from the line of scrim-
mage into their opponent’s end zone. In a full game, the of-
fensive team has four attempts to get a first down by moving
the ball 10 yards down the field. If the ball is intercepted or
fumbled and claimed by the defense, ball possession trans-
fers to the defensive team. The Rush 2008 simulator only
runs one play with the line of scrimmage set to the center
of the field. Stochasticity exists in catching (i.e., whether a
catch is successful), fumbling, tackles, distance/location of
a thrown ball, and the selection of who to throw to if no re-

ceiver is ”open” when the QB is forced to throw the ball. To
simplify the dimensionality of the game we do not take into
account differences between downs or use field goals.

The offensive lineup contains the following positions:

Quarterback (QB): given the ball at the start of each play.
The QB hands the ball off or passes it to another player.

Running back (RB): begins in the backfield, behind the
line of scrimmage where the ball is placed, with the quar-
terback and fullback.

Full back (FB): serves largely the same function as the RB.

Wide receiver (WR): primary receiver for pass plays.

Tight end (TE): begins on the line of scrimmage immedi-
ately to the outside of the offensive lineman and can re-
ceive passes.

Offensive linemen (OL): begin on the line of scrimmage
and are primarily responsible for preventing the defense
from reaching the ball carrier.

A Rush play is composed of (1) a starting formation and (2)
instructions for each player in that formation. A formation
is a set of (x,y) offsets from the center of the line of scrim-
mage. By default, instructions for each player consist of (a)
an offset/destination point on the field to run to, and (b) a
behavior to execute when they get there. Play instructions
are similar to a conditional plan and include choice points
where the players can make individual decisions as well as
pre-defined behaviors that the player executes to the best of
their physical capability. Rush includes three offensive for-
mations (power, pro, and split) and four defensive ones (23,
31, 2222, 2231). Each formation has eight different plays
(numbered 1-8) that can be executed from that formation.
Offensive plays typically include a handoff to the running
back/fullback or a pass executed by the quarterback to one
of the receivers, along with instructions for a running pattern
to be followed by all the receivers. An example play from
the split formation is given below:

• the quarterback will pass to an open receiver;

• the running back and fullback will run hook routes;

• the left wide receiver will run a corner right route;

• the right wide receiver will run a hook route;

• the other players will block for the ball holder.

4. Play Recognition using SVMs

In this paper we focus on intent recognition from the view-
point of the offense: given a series of observations, our goal
is to recognize the defensive play as quickly as possible
in order to maximize our team’s ability to intelligently re-
spond with the best offense. Thus, the observation sequence
grows with time unlike in standard offline activity recogni-
tion where the entire set of observations is available. We
approach the problem by training a series of multi-class dis-
criminative classifiers, each of which is designed to handle
observation sequences of a particular length. In general, we
expect that the early classifiers should be less accurate since
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they are operating with a shorter observation vector and be-
cause the positions of the players have deviated little from
the initial formation.

We perform this classification using support vector ma-
chines (Vapnik 1998). Support vector machines (SVM) are
a supervised algorithm that can be used to learn a binary
classifier; they have been demonstrated to perform well on a
variety of pattern classification tasks, particularly when the
dimensionality of the data is high (as in our case). Intu-
itively an SVM projects data points into a higher dimen-
sional space, specified by a kernel function, and computes
a maximum-margin hyperplane decision surface that sepa-
rates the two classes. Support vectors are those data points
that lie closest to this decision surface; if these data points
were removed from the training data, the decision surface
would change. More formally, given a labeled training set
{(x1, y1), (x2, y2), . . . , (xl, yl)}, where xi ∈ �N is a fea-
ture vector and yi ∈ {−1,+1} is its binary class label, an
SVM requires solving the following optimization problem:

min
w,b,ξ

1
2
wT w + C

l∑
i=1

ξi

constrained by:

yi(wT φ(xi) + b) ≥ 1 − ξi,

ξi ≥ 0.

The function φ(.) that maps data points into the higher di-
mensional space is not explicitly represented; rather, a ker-
nel function, K(xi,xj) ≡ φ(xi)φ(xj), is used to implicitly
specify this mapping. In our application, we use the popular
radial basis function (RBF) kernel:

K(xi, xj) = exp(−γ||xi − xj ||2), γ > 0.

