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Abstract

Polyhedral geometry can be used to shed light on the be-
haviour of piecewise linear neural networks, such as ReLU-
based architectures. Counterfactual explanations are a pop-
ular class of methods for examining model behaviour by
comparing a query to the closest point with a different la-
bel, subject to constraints. We present a new algorithm,
Polyhedral-complex Informed Counterfactual Explanations
(PICE), which leverages the decomposition of the piecewise
linear neural network into a polyhedral complex to find coun-
terfactuals that are provably minimal in the Euclidean norm
and exactly on the decision boundary for any given query.
Moreover, we develop variants of the algorithm that target
popular counterfactual desiderata such as sparsity, robustness,
speed, plausibility, and actionability. We empirically show on
four publicly available real-world datasets that our method
outperforms other popular techniques to find counterfactu-
als and adversarial attacks by distance to decision boundary
and distance to query. Moreover, we successfully improve our
baseline method in the dimensions of the desiderata we target,
as supported by experimental evaluations.

1 Introduction
When neural networks are used to make decisions, such as
the outcome of a loan application, or the allocation of a
trading strategy, it is important to gain an understanding of
how these models operates to ensure their safety. Computing
explanations that are faithful (rather than approximate) to
the neural network behaviour often requires an understand-
ing of the inner architecture of the model, which is often
complex and poorly understood. Continuous PieceWise Lin-
ear (CPWL) neural networks are amongst the most popular
types of architectures, which include networks using as acti-
vation function Rectified Linear Unit (ReLU), the default ac-
tivation function for tensorflow and sklearn feedfor-
ward architectures, but also Leaky ReLU and Parametrised
ReLU, hard hyperbolic tangent, and absolute value func-
tions (Sharma, Sharma, and Athaiya 2017; Szandała 2021).
Model explainers can leverage theoretical insights to ensure
that the explanations are exact, meaning that no approxima-
tion is involved in their computation. Such explanations are
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defined unequivocally, making them suitable candidates for
regulatory standards.
Recently, the employment of tools from polyhedral ge-

ometry has unlocked fresh insight into the behaviour of net-
works with CPWL activation functions (Serra, Tjandraat-
madja, and Ramalingam 2018; Hanin and Rolnick 2019;
Rolnick and Kording 2020; Berzins 2023). This has enabled
the emergence of methods that are used to extract the poly-
hedral complex: the collection of linear models and polyhe-
drons over which each model is defined, which account for
an exact representation of the overall network as a CPWL
function. Such advances promise to enhance interpretabil-
ity and generate new model diagnostic tools to comprehend
and evaluate networks in deployment, as shown by Sotoudeh
and Thakur (2019) and Sudjianto et al. (2020). Specifically,
reducing a piecewise linear neural networks into a collec-
tion of polyhedra with associated linear models provides a
complete and exact interpretation of the model behaviour.
Given a data point we are able to recover the input-output
relationship in the form of a linear model. This has impli-
cations for all stakeholders: model builders can design net-
works that are robust to prescribed specifications, model ex-
plainers are able to derive faithful and consistent explana-
tions, and model users may assess alignment to their de-
sired outcomes. Moreover, focusing on faithful explanations
addresses the reproducibility crisis in Artificial Intelligence
(Hutson 2018) since such methods do not employ any ran-
domness.
Counterfactual explanations (also referred to as counter-

factuals) have been popularly used to explain the predic-
tions of models (Guidotti 2022) due to their intuitive and
user-friendly nature (Miller 2019). For a given classifier
and a query instance, a counterfactual explanation is given
by a point such that (a) the decision made by the classi-
fier is changed and (b) the distance between the two in-
stances is minimal. While the notion of minimality is nu-
anced and context-dependent, the original formulation by
Wachter, Mittelstadt, and Russell (2017) framed the coun-
terfactual search as an optimization problem aimed at find-
ing the closest instance to a query in the Euclidean input
space which has a different outcome from the classifier.
Subsequently, several desiderata were proposed, including
sparsity (Sharma, Henderson, and Ghosh 2019; Brughmans,
Leyman, and Martens 2023; Virgolin and Fracaros 2023),
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plausibility (Poyiadzi et al. 2020; Schleich et al. 2021), di-
versity (Mothilal, Sharma, and Tan 2020), actionability (Us-
tun, Spangher, and Liu 2019; Karimi, Schölkopf, and Valera
2021), and robustness (Dutta et al. 2022).
Minimal counterfactuals are highly desirable because the

cost of recourse for users is often defined as function of
counterfactual distance. For example, in the setting of mort-
gage applications, a customer may request a counterfactual
explanation to improve their profile and reapply at a future
moment. The counterfactual explanation may suggest that a
successfully candidature would need increases in financial
features, such as salary, savings, credit score. In this set-
ting, providing minimal counterfactuals promotes financial
inclusion and decreases the burden of reapplication for con-
sumers.
However, finding provably minimal counterfactuals for

neural networks is highly nontrivial. In this paper, we pro-
pose a collection of techniques to find counterfactual expla-
nations in the context of CPWL networks. We show that in
the setting of polyhedral geometry, it is possible to gain in-
creased control on the counterfactual desiderata. In partic-
ular, this is achieved via a novel and efficient algorithm to
find points that are provably the closest counterfactuals for a
given query, subject to any sparsity and collection of action-
ability constraints. Specifically, our contributions are:

