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Abstract

Multimodal AI models capable of associating images and text
hold promise for numerous domains, ranging from automated
image captioning to accessibility applications for blind and
low-vision users. However, uncertainty about harmful bias has
in some cases limited their adoption and availability. In the
present work, we study 43 CLIP vision-language models to
determine whether they learn human-like facial impression
biases, and we find evidence that such biases are reflected
across three distinct CLIP model families. We show for the
first time that the the degree to which a bias is shared across a
society predicts the degree to which it is reflected in a CLIP
model. Human-like impressions of visually unobservable at-
tributes, like trustworthiness and sexuality, emerge only in
models trained on the largest dataset, indicating that a better
fit to uncurated cultural data results in the reproduction of
increasingly subtle social biases. Moreover, we use a hierar-
chical clustering approach to show that dataset size predicts
the extent to which the underlying structure of facial impres-
sion bias resembles that of facial impression bias in humans.
Finally, we show that Stable Diffusion models employing
CLIP as a text encoder learn facial impression biases, and that
these biases intersect with racial biases in Stable Diffusion
XL-Turbo. While pretrained CLIP models may prove useful
for scientific studies of bias, they will also require significant
dataset curation when intended for use as general-purpose
models in a zero-shot setting.

Introduction
OpenAI’s multimodal GPT-4 powers the beta version of Be
My AI, an extension of the Be My Eyes app (Be My Eyes
2023a,b) that provides ”instantaneous identification, inter-
pretation, and conversational visual assistance” to blind and
low-vision users. Until recently, the app allowed users to
ask questions about images of people and receive live ex-
planations. The temporary discontinuation of this feature
was motivated by concern that GPT-4 “would say things it
shouldn’t about people’s faces, such as assessing their gender
or emotional state” (Hill 2023).

The decision belies a broader concern: that by learning to
associate language and images, multimodal AI may make
insufficiently informed judgments about human attributes
based solely on a person’s face. When studied in human
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subjects, this kind of inference is known as a “first impres-
sion” or “facial impression” bias (Todorov 2017), and it is
known to affect consequential spheres of human social life
such as criminal sentencing (Wilson and Rule 2015), employ-
ment decisions (Stoker, Garretsen, and Spreeuwers 2016),
and political elections (Antonakis and Dalgas 2009). Such
impressions can include traits like trustworthiness, which are
unobservable from a person’s face and societally mediated to
extent that they are consistent in a population (Todorov 2017).
While psychologists have used computational geometry and
supervised machine learning approaches to modeling facial
impression biases (Blanz and Vetter 2023), it is not known
whether semi-supervised vision-language AI models could
inadvertently learn such biases in pretraining and propagate
them to the many domains in which such models are used.

While features permitting facial image analysis are dis-
abled in GPT-4, the opportunity to study facial impression
bias is afforded by CLIP (“Contrastive Language Image Pre-
training”), a state-of-the-art vision-language model that al-
lows users to define text classes at inference using natural
language (Radford et al. 2021). Rather than fine-tuning CLIP
to model facial impressions similar to prior work using su-
pervised learning, we study this bias in three families of
pretrained CLIP models used in a wide range of multimodal
computer vision tasks: the nine models trained by OpenAI
(Radford et al. 2021); five “FaceCLIP” models post-trained
for facial analysis (Zheng et al. 2022); and 29 “Scaling” mod-
els trained by Cherti et al. (2022) on systematically differing
amounts of data, allowing for statistical analysis of the effects
of model and dataset parameters on facial impression bias.

Analyzing whether CLIP models learn human-like facial
impression biases requires a reliable source of human data.
This research uses the authoritative One Million Impressions
(OMI) dataset of Peterson et al. (2022), which includes 1,004
images of faces rated by human participants across 34 at-
tributes, with which Peterson et al. (2022) learned a super-
vised model of facial impression biases. In the present work,
we used CLIP to compute the similarity of each OMI image
to text prompts for the 34 attributes, mimicking the task given
to human subjects, and we compared the CLIP similarities to
human subject ratings. We offer four primary findings:

1. CLIP models learn societal facial impression biases, in-
cluding for unobservable traits such as trustworthiness
and sexuality. Moreover, the extent to which an attribute
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Figure 1: CLIP models learn human-like facial impression biases. The highest model-human correlations are obtained for
intuitively visual categories that are broadly shared by a society (such as gender, age, and happiness). Models trained on the
largest dataset (LAION-2B) exhibit more human-like biases than FaceCLIP or OpenAI models for most attributes.

bias is learned by a CLIP model is strongly correlated
with the inter-rater reliability (IRR) of human judgments
of the attribute (Spearman’s ρ = .73 for OpenAI models;
ρ = .76 for FaceCLIP models; and ρ = .72 for Scaling
models). A multiple linear regression predicting the simi-
larity of CLIP bias to Human bias finds that the IRR of
the attribute plays a larger role than any model-related
variable, with t(912) = 25.47, p < .001. The extent to
which a facial impression bias is learned by a model de-
pends on how consistently it is shared in the population
that produced the data on which the models trains.

2. Dataset Scale is a significant predictor of facial im-
pression bias in CLIP. Comparison of model-human
similarity in two groups of nine CLIP models trained on
LAION-80M (80 million examples) and LAION-400M
(407 million examples) yields large effect sizes (d > 0.8)
and statistically significant (p < .05) paired samples t-
tests for 17 of 34 attributes, indicating increases in the
human similarity of bias in models trained on LAION-
400M. Differences between models trained on LAION-2B
(2.32 billion examples) and LAION-400M are mostly not
significant, with the notable exception of unobservable
attributes like trustworthiness (d = 1.33, p < .05) and
sexuality (d = 1.14, p < .05). While models trained on
larger datasets exhibit stronger task performance (Cherti
et al. 2022), they also more faithfully reflect the biases of
the population that produced the data.

3. CLIP models learn human-like associations between
facial impression biases. Hierarchical clustering of CLIP

and OMI attribute correlation matrices reveals similar
groupings of traits, including clusters related to ethnicity,
and clusters grouping gender, sexuality, and age. Com-
puting the normalized Frobenius inner product of CLIP
correlation matrices with the OMI matrix reveals increas-
ing similarity as pretraining data size increases, with a
one-way ANOVA yielding F (2) = 15.71, p < .001, and
large (d > 0.8) pairwise effect sizes between groups of
Scaling-80M with 400M and 2B models.