Several extensions have been proposed to enable SVMs
to operate on multi-class problems (with k rather than 2
classes), such as one-vs-all, one-vs-one, and error-correcting
output codes. We employ a standard one-vs-one voting
scheme where all pairwise binary classifiers, k(k − 1)/2 =
28 for every multi-class problem in our case, are trained and
the most popular class is selected. Many efficient imple-
mentations of SVMs are publicly available; we use LIB-
SVM (Chang and Lin 2001). It is also possible to use the
training paradigm described below to learn simpler super-
vised classifiers (e.g. kNN) in cases where there is no per-
ceptual noise in the simulation data.

We train our classifiers using a collection of simulated
games in Rush collected under controlled conditions: 40
instances of every possible combination of offense (8) and
defense plays (8), from each of the 12 starting formation
configurations. Since the starting configuration is known,
each series of SVMs is only trained with data that could
be observed starting from its given configuration. For each
configuration, we create a series of training sequences that
accumulates spatio-temporal traces from t = 0 up to t ∈
{2, . . . , 10} time steps. A multiclass SVM (i.e., a collection
of 28 binary SVMs) is trained for each of these training se-
quence lengths. Although the aggregate number of binary

Table 1: Play recognition results (all play combinations)
t = 2 3 4 6 8 10
12.50 96.88 96.87 96.84 96.89 96.81

classifiers is large, each classifier only employs a small frac-
tion of the dataset and is therefore efficient (and highly par-
alellizable). Cross-validation on a training set was used to
tune the SVM parameters (C and σ) for all of the SVMs.

Classification at testing time is very fast and proceeds as
follows. We select the multiclass SVM that is relevant to the
current starting configuration and time step. An observation
vector of the correct length is generated (this can be done
incrementally during game play) and fed to the multi-class
SVM. The output of the intent recognizer is the system’s
best guess (at the current time step) about the opponent’s
choice of defensive play and can help us to select the most
appropriate offense, as discussed below.

Table 1 summarizes the experimental results for differ-
ent lengths of the observation vector (time from start of
play), averaging classification accuracy across all starting
formation choices and defense choices. We see that at the
earliest timestep, our classification accuracy is at the base-
line but jumps sharply near perfect levels at t = 3. This
strongly confirms the feasibility of accurate intent recogni-
tion in Rush, even during very early stages of a play. At
t = 2, there is insufficient information to discriminate be-
tween offense plays (perceptual aliasing), however by t = 3,
the positions of the offensive team are distinctive enough to
be reliably recognized.

5. Offensive Play Switches

To improve offensive performance, our system evaluates the
competitive advantage of executing a play switch based on
1) the potential of other plays to improve the yardage gained
and 2) the similarity of the candidate plays to the current
play. To start, we train a set of SVM models to recognize
defensive plays at a particular time horizon as described in
the previous section; this training data is then used to iden-
tify promising play switches. A play switch is executed:

1. after the defensive play has been identified by the SVM
classifier;

2. if there is a stronger alternate play based on the yardage
history of that play vs. the defense;

3. if the candidate play is sufficiently similar to the current
play to be feasible for immediate execution.

To determine whether to execute the play switch for a par-
ticular combination of plays, the agent considers N , the set
of all offensive plays shown to gain more than a threshold
ε value. The agent then selects Min(n ∈ N), the play in
the list most like the current play for each play configuration
and caches the preferred play in a lookup table.

When a play is executed, the agent will use the first three
observations to determine what play the defense is execut-
ing before performing a lookup to determine the play switch
to make. The process is ended with execution of a change
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order to members of the offensive team. Calculating the fea-
sibility of the play switch based on play similarity is a cru-
cial part of improving the team’s performance; in the eval-
uation section, we evaluate our similarity-based play switch
mechanism vs. a greedy play switching algorithm that fo-
cuses solely on the potential for yardage gained.

5.1 Play Similarity Metric

To calculate play similarities, we create a feature matrix
for all offensive formation/play combinations based on the
training data. Features collected for each athlete A include
max, min, mean, and median over X and Y in addition to
the following special features:
FirstToLastAngle: Angle from starting point (x0, y0), to

ending point (xn, yn), is defined as atan
(

�y
�x

)

Start Angle: Angle from the starting point (x0, y0) to
(x1, y1), defined as atan

(
y1−y0
x1−x0

)

End Angle: Angle from the starting point (xn−1, yn−1) to
(xn, yn), defined as atan

(
�y
�x

)

Total Angle: =
∑N−1

i=0 atan
(

yi+1−yi

xi+1−xi

)