• A novel algorithm to compute counterfactuals that
lie exactly on the decision boundary for CPWL net-
works, which we call PICE (Polyhedral-complex In-
formed Counterfactual Explanations), which is provably
the closest possible counterfactual to a query in the Eu-
clidean distance;

• A scalable variant of PICE (Fast) that targets speed and
for which we prove lower bounds on the probability of
convergence to the minimum counterfactual;

• Four additional variants of PICE that target the most pop-
ular counterfactual desiderata: sparsity, plausibility, ac-
tionability, and robustness, showcasing their effective-
ness in real-world datasets.

In our experimental evaluation, we achieve state-of-the-
art results in minimality and validity rates of our counterfac-
tuals across datasets. Moreover, the model user can achieve
great control over the counterfactual explanation desiderata
that they want to pursue. We show this by comparing our
desiderata-focused algorithms to counterfactual techniques
that target the same desiderata, achieving better L0 in com-
parison to other sparsity-pursuing techniques and improving
the plausibility of our counterfactuals.

2 Related Works
Counterfactuals Techniques. In algorithmic recourse, pre-
senting a model user with a counterfactual empowers them
to understand what needs to be changed in order to achieve
a desired outcome (Verma et al. 2020; Guidotti 2022).
This is an example of a contrastive explanation. Several
works address how to compute counterfactuals (Wachter,
Mittelstadt, and Russell 2017; Pawelczyk, Broelemann,
and Kasneci 2020; Van Looveren and Klaise 2021). In

particular, works targeting the construction of counter-
factuals include Tran, Ghazimatin, and Saha Roy (2021),
in the context of recommender systems, and Yang et al.
(2022), using reinforcement learning in a model agnostic
setting. The closest works to our paper also leverage the
piecewise linear topology of networks with ReLU networks
in order to obtain counterfactuals that are closer to the
decision boundary with Mixed Integer Linear Programming
(Mohammadi et al. 2021), but do not guarantee minimality.
Carreira-Perpiñán and Hada (2023) propose an algorithm to
find counterfactuals that have provable minimum distance
from the query in the context of random forests, but not for
CPWL networks.

Piecewise Linear Geometry of ReLU Networks. The
development of theoretical tools to understand the proper-
ties of ReLU networks is an active area of research (Eldan
and Shamir 2016; Hanin and Sellke 2017; Rolnick and Ko-
rding 2020; Grigsby, Lindsey, and Rolnick 2023). For in-
stance, efforts have been place in enumerating the number
of linear regions (Montufar et al. 2014; Arora, Cohen, and
Hazan 2018; Serra, Tjandraatmadja, and Ramalingam 2018;
Hanin and Rolnick 2019).
Recent algorithms extract the full polyhedral complex, ei-

ther by techniques known as subdvision (Raghu et al. 2017;
Humayun, Balestriero, and Baraniuk 2022; Wang 2022;
Berzins 2023), marching (Lei and Jia 2020) or pattern test-

ing (Balestriero and LeCun 2023; Villani and Schoots 2023).
In this work, we leverage Villani and Schoots (2023) and
improve on their efficiency; we choose this method since it
can be adapted to decompose bounded regions of the net-
work, which we use to target counterfactual desiderata. Our
work applies the key insights of this literature to the compu-
tation of counterfactuals with minimal distance and common
desiderata, providing a bridge from theory into practice.

3 Background
In this section, we present the theoretical background on
polyhedral geometry for ReLU neural networks. We in-
troduce notation and a sketch of the polyhedral extraction
method.
In particular, we present the correspondence between ac-

tivation patterns in a neural network, encoding the data of
which neurons are active in a neural network, and the poly-
hedra in a complex. Polyhedra are high-dimensional convex
shapes in the input space that generalise the notion of a poly-
gon. Just like polygons are defined by their faces (line seg-
ments) and can be viewed as the intersection of half-planes,
polyhedra can be represented as the intersection of half-
spaces generated by hyperplanes (high dimensional gener-
alisations of planes).
The key idea is to break down the neural network into

interpretable parts: every piecewise linear network can
be seen as splitting up the input space into regions called
polyhedra and applying a unique linear model to each of
them. Indeed, there is a unique activation pattern for every
polyhedron; however, not all activation patterns are attained
by some point in the input space. Therefore, some activation
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patterns are not feasible. A formal presentation follows.