4. Stable Diffusion text-to-image models employing CLIP
as a text encoder learn facial impression biases that
intersect with demographic biases. Images generated
by Stable Diffusion XL-Turbo (SDXL) are classified by a
classifier fit using the OMI images. Classifications reflect
human facial impression biases for subjective, observable
attributes like attractiveness (F1=.98), and to a lesser ex-
tent for unobservable attributes like liberal (F1=.68) and
smart (F1=.65). Applying the classifier to SDXL images
generated for White and Black prompts reveals biases in
SDXL differentially associating White individuals with
traits like memorable, attractive, electable, and happy.

Training VL models on vast web-scraped datasets produces
consequential emergent biases. Such models may serve as
useful tools for social science, illuminating factors that con-
tribute to human bias. However, the presence of these biases
also renders fraught VL models’ real-world use, as they may
subtly reinforce existing inequities in an online environment
increasingly mediated by AI. Code and data are available at
https://github.com/wolferobert3/vl-facial-impressions-bias.
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Related Work
We review the related work on facial impression bias, vision-
language AI, and the impact of scale in deep learning.

Facial Impression Bias
A wealth of psychological research indicates that humans
make immediate judgments about the attributes of people they
do not know based solely on facial appearance (Willis and
Todorov 2006; Oh, Buck, and Todorov 2019; Charlesworth
et al. 2019). Information inferred from faces includes char-
acter traits (like trustworthiness and outgoingness) and so-
cially constructed group memberships (like gender and eth-
nicity) as well as relatively objective traits (like hair color
and weight) (Todorov 2017; Peterson et al. 2022). Research
on first-impression biases in humans has found that the in-
ference of attributes from facial appearance plays a role in
numerous consequential domains, including employment de-
cisions (Stoker, Garretsen, and Spreeuwers 2016; Graham,
Harvey, and Puri 2017; Swider, Harris, and Gong 2021),
criminal sentencing (Wilson and Rule 2015; Johnson and
King 2017), and the election of political candidates (Anton-
akis and Dalgas 2009; Olivola and Todorov 2010; Lenz and
Lawson 2011; Jäckle et al. 2020). While facial impression
biases may be consistent among a population, inferences of
unobservable attributes such as character traits are inaccurate
and often reflect societal stereotypes (Sutherland and Young
2022; Todorov 2017). AI systems are increasingly employed
to automate or mediate access to information in domains such
as hiring (Li et al. 2021), political analysis and advertising
(Papakyriakopoulos et al. 2022), and law (Choi et al. 2023),
and to the extent that such systems reflect facial impression
biases, they may have socially undesirable impacts.

Relationship to Social Group Biases
Some studies suggest a connection between first-impression
biases and demographic traits such as gender and ethnicity.
Oh, Buck, and Todorov (2019) find that gender biases as-
sociating men with competence are reflected in participant
impressions of the competence of faces. Xie et al. (2021) find
that the structure of impressions of novel faces is predicted
by learned social stereotypes about gender and race. Peter-
son et al. (2022) find that facial impression biases are corre-
lated with demographics, such that judgments of traits like
“cuteness” are related to age. The relationship between first-
impression bias and social stereotypes can have real-world
consequences. For example, White phenotypic prototypical-
ity (looking like the average White person) can moderate use
of force by police (Kahn et al. 2016).

Computational Models of Facial Impression Bias
Peterson et al. (2022) use the OMI dataset to model facial im-
pressions using the StyleGAN-2 network (Karras, Laine, and
Aila 2019), and demonstrate its capacity to manipulate faces
such that the average U.S. perceiver would consider them
similar to an attribute (such as trustworthiness). They build
on research on the scientific modeling of facial impression
biases, which commonly utilizes techniques including land-
mark annotations of faces (Turk and Pentland 1991), para-
metric three-dimensional mesh modeling (Blanz and Vetter

2023), geometric morphological analysis (Sano and Kawa-
bata 2023), and supervised deep learning models (Yu and
Suchow 2022). As noted by Peterson et al. (2022), creating a
computational model of a bias differs from modeling the at-
tribute itself (i.e., trying to predict if an individual is trustwor-
thy from their face, rather than whether the average person
would perceive an individual as trustworthy), which would
amount to physiognomy (y Arcas, Mitchell, and Todorov
2023) for an unobservable attribute like trustworthiness.

CLIP and Vision-Language AI
The present work studies CLIP, a multimodal vision-
language model pretrained using a symmetric cross-entropy
loss (Oord, Li, and Vinyals 2018; Zhang et al. 2020) to
pair images with associated text captions (Radford et al.
2021). After pretraining, CLIP can rank, retrieve, or classify
images based on association with text classes specified at
inference rather than pre-selected at the time of training,
making it a “zero-shot” vision-language model (Radford
et al. 2021), as well as a good source for semantically rich
embeddings (Wolfe and Caliskan 2022b). CLIP is composed
of a language model (usually GPT2 (Radford et al. 2019)),
and an image encoder, such as a Vision Transformer (“ViT”)
(Dosovitskiy et al. 2020) or a ResNet (He et al. 2016). The
language and image models are jointly pretrained, and
representations are projected into a multimodal embedding
space, in which cosine similarity quantifies the similarity
between image and text (Radford et al. 2021). In addition to
standard CLIP models, we study “FaceCLIP” models trained
by Zheng et al. (2022), who introduce Facial Representation
Learning (FaRL), which combines CLIP training with a
masked image modeling objective (Xie et al. 2022) and
trains on a faces-only subset of LAION-400M. Models
trained using FaRL set state-of-the-art on downstream facial
analysis tasks such as face parsing (Zheng et al. 2022).