Total Path Dist: =
∑N−1

i=1
2
√

(xi − xi−1)
2 + (yi − yi−1)

2

Feature set F for a given play c, (c = 1...8, represents pos-
sible play matches per formation) contains all features for
each offensive player in the play and is described as

−→
Fc = {Ac1 ∪ Ac2 ∪ · · · ∪ Ac8}

These features are similar to the ones used in (Rubine 1991)
and more recently, by (Wobbrock et al. 2007) to match pen
trajectories in sketch-based recognition tasks, but general-
ized to handle multi-player trajectories. To compare plays
we use the sum of the absolute value of the differences (L1

norm) between features Fci
and Fcj

. This information is
used to build a similarity matrix Mij for each possible of-
fensive play combination as defined below.

Mij =

‚
‚
‚
−→
Fc

‚
‚
‚∑

c=1

Δ
−→
Fc

i, j = 1 . . . 8
There is one matrix M for each offensive formation Oβ ,
where β ∈ {pro, power, split} are the offensive forma-
tions. Defensive formation/play combinations are indicated
by Dαp, where α ∈ {23, 31, 2222, 2231} and p represents
plays 1..8. M for a specific play configuration is expressed
as OβDαpMi, given i (1. . . 8) is our current offensive play.
The purpose of this algorithm is to find a value j (play) most
similar to i (our current play), with a history (based on ear-
lier observation) of scoring the most yardage. This process
is accomplished for every offensive play formation against
every defensive play formation and play combination. When
the agent is constructing the lookup table and needs to de-
termine the most similar play from a list, given current play
i, it calls the method, Min(OβDαpMi) which returns the
most similar play.

6. Improving the Offense

Our algorithm for improving Rush offensive play has two
main phases, a preprocess stage which yields a play switch
lookup table and an execution stage where the defensive play
is recognized and the offense responds with an appropriate
play switch for that defensive play. We train a set of SVM
classifiers using 40 instances of every possible combination
of offense (8) and defense plays (8), from each of the 12
starting formation configurations. This stage yields a set of
models used for play recognition during the game. Next,
we calculate and cache play switches using the following
procedure:

1. Collect data by running RUSH 2008 50 times for every
play combination.

2. Create yardage lookup tables for each play combination.
This information alone is insufficient to determine how
good a potential play is to perform the play switch action
on. The transition play must resemble our current offen-
sive play or the offensive team will spend too much time
retracing steps and perform very poorly.

3. Create feature matrix for all offensive formation/play
combinations.

4. Create the final play switch lookup table based on both
the yardage information and the play similarity.

To create the play switch lookup table, the agent first ex-
tracts a list of offensive plays L given the requirement
yards (Li) > ε where ε is the least amount of yardage
gained before the agent changes the current offensive play
to another. We used ε = 1.95 based on a quadratic
polynomial fit of total yardage gained in 6 tests with
ε = {MIN, 1.1, 1.6, 2.1, 2.6, MAX} where MIN is small
enough no plays are selected to change and MAX where
all plays are selected for change to the highest yardage play
with no similarity comparison. Second, from the list L
find the play most similar (smallest value in the matrix) to
our current play i using Min(OβDαpMi) and add it to the
lookup table.

During execution, the offense uses the following proce-
dure:

1. At each observation less than 4, collect movement traces
for each play.

2. At observation 3, use LIBSVM with the collected move-
ment traces and previously trained SVM models to iden-
tify the defensive play.

3. Access the lookup table to find best(i) for the current play
i.

4. If best(i) �= i, send a change order command to the of-
fensive team to change to play best(i).

However, it’s not necessary (or always desirable) to change
all players to the new play. We also evaluated the perfor-
mance of subgroup switching; modifying the actions of a
small group of key players, while leaving the remaining
players alone. By segmenting the team we are able to com-
bine two plays previously identified as alike to each other
with regard to spatio-temporal data, but different in regards
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Starting play

QB: 0 30 HANDOFFRB

RB: 70 -15 SWEEP

LWR:-30 -30 RUNBLOCK

{RWR,RTE,LG,C,RG}:0 0 RUNBLOCK

Commands for all players changed to optimal play

QB: 0 30 PASS

RB: -70 -40 PASSROUTE_BOMB

LWR:0 -50 PASSROUTE_CORNERRIGHT

RWR:0 -50 PASSROUTE_HOOK

{RTE,LG,C,RG}:0 0 PASSBLOCK

Adapted play with only key subgroup players changing
commands

QB: 0 30 PASS

RB: -70 -40 PASSROUTE_BOMB

LWR:-30 -30 RUNBLOCK

{RWR,RTE,LG,C,RG}:0 0 RUNBLOCK

Figure 2: The play in the left figure is adapted using the middle to produce the adapted play shown on the right. The green line
indicates average yardage gained.

to yards gained. Based on our domain knowledge of foot-
ball, we selected three subgroups for evaluation: 1) QB, RB,
and FB; 2) LG, C, and RG; 3) LWR, RWR, RTE, LTE.