Without loss of generality, we consider throughout the pa-
per the example of ReLU networks. An L-layer neural net-
work with neuron vector n = [n0, n1, n2, ..., nL] is a pa-
rameterised function N : Rn0 ! RnL+1 , described by the
recursion:

�
(l) = �

⇣
W

(l)
�
(l�1) + b

(l)
⌘
, l 2 {1, 2, ..., L}

with �
(0) = x 2 Rn0 , W

(l)
2 Rnl�1⇥nl , b

(l)
2

Rnl , the ReLU activation function �(x) = max(0, x)
is applied element-wise, and N (x) = W

(L+1)
�
(L) +

b
(L+1) is obtained through the output layer, parametrised
by W

(L+1)
, b

(L+1). Such a network can be thought of as
a piecewise linear function; therefore, it can be represented
as a collection of polyhedra (Montufar et al. 2014) ! 2 ⌦,
each of which is given by the intersection of a collection of
half-spaces,

! =
\

i2I
{x : Aix  ci}

where I is an indexing set and Ai 2 Rn0 , ci 2 R specify
the hyperplane in the inequality. A bounded polyhedron is
called a polytope. At each one of these polyhedra !, we can
compute exactly the coefficients of the linear model ↵!,�! ,
describing the exact functional relationship between inputs
and outputs for all points in the polyhedron Sudjianto et al.
(2020).
Finding these coefficients and polyhedra for all x 2 Rn0

results in an exact representation of the neural network as a
lookup table: given a query, we find the polyhedron in which
it resides and apply the linear model relating to that polyhe-
dron. In other words,N is fully determined by a decomposi-
tion C(N ) = (⌦, {↵!,�!}!2⌦), where the following holds:

N (x) = ↵! · x+ �!, 8x 2 !.

The algebraic geometrical properties of this structure are
studied in (Grigsby and Lindsey 2022), where C(N ) is re-
ferred to as the polyhedral complex.
To extract such a polyhedral complex, pattern testing

based extraction algorithms can be used. Let P (l)
2 {0, 1}nl

be an activation vector for layer l whenever it represents the
indicator of whether the neurons of a layer �(l) are greater
than zero (1) or are zero (0): P (l)

i = I
�(l)
i >0

(x).
The activation vectors are living in a space {0, 1}nl and

can be thought of independently of x. Notice that every in-
put has a unique activation vector at each layer. The col-
lection of activation vectors for all layers is the activation

pattern P = [P (1)
, P

(2)
, ..., P

(L)]. The key idea of pattern
testing algorithm is that given point x 2 Rn0 , the collection
of points with the same activation pattern can be represented
as a polyhedron !. Because these points have the same ac-
tivation pattern, the weights ↵!,�! can be explicitly found.
In this sense, the activation pattern acts as a unique label for
each polyhedron. Therefore, finding all polyhedra is equiv-
alent to finding all feasible patterns. A pattern is feasible if
the intersection of the constraints determined by its activa-
tion vectors is non-empty.

The following definition from Villani and Schoots (2023)
describes the conditions for the existence of some x 2 Rn0

such that a given pattern P is feasible in the space. Here, and
everywhere in the paper, inequalities between vectors are in-
terpreted as being satisfied element-wise for all constraints.
Definition 3.1. (Villani and Schoots 2023) An activation
pattern {P (1)

, ..., P
(L)

} is feasible if there exists an x 2 Rn0

such that for all l 2 [L],

diag(1� 2P (l)) ·A(l)
· �

(l�1)
 �diag(1� 2P (l)) · d(l)

where A(l)
, d

(l) are linearised preactivation such that

�
(l) = ReLU(A(l)

x+ d
(l)),

and they can be found recursively by:

A
(1) := W

(1)

A
(l) := W

(l)
· diag(P (l�1)) ·A(l�1)

d
(1) := b

(1)

d
(l) := W

(l)
· diag(P (l�1)) · d(l�1) + b

(l)
.

This definition makes the correspondence between activa-
tion patterns and linear programs explicit, while providing a
geometric interpretation of the activation pattern in the input
space. For every pattern, there is a linear program that needs
to be satisfied in order for the pattern to be feasible. The set
of non-redundant constraints of this linear program is ex-
actly the set of hyperplanes in which the faces of the poly-
hedron live. The significance of being able to represent these
conditions as linear program is that we are able to leverage
existing solvers to quickly verify the existence of points that
satisfy the constraints, determining the feasibility of a lin-
ear pattern. We use this in our decomposition algorithm and
throughout our Methodology.

4 Methodology
Our proposed method finds minimal counterfactuals for a
given query.
The first step is to decompose the network, which outputs

a collection of polyhedra (the polyhedral complex). This re-
duces the neural network to a lookup table: for each query
in the input space, there is a unique polyhedron in which
it falls; for each polyhedron, there is a linear model that is
applied to it. This describes the neural network’s function
exactly.
The second step is to refine the partition by finding the

decision boundary whenever it cuts through a polyhedron.
This refines the lookup table, increasing the number of poly-
hedra (by cutting some of them) and changes the entries of
the lookup table: instead of linear models, we now have
labels. This process allows us to divide partition in two
(or more in the multiclass classification setting) collections
of polyhedra: those that are positively labeled (such that
8x 2 !,N (x) = 1) and those that are negatively labeled.

In the last step, we select polyhedra from the refined parti-
tion that are positively labeled, and run the Nearest Polytope
algorithm on them (Wu, Sadraddini, and Tedrake 2020). A
high-level description of PICE is outlined in Algorithm 1.
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Algorithm 1: PICE
Inputs x 2 Rn

,N : Rn
! Rm

,

Outputs xC

(⌦, {↵!,�!}!2⌦)  GlobalDecomposition(N ) (Section 4: Decomposing the Network, Appendix A)
(⌦?