Text-to-Image Generators
CLIP is an essential component for many generative text-to-
image models. One of the first uses of a CLIP model was to
provide training supervision to OpenAI’s first DALL-E image
generator model (Ramesh et al. 2021). Other text-to-image
generators like VQGAN-CLIP similarly use CLIP embedding
space measurements in their objective function (Crowson
et al. 2022). More recent image generators such as Stable
Diffusion 2 employ CLIP models as text encoders (Rombach
et al. 2022a), passing CLIP text embeddings to a U-Net or
similar latent diffusion architecture capable of generating an
image conditioned on those text embeddings. More recently,
DALL-E 3 (“unCLIP”) decodes images directly from a CLIP
embedding space, translating CLIP text embeddings into
image embeddings, and inverting them (Ramesh et al. 2022).
As discussed in the Data section, we study open-weight text-
to-image generators utilizing a CLIP text encoder.

Impact of Scale in Deep Learning and in CLIP
Research shows that the impact of data scale on deep learning
models is empirically predictable (Hestness et al. 2017) and
that task performance scales with training dataset size (Sun
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et al. 2017; Brown et al. 2020). Zhai et al. (2022) empirically
demonstrate that both model and data scale impact visual
task performance, and set new state of the art on Imagenet
(Deng et al. 2009) by efficiently scaling a ViT. In CLIP mod-
els, Cherti et al. (2022) demonstrate a relationship between
pretraining data scale and task performance. Prior work also
demonstrates increases in hate speech in CLIP models trained
on larger uncurated datasets (Birhane et al. 2024).

Bias in Vision-Language AI
Prior research identifies societal biases in CLIP models,
which have been found to over-represent images of men
in retrieval contexts (Wang, Liu, and Wang 2021), to exhibit
social stereotypes when used in robotics applications (Hundt
et al. 2022), and to reflect biased cultural defaults related to
race and nationality (Wolfe and Caliskan 2022a,c). Genera-
tive text to image models typically reflect biases of the CLIP
model from which they learn or decode (Luccioni et al. 2023;
Bianchi et al. 2023), as do vision-language chatbots that use
CLIP as an image encoder (Fraser and Kiritchenko 2024). As
with other machine learning models (Hall et al. 2022), bias
in CLIP can be traced back to its pretraining data, and audits
of LAION-400M have found examples of racial and gender
biases (Birhane, Prabhu, and Kahembwe 2021).

Synthetic Media for Vision-Language Research
Our work builds on prior work employing synthetic images
to study societal biases. Similar to the OMI dataset studied
in this research, Wolfe, Banaji, and Caliskan (2022) assessed
classification biases in CLIP related to images of multiracial
individuals by generating images of thousands of faces using
StyleGAN-2. More recently, Fraser and Kiritchenko (2024)
use Midjourney (Midjourney 2024) to generate pairs of im-
ages of Black and White or Male and Female individuals in
identical attire and situations, which they use to assess bias in
conversational vision-language models such as Instruct-BLIP
(Dai et al. 2023). The use of synthetic data is well-motivated
for bias research, where it may be undesirable to assign values
related to traits like trustworthiness or smugness to the faces
of human subjects in a dataset intended for public release.

Data
This research uses the One Million Impressions (OMI)
dataset and 43 English-language CLIP models trained on
web-scraped text-and-image datasets, as well as three text-to-
image generators employing CLIP models as text encoders.

The One Million Impressions Dataset
The OMI dataset is a collection of 1,004 images of human
faces produced by Peterson et al. (2022) using StyleGAN-2
(Karras et al. 2020). Each face is rated by 30 or more human
participants on Amazon Mechanical Turk for 34 attributes.
For each attribute, participants rate the face on a sliding scale,
where one end represents one pole of an attribute binary
(such as “trustworthy”) and the other end represents the op-
posing pole of the binary (such as “untrustworthy”). The
OMI dataset records the mean participant rating for each of
the 34 attributes. Consistent with Peterson et al. (2022), we

use these ratings as measurements of human bias at a societal
scale, against which CLIP associations can be compared.

CLIP Training Data
We study CLIP models pretrained on one of five datasets,
ordered from smallest to largest:
• LAION-Face: A 20-million sample subset of human faces

and captions filtered from LAION-400M (see below) us-
ing RetinaFace (Deng et al. 2019) and intended for train-
ing facial analysis models (Zheng et al. 2022).

• LAION-80M: An 80-million sample subset of LAION-
2B (see below) created by Cherti et al. (2022) to study
scaling behavior in CLIP.

• LAION-Aesthetics: A 120-million sample subset of aes-
thetically pleasing images from LAION-5B as determined
using a CLIP model (Schuhmann et al. 2022).

• WebImageText (WIT): A web-scraped corpus of 400
million images and captions, constructed by Radford et al.
(2021) from a query list using Wikipedia and WordNet.

• LAION-400M An open source collection of 407 million
image-text pairs intended to replicate the WIT dataset
(Schuhmann et al. 2021).

• LAION-2B: An open source English-language dataset of
2.32 billion image-text pairs (Schuhmann et al. 2022).

Pretrained CLIP Models
This research studies the following CLIP models:
• OpenAI CLIP: 9 models pretrained by Radford et al.

(2021) on the WIT dataset.
• Scaling CLIP: 29 models pretrained by Cherti et al.

(2022) on LAION-80M, LAION-400M, and LAION-2B
to study CLIP scaling behavior.

• FaceCLIP: 5 models trained on the LAION-Face dataset
of Zheng et al. (2022). FaceCLIP models post-train from
pretrained OpenAI CLIP-ViT models.

Pretrained Stable Diffusion Models
This research studies three Stable Diffusion (SD) models:
• Stable Diffusion XL-Turbo: A high-resolution text-to-

image generator employing adversarial distillation diffu-
sion to speed up the rate of image generation (Sauer et al.
2023). Uses a CLIP-ViT-L and CLIP-ViT-bigG for its text
encoder, and pretrains on an internal dataset.

• Runway Stable Diffusion 1.5: A high-resolution text-to-
image generator finetuned on LAION-Aesthetics (Rom-
bach et al. 2022a). Uses a CLIP-ViT-L-14 as the text
encoder, and pretrains on LAION-5B.

• Stable Diffusion 2: A text-to-image generator using a
CLIP-ViT-H as the text encoder, and pretraining on a
filtered subset of LAION-5B (Rombach et al. 2022a).