Figure 2 is a good example of a very successful merge
of two plays which produced a superior play with subgroup
switching. The green line represents the average yardage
gained. The left image is the most likely path of the baseline
case (a running play which yields little yardage on average).
The middle image is the most likely execution trace pro-
duced by the total play switch method. The play produced
by the total play switch was not much more successful than
the baseline case. However, when only Group 1 (QB, RB,
FB) is modified, the success of the play increases greatly and
the new play is shown to be very coordinated and effective.

7. Empirical Evaluation
Our switching algorithm was tested using the RUSH 2008
simulator for ten iterations of each possible play configura-
tion in three separate trials. We compared our play switch
model (using the yardage threshold ε = 1.95 as determined
by the quadratic fit) to the baseline Rush offense and to a
greedy play switch strategy (ε = MAX) based solely on
the yardage (Figure 3).

Overall, the average performance of the offense went
from 2.82 yards per play to 3.65 yards per play (ε = 1.95)
with a total gain of 29%, ±1.5% based on sampling of 3
sets of 10 trials. An analysis of each of the formation com-
binations (Figure 3) shows the yardage gain varies from as
much as 100% to as little as 0.1%. Overall, performance
is consistently better for every configuration tested. In all
cases, the new average yardage is over 2.3 yards per play
with no weak plays as seen in the baseline with Power vs. 23
(1.4 average yards per play) and Power vs. 2222 (1.3 aver-
age yards per play). Results with ε = MAX clearly shows
simply changing to the greatest yardage generally results in

Figure 3: Comparison of greedy play switch and similarity-
based switching. Our similarity-based play switch method
outperforms both baseline Rush offense and a greedy play
switch metric.

poor performance from the offense. Power vs. 23 is boosted
from 1.5 yards to 3 yards per play, doubling yards gained.
Other combinations, such as Split vs. 23 and Pro vs. 32 al-
ready gained high yardage and improved less dramatically at
about .2 to .4 yards more than the gains in the baseline sam-
ple. In Figure 3 we see all the split configurations do quite
well; this is unsurprising given our calculations of the best
response. However, when the threshold is not in use and the
plays are allowed to change regardless of current yardage,
the results are greatly reduced. The reason seems to be asso-
ciated player miscoordinations induced by the play switch;
by maximizing the play similarity simultaneously, the pos-
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Figure 4: The play-yardage gain over baseline Rush offense
yielded by various play switch strategies.

sibility of miscoordination errors is reduced.
To evaluate the subgroup switching, we ran the simula-

tion over all 3 subgroups and compared them to the base-
line yardage gained and the results of total play switch. Re-
sults clearly indicated the best subgroup switch (consistently
Group 1) produced greater gains than the total team switch,
which still performed better than the baseline. Figure 4 is a
side-by-side comparison of the results. We also compared
results to the yardage gained if the team had initially chosen
the best response play (the play that on average results in the
greatest yardage gain) for that formation. Early play recog-
nition combined with subgroup switching yields the best re-
sults, assuming no oracular knowledge of the other team’s
intentions prior to run-time.

8. Conclusion

Accurate opponent modeling is an important stepping-stone
toward the creation of interesting autonomous adversaries.
In this paper, we present an approach for online strategy
recognition in the Rush 2008 football simulator. Using in-
formation about the defense’s intent, our system evaluates
the competitive advantage of executing a play switch based
on the potential of other plays to improve the yardage gained
and the similarity of the candidate plays to the current play.
Our play switch selection mechanism outperforms both the
built-in Rush offense and a greedy yardage-based switch-
ing strategy, increasing yardage while avoiding miscoordi-
nations induced by the greedy strategy during the transition
from the old play to the new one. Additionally, we demon-
strate limiting play switching to a subgroup of key play-
ers further improves performance. In future work, we plan
to explore methods for automatically identifying key sub-
groups by examining motion correlations between players.
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