, {↵!0 ,�!0}!02⌦?)  DecisionBoundaryRefinement(⌦, {↵!,�!}!2⌦) (Section 4: Refining the Partition)
⌦+

 ChoosePositiveRegions(⌦?)
!
?
 NearestPolytope(x,⌦+)

x
C
 argminy2!?d(x, y)

Figure 1: The PICE algorithm can be adapted to target specific counterfactual desiderata. The main algorithm (in purple) targets
minimality, by computing all polyhedra in the partition and finding the closest point in L2 space to the query. The Fast and
Plausible variants decompose only the neighbouring polyhedra to the query and the inhabited polyhedra (with at least one
data point for a given input dataset). To each of these variants, we can add pre-processing steps (in light blue, to the left) to
pursue Sparsity or Actionability. After having found the counterfactual point, we can enforce Robustness (in green, to the right)
post-hoc.

PICE: Decomposing the Network
To frame the problem of pattern testing as a binary tree
search, we prove a new heuristic which allows us to effi-
ciently compute the decomposition. Proving the heuristic re-
sults in a reduction of running time compared to (Villani and
Schoots 2023), without compromises in the algorithm’s abil-
ity to decompose the network.
Proposition 4.1 (Infeasible Subpatterns). Let

(P (l)
,W

(l)
, b

(l)) define a set of constraints as in Defi-

nition 3.1. Let I ⇢ [nl] represent a subset of the indices of

the constraints, such that (P (l)
I ,W

(l)
I , b

(l)
I ) represents the

subset of constraints obtained by picking rows

⇣
diag(1� 2P (l)) ·W (l)

· �
(l�1)

⌘

◆


⇣
�diag(1� 2P (l)) · b(l)

⌘

◆
,

for ◆ 2 I. When these constraints are respected by �
(l�1)

,

we say that the subpattern is feasible. If a subpattern PI is

not feasible for I, then any pattern containing the subpat-

tern is not feasible.

Proposition 4.1 follows from the observation that if a set
of constraints is infeasible, then adding further constraints
cannot possibly yield a feasible set. At a high level, we can
start from the first layer and think of each neuron as impos-
ing a set of constraints into the input space. These constraints

are specified by the weights of the linear model W (1)
xb

(1).
For a neuron to be active, we require that (W (1)

x+b
(1)) > 0

for neurons i 2 {1, ..., n1} in the first layer, otherwise the
neuron will be inactive. We want to check whether an acti-
vation vector, i.e. a specification of which neurons are active
and which are inactive, is feasible.
This is the case exactly when the constraints are satis-

fied by some non-empty set of points. This is in exact cor-
respondence with a linear program in convex optimisation
and, consequently, a clear geometrical interpretation: the ex-
istence of a feasible activation vector is in exact correspon-
dence with the existence of a non-empty polyhedron such
that all points in that polyhedron produce the same activa-
tion vector. Checking all combinations of linear programs
would require exploring 2n1 instances; however, (Montufar
et al. 2014) provide theoretical upper bounds that are gener-
ally lower, and (Hanin and Rolnick 2019) empirically show
that the number is considerably lower.
Nevertheless, to search this space of feasible activation

vectors at the first layer efficiently, we employ a binary tree
search strategy. In particular, we view every branch of the
tree as the state of a neuron, so that any time we find an in-
feasible subvector, we prune the tree and avoid testing more
vector that contain the infeasible subvector. For example, if
we have determined that it is impossible for the first three
neurons to take the pattern [0, 1, 1], we will not need to check
whether it is possible for the first four neurons to have the
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pattern [0, 1, 1, 1] nor [0, 1, 1, 0], and so on. Geometrically,
we may think of this as the intersection of three half-spaces,
which may be empty if two of the hyperplanes are parallel,
for example. It is therefore redundant to check if adding a
third constraint to an empty set is feasible, since the inter-
section of any set with the empty set must be empty. Check-
ing at every node whether a subpattern is feasible allows us
to prune the search tree, making the search itself quicker.
This procedure is applied at every layer simultanously,

where feasibility of an activation vector at layer l is inter-
preted at the latent space in layer l�1, i.e. a Eucledian space
Rnl�1 . Once a set of feasible activation vector is found for
each layer, we check that the activation vectors are compati-
ble between layers. This is done by checking a global linear
pattern as defined in Villani and Schoots (2023) and can be
thought of geometrically as projecting the polyhedra repre-
sented by a pattern P (l) in layer l back into the input space to
see if they intersect with each polyhedron in P (1). If this is
the case, then the patterns are feasible. We refer the reader to
the Appendix A for a detailed exposition of the algorithms.

PICE: Refining the Partition with the Decision
Boundary
Given the decomposition C(N ), it is possible to find the ex-
act points on the decision boundary:

D(N ) = {x 2 Rn0 : |argmax(N (x))| > 1}.