Approach
We used embeddings from 43 CLIP models to compare facial
impression biases measured in CLIP to biases measured in
humans by Peterson et al. (Peterson et al. 2022), and extended
subspace projection methods from prior work to study bias
in generative text-to-image models.
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Obtaining Image and Text Embeddings
We obtained image embeddings for the 1,004 images in the
OMI dataset after projection to each CLIP model’s text-image
latent space. Text embeddings use the “a photo of image class”
prompt recommended by Radford et al. (2021). Because OMI
consists of images of faces, we modify this prompt to “a
photo of someone who is attribute.” In keeping with the bi-
nary sliding scale of Peterson et al. (2022), we computed an
image’s association with each attribute by subtracting its co-
sine similarity with one pole of the attribute binary (“a photo
of someone who has dark hair”) from its similarity with
opposing pole (“a photo of someone who has light hair”).
Formally, given a model m from which embeddings are ob-
tained, the association ma

j of an image vector i⃗j at index j
of the OMI dataset with an attribute a is the difference of the
vector’s cosine similarity with a positive pole text vector ⃗ta+

and its cosine similarity with a negative pole text vector ⃗ta− :

ma
j = cos(i⃗j , t⃗a+)− cos(i⃗j , t⃗a−) (1)

Adjusting Prompts for Negation
CLIP may fail to adjust for negation in text prompts (Parcal-
abescu et al. 2021) and can behave like a visual bag-of-words
model (Yuksekgonul et al. 2022). For example, CLIP might
match the text “a photo with no apples” to a photo of apples,
due to how unlikely it is for a text caption (i.e., CLIP’s
training supervision) to describe something not present in the
photo. To adjust for this, negative pole prompts were chosen
such that they did not simply negate the positive class. For
example, the “outgoing” attribute uses “a photo of someone
who is shy” as the negative text class, rather than “a photo of
someone who is not outgoing.” This strategy is not viable for
some attributes, like those related to ethnicity, which instead
use “a photo of someone” as the negative prompt.

Computing CLIP Model-Human Similarity
We denote the ordered set of n=1,004 OMI images as I . The
vector of associations ma for a model m with an attribute a
for all images i ∈ I is given by:

ma = (ma
0 ,m

a
1 , . . . ,m

a
n−1,m

a
n) (2)

Similarly, the vector of human-rated associations ha for at-
tribute a for all images i ∈ I is given by:

ha = (ha
0 , h

a
1 , . . . , h

a
n−1, h

a
n) (3)

where ha
j denotes the OMI mean for image i⃗j at index j. The

similarity sam of bias in a model m for attribute a to human
bias is given by Spearman’s ρ:

sam = ρ(ma,ha) (4)

CAT: Correlated Attribute Test
We compute the correlation between two attributes in a CLIP
model using a simple test we call the CAT. As above, the
vector of associations ma for a model m is given by:

ma = (ma
0 ,m

a
1 , . . . ,m

a
n−1,m

a
n) (5)

The measurement CATm(a, b) between attributes a and b in
a model m is given by Spearman’s ρ:

CATm(a, b) = ρ(ma,mb) (6)

Subspace Projection for Text-to-Image Models
We draw on subspace projection methods used by Boluk-
basi et al. (2016) and Omrani Sabbaghi, Wolfe, and Caliskan
(2023) to measure facial impression biases in generative text-
to-image models. First, we first obtain image embeddings
for the 1,004 OMI images from the top layer of a ViT-Large-
Patch32-384 model pretrained on ImageNet. For each at-
tribute a, we learn a weights vector wa predicting the OMI
attribute ratings ha, corresponding to a semantic subspace in
the embeddings for the attribute. We then use a generative
model g to generate n images via a prompt corresponding to
either the positive (a+) or negative (a−) pole of an attribute.
We embed each generated image gj at position j with the
ViT-Large-Patch32-384 to obtain the vector g⃗j , and compute
an attribute association gaj as its projection product with wa:

gaj =
g⃗j · wa

||wa||
(7)

The vector of associations ga for a generative model g with
an attribute a is given by:

ga = (ga0 , g
a
1 , . . . , g

a
n−1, g

a
n) (8)

Experiments
Four experiments test the existence of human-like facial im-
pression bias in vision-language AI, with consideration given
to Human IRR, model and dataset scale, and downstream
impact in image generation.

Model vs. Human Biases
We tested whether OpenAI, Scaling, and FaceCLIP CLIP
models reflect human-like facial impression biases. We ob-
tained the human-model similarity sam for each model m with
each attribute a for the 34 OMI attributes. We then compared
the mean human-model similarity for each group of mod-
els to the Human IRR for the attribute reported by Peterson
et al. (2022), calculating Pearson’s ρ between Human IRR
and model-human similarity for each of the 34 attributes. A
large coefficient indicates that the more societally consistent
a facial impression bias (i.e., as Human IRR increases), the
more likely the bias is to be learned during semi-supervised
CLIP training. We also computed Pearson’s ρ pairwise be-
tween OpenAI, Scaling, and FaRL models to assess whether
models trained on different datasets learn similar biases.

Effects of Dataset Scale
We calculated human-model similarity sam for each model
m with each attribute a for the 34 attributes studied, and
we constructed a multiple linear regression to predict the
model-human similarity sam for a given CLIP model m and
an attribute a. We examined the 27 CLIP models trained by
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Figure 2: The similarity of CLIP bias to human bias is strongly correlated with human IRR, indicating that the societal consistency
of a bias plays a significant role in whether a model learns it during semi-supervised pretraining.

Cherti et al. (2022) and produced via the combination of
three CLIP architectures (ViT-B32, ViT-B16, and ViT-L14),
three dataset sizes (80M, 400M, 2B), and three total train-
ing example counts (3B, 13B, 34B). Independent variables
include Human IRR (from Peterson et al. (Peterson et al.
2022)), as well as Dataset Size, Model Parameter Count, and
Total Training Examples (from Cherti et al. (2022)). We nor-
malized variables with range outside of (0, 1) by dividing by
their max. We conducted post hoc comparisons between each
level of scale (80m, 400m, 2b), using paired-samples t-tests.

Structure of Facial Impressions
We computed the correlation matrix Cm for the 27 CLIP
models studied in the Dataset Scale analysis by obtaining
CATm(a, b) for every attribute pair a ∈ A and b ∈ A. We
computed a corresponding matrix Ch by obtaining corre-
lations for the same attributes using the human ratings of
the OMI dataset. We then measured the similarity of Cm

and Ch based on the normalized Frobenius inner product
Fm,h. We used a one-way ANOVA to test for differences in
Fm,h between the 80M, 400M, and 2B models. We used a
paired-samples t-test to conduct post hoc comparisons.

Peterson et al. (2022) study the structure of facial impres-
sions by computing the correlation matrix of OMI ratings and
qualitatively examining its hierarchical structure. The present
research also qualitatively compares the structure of the OMI
correlation matrix to the hierarchically clustered correlation
matrix of a CLIP-ViT-L-14 trained on LAION-2B for 13-
billion total samples. If the structure of OMI biases is similar
to CLIP, we expect to observe similar attribute clusters at
higher levels, with differences emerging in leaf nodes.

Generative Text-to-Image Models
Finally, we extended the analysis to SDXL-Turbo, SD2, and
Runway SD1.5. We first studied the similarity of these mod-
els’ representations to human attribute ratings. To do so, we
generated N=25 images for each attribute’s positive pole and
25 for its negative pole. We adjusted prompts for the models
to “a realistic portrait photo of someone who is attribute,”
because image generators may create cartoonish images that

do not center the face. We extracted embeddings for these
images and computed their projection products ga+ and ga− .
If generative text-to-image models reflect human-like facial
impression biases, we expect images generated from a posi-
tive prompt to have positive projections, and images from a
negative prompt to have negative projections. We thus frame
model-human similarity as a classification problem, wherein
images generated from the positive pole prompt receives a
label of 1, and from the negative pole prompt receive a label
of 0. The OMI subspace is positioned as a classifier, which
predicts 1 where an image vector’s projection product is pos-
itive, and 0 where it is negative. We report Recall, Precision,
and F1 Score. We validated this approach using the Outdoors
attribute, a control group for measuring validity in the OMI
dataset, obtaining F1=.94 for SDXL-Turbo

We then study social bias in Stable Diffusion XL-Turbo
by projecting the positive prompt images generated for the
White and Black attributes onto all 34 of the OMI attribute
subspaces. For each subspace, we compute the White-Black
differential bias by obtaining an effect size (Cohen’s d) be-
tween the projection products gWhite+

and gBlack+

, then
measure statistical significance using a paired samples t-test.

Results
Our results indicate that 1) CLIP models exhibit facial im-
pression biases; 2) Human IRR is a significant predictor of
which biases are learned; 3) models trained on larger datasets
exhibit emergence of subjective facial impression biases, and
more human-like associations among impressions; and 4)
text-to-image generators exhibit facial impression biases and
undesirable social biases associating preferred attributes with
images of White individuals.

CLIP Models Reflect Human Biases
As shown in Figure 1, OpenAI, FaceCLIP, and Scaling CLIP
models exhibit human-like facial impression biases. Rela-
tively objective attributes like age, hair-color, and happiness
exhibit high model-human similarity, as do many socially
constructed attributes such as gender and cuteness. Notable

1640



Model-Human Similarity of Facial Impression Bias in CLIP Models by Pretraining Dataset Size
Measurement Mean (Std) Max Cohen’s d
Attribute 2b 400m 80m 2b 400m 80m 2b-80m 400m-80m 2b-400m
Happy .88 (0.02) .86 (0.03) .76 (0.06) .91 .90 .84 1.54* 1.36* 0.73
Gender .85 (0.02) .87 (0.02) .83 (0.04) .87 .91 .89 0.61 1.08* −0.84*
Age .83 (0.08) .84 (0.05) .73 (0.11) .93 .90 .90 0.94 1.03* −0.04
Asian .82 (0.03) .81 (0.05) .73 (0.06) .85 .86 .79 1.40* 1.13* 0.43
Hispanic .82 (0.02) .80 (0.02) .67 (0.07) .85 .84 .78 1.62* 1.50* 1.07*
Outdoors .81 (0.01) .79 (0.04) .65 (0.10) .82 .84 .75 1.51* 1.39* 0.57
Pacific Islander .76 (0.03) .74 (0.04) .62 (0.11) .81 .81 .77 1.28* 1.15* 0.50
Middle Eastern .72 (0.02) .68 (0.05) .57 (0.11) .75 .78 .71 1.43* 1.17* 0.88
Native American .68 (0.06) .67 (0.06) .53 (0.13) .78 .78 .77 1.20* 1.15* 0.14
Weight .68 (0.03) .69 (0.03) .63 (0.05) .72 .72 .67 1.05 1.24* −0.40
Hair-Color .66 (0.07) .61 (0.09) .50 (0.12) .76 .70 .67 1.31* 0.92 0.67*
Cute .65 (0.10) .67 (0.08) .41 (0.15) .78 .76 .56 1.35* 1.46* −0.31
Long-Haired .63 (0.10) .63 (0.11) .43 (0.16) .76 .75 .67 1.20* 1.16* 0.06
Gay .49 (0.07) .41 (0.06) .30 (0.11) .57 .51 .42 1.46* 1.09* 1.14*
Attractive .48 (0.08) .50 (0.11) .28 (0.21) .60 .65 .57 1.11* 1.11* −0.16
Electable .47 (0.22) .50 (0.11) .30 (0.25) .68 .65 .60 0.72 0.94 −0.16
Smart .42 (0.15) .45 (0.14) .25 (0.11) .62 .59 .50 1.09* 1.23* −0.20
Black .41 (0.09) .35 (0.11) .37 (0.12) .51 .49 .51 0.46 −0.10 0.59
Smug .38 (0.11) .19 (0.20) .07 (0.15) .50 .45 .25 1.50* 0.63 1.02*
Trustworthy .36 (0.18) .04 (0.18) -.06 (0.15) .59 .35 .15 1.56* 0.60* 1.33*
Skin-Color .36 (0.14) .37 (0.13) .28 (0.11) .59 .58 .43 0.58 0.70 −0.11
Outgoing .33 (0.13) .21 (0.17) .16 (0.16) .52 .35 .42 1.02* 0.31 0.74
Privileged .26 (0.15) .21 (0.12) .05 (0.07) .49 .44 .16 1.35* 1.31* 0.33
Godly .20 (0.09) .26 (0.17) .25 (0.10) .34 .51 .42 −0.57 0.01 −0.42
Liberal .14 (0.15) .22 (0.15) .23 (0.19) .32 .45 .50 −0.49 −0.05 −0.51
Typical .13 (0.10) .11 (0.16) .05 (0.13) .28 .28 .20 0.72 0.46 0.16
Dorky .13 (0.23) .17 (0.22) .05 (0.21) .38 .52 .33 0.37 0.52 −0.15
Familiar .12 (0.12) .04 (0.08) -.00 (0.14) .32 .14 .16 0.90* 0.42 0.75*
Well-Groomed .12 (0.26) -.04 (0.21) .11 (0.18) .43 .44 .31 0.03 −0.71 0.62
Dominant .11 (0.23) .06 (0.18) .00 (0.29) .47 .34 .29 0.41 0.25 0.23
Memorable .08 (0.11) -.05 (0.15) .04 (0.12) .24 .13 .18 0.35 −0.67* 0.92*
White .00 (0.28) .12 (0.21) -.03 (0.20) .45 .45 .26 0.12 0.67 −0.46
Looks-Like-You -.13 (0.14) -.10 (0.14) -.11 (0.16) .15 .06 .11 −0.17 0.08 −0.26
Alert -.29 (0.10) -.17 (0.10) -.14 (0.09) -.16 -.03 .05 −1.25* −0.31 −1.05*