We can then refine the partition ⌦ into a finer partition ⌦? of
polyhedra such that each polyhedron has a unique label.
At a high level, we can think of this procedure as assign-

ing labels to each polyhedron, or cutting the polyhedron in
parts and labeling each part with the value that the function
attains at at that point. It is possible to do this because for
each polyhedron we have exactly one linear model describ-
ing the input-output relationship of the function. In other
words, refinement takes the representation of the network
as a partition of the input with linear models defined on each
part and returns a representation of the network as a finer
partition, with a single label in each polyhedron, rather than
a linear model.
For general architectures, finding exact solutions is an in-

tractable problem with no simple explicit representations.
However, in the piecewise linear case, we can leverage the
decomposition of the network into linear maps to compute
the solution exactly. This is achieved by applying a new set
of constraints that replace the argmax function in the last
step of computation of the network. Since these constraints
are also linear, they can be represented geometrically in the
input space as hyperplanes. Therefore, we can think of the
refinement process as an additional feasibility check: for
each polyhedron, we check which of the new constraints in-
tersects with the polyhedron in a non-empty set.
Formally, we consider two cases: classification and re-

gression. In the classification case, we check that a cer-
tain class k 2 {1, ..., nL+1} is selected. Note that k =
argmaxN (x) is the best class exactly when N (x)k >

N (x)i, 8i 2 {1, .., nL+1}. In particular, we observe that this

can be written as an inequality:
0

BBBBBBB@

�1 . . . 0 1 0 . . . 0
...

. . .
...

...
...

. . .
...

0 . . . �1 1 0 . . . 0
0 . . . 0 1 �1 . . . 0
...

. . .
...

...
...

. . .
...

0 . . . 0 1 0 . . . �1

1

CCCCCCCA

· N (x) >

0

BB@

0
0
...
0

1

CCA .

This is matrix constructed by taking �diag(1m), adding a
matrix with 1s on the kth column only, and removing the
kth row. Observe that this set of inequalities is describing
a region in the input space where the neural network will
output k. Let Mk be the matrix described above, such that
Mk ·N (x) > 0; there will be exactly one such matrix for ev-
ery label k. A polyhedron ! may satisfy the inequality either
(1) for exactly one value of k, or (2) for multiple values of k.
The first setting represents the fact that the network assigns
the label k to all x in !. The second setting implies that there
are different values attained within !. We refine the partition
and label the parts accordingly, for instance !1,!2, ...,!m

in the case where all values argmaxN (x) = 1, ...,m are at-
tained in !.
A similar method can be applied in the regression case: by

specifying a threshold ⌧ , we check whether the output of the
network (which is now real-valued, i.e. the output dimension
nL+1) is 1) is above this thresholdN (x) > ⌧ . This amounts
to verifying that the half-space ↵!x+ �!  ⌧ intersects the
polyhedra ! for any ! 2 ⌦. Whenever it does, we assign
a negative label on the region; we assign a positive label
otehrwise.
The output of both cases is a refined partition with labels.

We use this refined partition to find the minimal counterfac-
tual.

PICE: Minimality Guarantees and Targeting
Desiderata
In this section, we present our main theoretical contribu-
tion: the theorem of convergence and minimality for PICE
(Algorithm 1). This provides theoretical guarantees that our
method always finds an unequivocally defined exact solu-
tion to our counterfactual query. We also present variants of
PICE (refer to Figure 1 for implementation details and Fig-
ure 2 for a depiction of the variants), which can be deployed
to target specific desiderata.

Minimality The problem of finding the minimal counter-
factual, which is equivalent to finding the closest point on
the decision boundary to a given query x, is defined by:
x
C = argmin

z2Rn0 ,N (x)6=N (z)
||x� z||2 = argmin

z2D(N)
||x� z||2. (1)

PICE finds this point xC exactly, wherever it may be in
the input space. The proof of the following theorem can be
found in the Appendix A.
Theorem 4.2 (PICE Convergence). For a given neural clas-
sifier N : Rn0 ! RnL+1 and any query x 2 Rn0 if there

exists a z 2 Rn0 with argmax(N (x)) 6= argmax(N (z)),
then Algorithm 1 always converges to the global optimal so-

lution.
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A
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E

F
C

D

1 2

Figure 2: PICE variants on the polyhedral complex. Every-
where in this figure, dark red dots are queries and dark green
dots are counterfactuals. Light green regions are positively
labeled regions, light red regions are negatively labeled, and
white regions are polyhedra that are not being considered
by PICE. Dotted lines are boundaries within polyhedra that
represent internal decision boundaries; arrows are counter-
factual vectors, from query to counterfactual. Other lines are
boundaries between polyhedra. The two dimensions repre-
sent two features, such that N : R2

! RnL+1 .
On the left subfigure (1) represents a refined full decompo-
sition of the input space ⌦ in a bounded hypercube. Coun-
terfactual (A - Minimal) targets minimality, (B - Sparse) is
pursuing sparsity and is only allowed to vary on the sub-
space represented by the magenta line, but not vertically,
since a direction of counterfactual is needed as input (C -
Actionable) defines a convex actionable space on which the
method can find a counterfactual, forfeiting what might be
the closest. (D - Robust) shows the post-hoc adjustment of
moving into the positive region of the input space achieved
by decision boundary counterfactuals.
On the right, in subfigure (2), only a fraction of the poly-
hedra have been decomposed. Therefore, PICE must find a
counterfactual on the polyhedra that have been found either
(E - Plausible) by checking the inhabited polytopes (yellow
points), thereby targeting plausibility, or (F - Fast) by sam-
pling points around the query, targeting speed.