Table 1: 17 of 34 of attributes exhibit significant differences and large effect sizes between model groups.
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Figure 3: CLIP models exhibit significant Spearman’s ρ be-
tween Mean Model-Human Similarity and OMI IRR.

exceptions include Black, White, and skin color attributes,
which fall short of expectations based on Human IRR, as
visualized in Figure 2. Model-human similarities of traits like
Trustworthiness, Electability, and Intelligence are significant
but lower, consistent with the lower IRR of these attributes.
That CLIP learns these biases at all is noteworthy: to our
knowledge, this is the first research to document unobserv-
able facial impression biases learned by a semi-supervised
vision-language model (rather than a supervised model of
facial impressions) consistent with human societal biases.

As described in Figure 3, all three families of models
exhibit strong correlations ranging from .72 to .76 between
the mean model-human similarity of a trait and its Human
IRR. Coefficients are larger between OpenAI and FaceCLIP
models than with Scaling CLIP models, likely a result of
FaceCLIP post-training from OpenAI base models.

Dataset Scale
A multiple linear regression finds that only Human IRR and
Dataset Size are statistically significant predictors of model-
human similarity. As described in Table 2, Human IRR plays
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Figure 4: The structure of facial impression biases in CLIP-ViT-L-14 mirrors that of human facial impression biases quantified in
the OMI dataset. Clusters related to ethnicity emerge in each, as do clusters grouping gender, sexuality, and smugness.

Statistic

Adj. R2 .420
F-Statistic 134.0
N 918
DoF Residuals 912
DoF Model 5

Ind. Variable Coef t p < |t|
Human IRR 1.1204 25.470 .001
Dataset Size .0877 4.484 .001
Total Samples −.0132 −.599 .549
Image Params −.5615 −.150 .881
Text Params .7898 .144 .885
Constant −.7542 −.434 .665

Table 2: Fitting a linear regression to model-human similarity
coefficients reveals that Human IRR and Dataset Scale are
significant predictors a bias will be learned by a CLIP model.

the larger role of the two independent variables, as evidenced
by a much larger coefficient and t-value. Total Training Sam-
ples, Image Parameters, and Text Parameters are not sta-
tistically significant predictors of facial impression bias in
vision-language models.

Table 1 describes the mean (with standard deviation) and
maximum model-human similarity for each dataset size, and
it reports Cohen’s d between the groups of models trained
on the three dataset sizes. Effect sizes obtained between the
400M and the 80M level are large and statistically significant
for 17 of 34 attributes, with large absolute differences be-
tween attribute means, such as .41 for Cute at the 80M level
vs. .67 at the 400M level. For most attributes, comparisons are
not statistically significant between the 2B and 400M levels,

though they may return small or medium effect sizes. A no-
table exception emerges for several unobservable attributes,
including Trustworthiness and Sexuality, which exhibit large
effect sizes and statistically significant differences between
the 2B level and the 400M level. While observable attributes
such as Happpiness reflect human ratings well at the 80M
level, and more subjective but still visually observable at-
tributes like Cute are reflected consistently at the 400M level,
it is not until the 2B level that CLIP models reflect subjective
and visually unobservable attributes such as Trustworthiness.
The results indicate that increases in the scale of the pre-
training data have more significant effects for learning subtle
societal biases reflecting attributes with lower IRR. Models
trained on additional data approximate a distribution that
more closely reflects the perceptions of society as a whole,
learning to use the biased visual heuristics present in the
human-authored captions in the pretraining data, even for
unobservable attributes.

Structure of Facial Impressions

Results indicate that dataset size impacts the extent to which
the structure of facial impression bias in CLIP reflects the
structure of the facial impression bias in humans. Figure 4
visualizes the hierarchical similarities between the attribute
cross-correlation matrix for CLIP-ViT-L-14 (the most com-
monly used CLIP model as of this writing) and the OMI
attribute cross-correlation matrix. The most salient similari-
ties between the two include a cluster of correlated racial and
ethnic identities, such as Hispanic, Middle-Eastern, Native
American, and Pacific Islander, as well as a cluster grouping
together the Smugness, Gender, Sexuality, and Age attributes.
There are also differences between the model and human
ratings: while Trustworthy is correlated with Cute in OMI,
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Figure 5: Scaling-2B CLIP models exhibit the greatest struc-
tural similarity to human facial impression biases.

it is correlated with Smart and Happy in CLIP. Similarities
between CLIP attribute correlations and OMI attribute corre-
lations are more evident at the higher levels of the hierarchy,
with differences appearing toward the leaf nodes.

A one-way ANOVA provides evidence that similarities in
the structure of facial impression biases increase for models
trained on larger datasets, with F (2) = 15.71, p < .001 after
Bonferonni correction, demonstrating statistically significant
differences in Fm,h between the Scaling-2B, Scaling-400M,
and Scaling-80M models. We observe statistically signifi-
cant differences and large effect sizes both between the 80M
and 400M levels and between the 80M and 2B levels with
post-hoc tests. Figure 5 illustrates the differences among the
three model groups, showing that the magnitude of difference
is greater between the 80M level and the 400M level than
between the 400M level and the 2B level.

Generative Text-to-Image Models
As shown in Table 3, we observe more variance in text-to-
image generator F1 scores than in CLIP model-human sim-
ilarities. SDXL has the most human-like associations, with
Spearman’s ρ = .60, p < .001 between Human IRR and
SDXL F1 scores. Runway-SD1.5 is also correlated with IRR,
with ρ = .50, p < .01, while SD2 is not significantly corre-
lated with IRR, with ρ = .32, p = .06. Notably, the Attrac-
tive attribute has the highest F1 score for SDXL, whereas it is
the 16th most human-similar attribute in CLIP models, sug-
gesting the importance of representing beauty for user-facing
image generators, which often undergo additional training
to better reflect user aesthetic preferences (Rombach et al.
2022b). With the exception of Liberal, unobservable traits
rank in the bottom half of F1 scores for SDXL, and Trustwor-
thy is lowest of any trait. Though SD2 and Runway-SD1.5
are more human-like than SDXL for trustworthiness, the re-
sults suggest that exploiting biased heuristics may be more
straightforward for a classifier like CLIP.

Images generated by Stable Diffusion XL-Turbo also bear
signs of racial bias: as shown in Figure 6, we observe statisti-
cally significant differences indicating that generated images
of White individuals are more likely to be perceived as domi-
nant, privileged, memorable, attractive, electable, and happy
than images of Black individuals, which are more likely to be

Attribute F1 Scores by Stable Diffusion Model
Attribute SDXL SD2 Runway-SD1.5
attractive 0.98 0.7 0.65
outdoors 0.94 0.67 0.60
well-groomed 0.91 0.66 0.59
hair-color 0.83 0.79 0.77
weight 0.76 0.57 0.37
long-haired 0.76 0.67 0.65
black 0.75 0.76 0.76
white 0.74 0.43 0.53
asian 0.70 0.63 0.69
middle-eastern 0.69 0.70 0.64
cute 0.69 0.58 0.55
happy 0.68 0.79 0.77
islander 0.68 0.66 0.69
age 0.68 0.68 0.72
liberal 0.68 0.60 0.62
skin-color 0.67 0.68 0.61
alert 0.67 0.57 0.59
gender 0.66 0.64 0.62
smart 0.65 0.57 0.71
dominant 0.65 0.68 0.67
hispanic 0.65 0.66 0.69
native 0.64 0.69 0.68
electable 0.61 0.65 0.60
dorky 0.53 0.60 0.60
looks-like-you 0.53 0.68 0.49
smug 0.51 0.58 0.57
memorable 0.48 0.66 0.59
privileged 0.47 0.60 0.58
gay 0.37 0.56 0.40
godly 0.31 0.65 0.59
typical 0.29 0.63 0.63
familiar 0.27 0.68 0.51
outgoing 0.24 0.66 0.71
trustworthy 0.12 0.51 0.64

Table 3: SDXL-Turbo reflects human facial impression biases,
with Spearman’s ρ = .60 between IRR and SDXL F1.

perceived as more liberal and heavy (vs. thin). Note that many
of these relationships are not observed in the OMI correlation
clusters seen in Figure 4, indicating that they originate not
with the OMI dataset but with the text-to-image model.

Discussion
Our results make clear the inter-connection of visual per-
ception in AI with the human social world: where a facial
impression bias is more consistently shared among humans,
CLIP is also more likely to learn it. Facial impression bi-
ases have notable consequences in professional and civic life
(Stoker, Garretsen, and Spreeuwers 2016), and prove difficult
to dislodge even after intervention (Jaeger et al. 2020). While
CLIP may serve as a tool for studying such biases, it may
also reinforce or amplify these biases in society, especially
given their presence in user-facing image generators.

Scale and Bias
Training on larger datasets results in emergent and amplified
facial impression biases. CLIP models exhibit more human-
like biases related to trustworthiness and sexuality when

1643



dom
inant

w
hite

privile ged
m

em
orable

dorky
alert

age
electable
outdoors
attractive

long-haired
happy
w

ell-groom
ed

typical
sm

art
cute

gender
outgoing

sm
ug

fam
iliar

looks-like-you
m

iddle-eastern

trustw
orth y

asian
native

hispanic
liberal

godly

gay
w

eight
islander
hair-color
skin-color
black

d
p

-5

0

5

10

***1.75 ***1.57 ***1.54 ***1.43 ***1.26 ***1.20 ***1.12 ***1.00 ***.98 **.95 **.84 **.72 *.72
n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. *-.59 **-.78 ***-1.02 ***-1.22 ***-1.32 ***-1.44 ***-1.53 ***-1.56

SDXL-Turbo White Images
SDXL-Turbo Black Images

Pr
oj

ec
tio

n
Pr

od
uc

ts
Differential White-Black Bias in Stable-Diffusion-XL-Turbo

Figure 6: Stable Diffusion XL-Turbo exhibits differential White-Black biases, projecting White individuals as more dominant,
electable, and attractive. We plot effect size and significance (* < .05, ** < .01, *** < .001) below significant comparisons.

trained on LAION-2B, and nearly every OMI attribute in-
creases in model-human similarity between the 80M level
and the 400M level. That model parameterization plays no
detectable role in facial impression bias underlines that what
CLIP models have learned is a biased visual heuristic re-
flected in the training data, not a more precise representation
of an objectively detectable attribute. Greater attention to the
characteristics of the training data is also advisable when
pretraining CLIP systems for use in downstream applications
without fine-tuning, or for supervising other models, includ-
ing text to image generators using CLIP as a text encoder.