Speed: Sampling-Based Decomposition Decomposing
the entire network can be slow, since the number of poly-
hedra in the input space can be large (see Montufar et al.
(2014); Arora, Cohen, and Hazan (2018) for bounds and
(Hanin and Rolnick 2019) for an empirical enumeration).
Algorithm 3 describes a fast variant of PICE, which avoids
decomposing the network. Given a query, one may find the
activation pattern of a polyhedral region by running infer-
ence. The activation patterns and the weights are sufficient
to compute the hyperplanes that define the polyhedron, as
defined in Definitions 3.1. In this way, we search polyhedra
that may lie on the other side of the decision boundary. Sup-
pose X ⇢ Rn0 is a collection of points sampled by Gaussian
distribution with centre at x, our query, and a chosen spread
�
2. We find find all polyhedra in which at least one point

lives: ⌦X = {! : 9x 2 X , x 2 !}. We label these poly-
hedra through refinement, determining their labels. Then we
solve the nearest polytope problem on all said polyhedra that
live on the other side of the decision boundary found by the
sampler, as shown in Algorithm 3.

While Theorem 4.2 is no longer applicable, we provide
in Theorem 4.3 lower bounds to the probability of having
found the minimal counterfactual through this algorithm,
when sampling in a sufficiently large hypercube around the
query. Note that this is expressed through the probability
of having found all of the polyhedra in a bounded parti-
tion through random sampling, when this bounded partition
intersects all parts of the decomposition, which is a suffi-
cient condition to having found the minimal counterfactual.
The proof is in the Appendix C and experiments comparing
speed to architecture size can be found in Appendix E.
Proposition 4.3. Let N : Rn

! Rm
be a neural network

with neuron vector n = [n1, n2, ..., nL]T , L 2 N. Suppose
the decomposition (⌦, {↵!,�!}!2⌦) is spanned by |H| 2 N
hyperplanes. LetX1, ..., Xk ⇠ U([a, b]n) be samples in Rn

,

where a, b are sufficiently large real numbers to encompass

all intersections points and such that

min
!2⌦

{vol(! \ [a, b]n)} = ⇠.

Let m � |⌦| be the maximum number of parts that ⌦ can

attain. Then the probability that all regions of the partition

have at least one sample P(E) is lower bounded by:

P(E) �
mX

i=0

✓
m

i

◆
(�1)i�m

✓
1�

(m� i)(V +m⇠)

mV

◆k

,

where V =
Qn

j=1(b� a) is the volume of the hyperbox.

The key insight is that sampling allows us to control the
probability of having found the minimal counterfactual: the
more points we sample, the higher the likelihood of hav-
ing found a point living in the polyhedron where the min-
imal counterfactual also lives. It is important to note that
this method introduces randomness in the algorithm, which
trades the certain minimality for speed. This method may be
well suited for large architectures, as we show in Appendix
E, or to precompute estimates to the minimal counterfactual.
The fast counterfactual here is formally defined as:

x
C
fast = argmin

z2⌦X ,N (x)6=N (z)
||x� z||2. (2)

Convex Actionability: Bounded Decomposition In sev-
eral use cases, it is important for recourse options to
be actionable (Ustun, Spangher, and Liu 2019; Karimi,
Schölkopf, and Valera 2021). Actionability ensures that
users are effectively able to use the counterfactual explana-
tion to change their outcomes. In the case of the user apply-
ing for a loan, it would be unreasonable to provide a recourse
option where the salary is required to increase beyond a cer-
tain threshold; this is an example of a convex constraint. In
general, defining actionability is a challenge: different set-
tings require heterogeneous definitions of this criteria.
Our framework caters for a broad family of criteria: ac-

tionability can be expressed as any set of convex constraints.
Algorithmically, such constraints can be appended to the
feasibility checks in our decomposition algorithm (PICE).
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In such a way, the decomposition will only return polyhedra
that intersect actionable region (a condition that is appended
at every feasibility check in Algorithm 2).
In other words, we restrict the algorithm’s search space

to counterfactuals within the actionability constraints. For a
convex region of the input space B, we add the constraint
x 2 B to Equation 1. Formally, the plausible counterfactual
is defined as:

x
C
actionable = argmin

z2Rn0\B,N (x)6=N (z)
||x� z||2. (3)

We note that for bounded regions with sufficiently small
volumes, adding constraints reduces the computation time
of the decomposition algorithm, since fewer polytopes need
to be computed.