Ramifications of Human-like Models
Amid the excitement over vision-language models like GPT-
4 that convincingly imitate aspects of human intelligence
(Bubeck et al. 2023), the emergence of subtle biases in multi-
modal models trained on the largest datasets elicits a correc-
tive question: is more “human-like” always better? Approxi-
mating the distribution of societal associations present in the
pretraining dataset as completely as possible may be useful
for providing a more general-purpose model. However, as
zero-shot vision-language models continue to become more
accessible to the general public, including via conversational
interfaces that mimic text-based interaction with a human
being (Li et al. 2023; Liu et al. 2024), monitoring for subtle
emergent biases in need of mitigation is likely to become
a more pressing concern. Humans interacting with fluent,
mostly debiased models may be less skeptical of subtle re-
flections of societal bias than of the more blatant misrepre-
sentations of demographic groups in previous models.

Implications for Computational Social Science
The present work is also notable in its consequences for com-
putational social science. By our reckoning, Peterson et al.
(2022) spent tens of thousands of dollars to collect the human
subject data needed to learn a supervised model of facial
impressions; CLIP produces a model of facial impressions as

a side effect of pretraining. While CLIP provides a less pre-
cise model of these biases than the supervised counterpart of
Peterson et al. (2022), our research nonetheless suggests that
CLIP models might play a role similar to static word embed-
dings, which social scientists now employ in computational
studies of human attitudes, including in research that general-
izes the findings of human subjects experiments (Morehouse
et al. 2023; Caliskan et al. 2022), or quantifies shifts in hu-
man attitudes over decades (Borenstein et al. 2023; Garg
et al. 2018). That CLIP models reflect facial impression bias
suggests that they could model other complex sociocultural
phenomena not observable via text embeddings alone.

Limitations

While participants in the study of Peterson et al. (2022) were
reflective of U.S. demographics as a whole, this also means
that a majority of perceivers identified as White, as is clear
from the correlation of White and Looks-Like-You OMI at-
tributes in Figure 4. Such a demographic skew may render
attribute ratings sensitive to correlated biases, given that prior
work observes a relationship between social bias and face
impressions (Xie et al. 2021). In addition, while we adopt
now-standard prompts specified by OpenAI when introduc-
ing CLIP Radford et al. (2021), significantly changing these
prompts may induce variance in the results.

Conclusion

The present work demonstrates that three families of CLIP
models reflect human facial impression biases, and that hu-
man agreement and dataset scale predict how faithfully a
CLIP model reproduces a bias. Our findings illustrate the
importance of pretraining data for fair and usable zero-shot
vision-language models, and they further underscore the in-
terconnection of human bias and AI representations.

1644



Ethical Considerations
Caution is warranted in a discussion of the findings of this
research. While CLIP models trained on larger amounts of
data more faithfully encode a human perceptual bias, this
does not thereby mean that the models have accurately made
an inference about a person based solely on an image of
their face. The present work produces no artifact intended for
predicting a person’s attributes, and should not be interpreted
as scientific support for the use of vision-language models
to predict unobservable attributes. Rather, it should serve as
a scientific treatment of emergent social bias arising from
large-scale pretraining.

Researcher Positionality
Our research team includes two individuals with extensive
experience in the quantitative study of AI bias and ethics, as
well as two individuals with extensive experience in human-
computer interaction and value-sensitive design. The team
consists of two members who identify as men, and two who
identify as women, one of whom is a woman of color. All
team members are researchers at the same university in the
United States. We sought to include a diversity of perspec-
tives and kinds of expertise given the sensitive subject matter
of our work.

Adverse Impacts
While we have not trained a new model or built any system to
facilitate facial analysis, it is possible that an individual may
nonetheless attempt to use the methods described in this pa-
per to make unwarranted inferences about individuals based
solely on their face. However, these inferences would cer-
tainly be less precise than those obtained using a supervised
model trained explicitly for facial analysis. Our approach to
these potential adverse impacts is to make clear that facial
impressions constitute biases, and that they intersect with
other harmful demographic biases. We hope that demonstrat-
ing the presence of these biases in CLIP and Stable Diffusion
will serve as a warning of the potential societal effects of us-
ing zero-shot vision-language models to classify or represent
human beings.

References
Antonakis, J.; and Dalgas, O. 2009. Predicting elections:
Child’s play! Science, 323(5918): 1183–1183.
Be My Eyes. 2023a. Announcing ‘Be My AI,’ Soon Available
for Hundreds of Thousands of Be My Eyes Users. https://
www.bemyeyes.com/blog/announcing-be-my-ai. [Accessed
02-29-2024].
Be My Eyes. 2023b. See the world together. https://www.be
myeyes.com/. [Accessed 02-29-2024].
Bianchi, F.; Kalluri, P.; Durmus, E.; Ladhak, F.; Cheng, M.;
Nozza, D.; Hashimoto, T.; Jurafsky, D.; Zou, J.; and Caliskan,
A. 2023. Easily accessible text-to-image generation amplifies
demographic stereotypes at large scale. In Proceedings of
the 2023 ACM Conference on Fairness, Accountability, and
Transparency, 1493–1504.

Birhane, A.; Dehdashtian, S.; Prabhu, V.; and Boddeti, V.
2024. The Dark Side of Dataset Scaling: Evaluating Racial
Classification in Multimodal Models. In The 2024 ACM
Conference on Fairness, Accountability, and Transparency,
1229–1244.
Birhane, A.; Prabhu, V. U.; and Kahembwe, E. 2021. Mul-
timodal datasets: misogyny, pornography, and malignant
stereotypes. arXiv preprint arXiv:2110.01963.
Blanz, V.; and Vetter, T. 2023. A morphable model for the
synthesis of 3D faces. In Seminal Graphics Papers: Pushing
the Boundaries, Volume 2, 157–164. Association for Com-
puting Machinery.
Bolukbasi, T.; Chang, K.-W.; Zou, J. Y.; Saligrama, V.; and
Kalai, A. T. 2016. Man is to computer programmer as woman
is to homemaker? debiasing word embeddings. Advances in
neural information processing systems, 29: 4349–4357.
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