Sparsity through Model Truncation A sparse counter-
factual is one where a small number of features have been
changed with respect to the original query point. This count
is measured by the L0 norm: the number of values in the
query vectors that have changed in the counterfactuals.
Sparse counterfactuals are often simpler to comprehend

due to their small dimensional representation, which reduces
the information that is conveyed to users. Moreover, sparsity
may encourage simpler recourse (Ustun, Spangher, and Liu
2019): for example, a mortgage applicant who is provided a
recourse option to increase both savings by 10% and credit
rating by 5 points for a successful reapplication may have
a higher cost than an applicant only tasked with increasing
savings by the same amount.
However, we note a tension between sparsity and dis-

tance. By definition, a minimal counterfactual is as close
as it can be to a query, meaning that if we enforce sparsity
(thereby decreasing the distance) we will need to increase
other the distance in other features to counterbalance the de-
crease in the first feature and the final counterfactual will
be farther away. In other words, the second applicant will
necessarily need to increase savings by an amount that is
necessarily larger than 10%. This means that the cost to the
user is a nuanced function of the input features, which would
also take into account user preferences. Therefore, modellers
may want to investigate the cost-sparsity tradeoff in the par-
ticular context of their problem setting to determine which
features should be selected for sparse counterfactual.
Our method caters for any such choice of feature subsets,

whenever this choice has been provided by the modellers.
Otherwise, we may achieve sparse desiderata by changing
only the most impactful features to the model. These may
be determined automatically using feature importance tech-
niques. Once a choice of features is provided, we search for
a counterfactual only in the specified directions.
The process we employ to achieve sparse counterfactu-

als is outlined in Algorithm 6: the user can either choose
dimensions in which they would like to optimise, or let a
feature importance measures automatically determine which
features are should be changed. We decompose a lower-
dimensional truncated model NS(xS) for xS 2 R|S| liv-
ing in a lower-dimensional space contained in Rn0 the input

space. We find weights that equalise the two networks on
the subspace: for a fixed query point x such that xS rep-
resents varying all features S ⇢ [n0] = {1, 2, 3, ..., n0},
we want to find W

(1)
, b

(1) such that NS(xS) = N (x +P
i2S aiei), 8xS 2 RS

, 8ai 2 R, i 2 S, where ei are basis
vectors in the direction of i.

In other words, we create a faithful surrogate which mir-
rors the behaviour of the model exactly everywhere in the
subspace where we are searching for a counterfactual. Once
we have transported the problem in this simpler setting, we
run PICE, targeting minimality as we would for the original
network.
Formally, the sparse counterfactuals are given by:

x
C
sparse = argmin

z2R|S|\B,N (x)6=NS(zS)

||x� z||2. (4)

Notice, how this generally results in a reduction in the
complexity of the linear programs that need to be solved to
decompose the network, leading to efficiency gains.

Plausibility: Selecting Inhabited Polytopes Plausibility
broadly refers to the “in-manifoldness” of the counterfactual
point. Although there are many contrasting definitions, we
correlate the plausibility of a counterfactual as the property
of being in a polyhedron that contains at least  other data
points.
Formally, suppose D ⇢ Rn0 is a dataset from which we

pick a query x. For a neural network N with decomposition
(⌦, {↵!,�!}!2⌦), we define ⌦D = {! : 9z1, z2, ..., z 2

D, z1, z2, ..., z 2 !} to be the set of -inhabited polyhedra.
These polyhedra can be easily computed: once an activation
pattern is computed by looking at the model internals at in-
ference, the set of points in the polyhedron is given by the
feasible set of constraints in Definition 3.1, as defined here:

x
C
plausible = argmin

z2⌦D,N (x)6=N (z)
||x� z||2. (5)

This algorithm is similar to the sampling method de-
scribed before, where the key difference is in the polyhe-
dra that are selected. This approach mirrors that taken by
Carreira-Perpiñán and Hada (2023) in the context of deci-
sion trees, with the notion of live regions.

Robustness Whenever counterfactuals are used for re-
course, users update their initial query accordingly and may
do so noisily. Therefore, it is desirable that the points in
the neighbourhood of a query remain valid counterfactuals.
Given that our points are exactly on the decision boundary,
a large proportion of points sampled around our query for
most standard choices of distribution (e.g. normal, or uni-
form in a hyperbox around the counterfactual). This tension
between minimality and robustness has been remarked by
Sharma et al. (2022). To achieve robustness, we update our
computed counterfactual post-hoc, by moving it in the di-
rection of the counterfactual vector xC

� x, away from the
query. The resulting point,

x
C
robust = r(xC

� x) + x
C
, (6)
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is the updated counterfactual for a choice of positive scalar
r 2 R+, which controls the degree of robustness. In Ap-
pendix B, we show experimentally that PICE enjoys a low
invalidation rate on this ray.
Notice how without this modification our minimal coun-

terfactuals will be fragile to noisy recourse. This is due to
minimality: as Sharma, Henderson, and Ghosh (2019) re-
mark, there is a fundamental tension between minimality
and robustness. If a counterfactual is minimal, failing to
reach the counterfactual’s condition would lead to certain
invalidation of recourse. Therefore, the minimal counterfac-
tual is thought thought of as minimal changes that are nec-
essary to for recourse. This post-processing step helps users
by providing users with a counterfactual that allows a small
margin of error, whenever modellers deem that this is desir-
able.

5 Experiments
Our experimental evaluation validates our theory, showing
that we find the closest counterfactuals, and investigates the
extent to which we are able to target specific counterfactual
desiderata. We provide empirical support to the successful
achievement of the following properties: minimality, spar-
sity, robustness and plausibility. Moreover, we show that our
decomposer is able to effectively achieve the global decom-
position more efficiently on a range of architectures com-
pared to Villani and Schoots (2023) in Appendix A.
We compute counterfactuals on four datasets Adult

(Becker and Kohavi 1996), HELOC (Fair Isaac Corpora-
tion 2018), Lending Club (Lending Club Corporation 2024)
and German Credit (Hofmann 1994), picking 1000 negative
queries, whenever these are available. For each dataset, we
train classifiers on ReLU architectures, with three layers and
seven neurons per layer (see Appendix D for training details
and evidence that the size of the architecture is sufficient for
acceptable predictive accuracy).
First, we provide a general comparison of our methods

against popular techniques in the counterfactual and adver-
sarial robustness literature. We compare against adversar-
ial methods since they aggressively target minimality from
query and decision boundary, offering a tougher compari-
son. We then compare our targeted algorithms against coun-
terfactual techniques that optimise for the same desider-
ata. All counterfactuals are stored as Numpy objects, mod-
els as Pytorch objects and additional details are provided
in Supplementary Material for replicability of experiments.
Complexity of each method is analysed in Appendix E.

Counterfactual Comparison
Minimality: to assess the ability to find points on the de-
cision boundary, we compute counterfactuals insensitive to
the categorical/continuous feature distinction. We do this for
methods that do not intrinsically handle categorical features
differently. In this context, we measure distance with L2

norm. Then, we address the treatment of categorical vari-
ables by providing results on a post-hoc clipping of the
counterfactuals (detailed results in Appendix B). Categor-
ical variables are one hot encoded; we apply clipping by

taking the maximum argument of the counterfactual vector
x
C
� x and assign a value of 1 only to the maximum ar-

gument, 0 elsewhere, interpreted as the prescribed direction
of strongest change. We measure distance by Heterogenous
Eucledian Overlap Metric (HEOM) (Wilson and Martinez
1997): simple matching on categorical features, added to L2

for continuous features, recording average HEOM only on
valid counterfactuals in Table ??, and providing other ex-
periments in the Appendix B. All measures, except speed,
are only computed on valid counterfactuals.
We compare our counterfactuals against CCHVAE

(Pawelczyk, Broelemann, and Kasneci 2020) and Wachter
(Wachter, Mittelstadt, and Russell 2017) from the counter-
factual literature and FAB (Croce and Hein 2020), Carlini-
Wagner (Carlini and Wagner 2017), and Projected Gradi-
ent Descent method (Madry et al. 2017) from the adversar-
ial robustness literature. These methods have been selected
since they target minimality. In particular, adversarial ro-
bustness techniques can present an aggressive benchmark
against which to compare since they strongly prioritise dis-
tance to query (Madry et al. 2017). We find these techniques
on the Carla-Recourse (Pawelczyk et al. 2021) and Adver-
torch libraries (Ding, Wang, and Jin 2019). Boundary Dis-

tance in Table ??, is a measure of distance from the decision
boundary computed by finding the L2 distance between the
output and [0.5, 0.5] point. In experiments, we interpret this
measure as being optimised as it approaches zero.
Results show that our method is able to find points very

close to the query instances, shown by the small aver-
age boundary and L2 distances across all datasets in Table
??. We achieve state-of-the-art against both best-performing
counterfactual techniques and adversarial attacks in terms of
distance from query, validity and latent distance to the de-
cision boundary, while maintaining acceptable computation
time. Our (Fast) variant improves on time, while maintain-
ing competitive minimality metrics in comparison to coun-
terfactual techniques.
Sparsity: for techniques targeting sparsity, we compute

all previously mentioned metrics, which remain relevant, as
well as the L0 norm. This counts the number of features that
have changed in the counterfactual, compared to the query.
In Table ??, we demonstrate how our PICE (Sparse) variant
successfully finds minimal counterfactuals, while improving
on the L0 norm against PICE, our main method. This comes
at the cost of validity, since the classifier does not attain mul-
tiple labels in all subspaces it explores, and an increased dis-
tance to query in the input space. We also compare against
popular sparsity targeting methods in Appendix B: COGS
(Virgolin and Fracaros 2023) and NICE (Brughmans, Ley-
man, and Martens 2023).
Plausibilily: to measure plausibility (Poyiadzi et al.

2020), we use Isolation Forest (IF) (Liu, Ting, and Zhou
2008) and Local Outlier Factor (LOF) (Cheng, Zou, and
Dong 2019), and use percentage of in-liers as our metrics to
assess the plausibility of counterfactuals. In both cases, we
use the sci-kit learn implementations with default settings,
except for the number of neighbours parameter, which we
set to 5% of the dataset. For the lending dataset, we select
the first 50,000 points to train the Local Outlier Factor for
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METHOD SPEED (S) VALIDITY BOUNDARY DISTANCE L2 HEOM
ADULT
WACHTER 2.843⇥ 10�1 100% 1.7⇥ 10�2 6.873⇥ 10�1 7.01
CCHVAE 1.967⇥ 10�1 99.90% 6.2⇥ 10�2 4.422⇥ 100 7.09
PICE 6.351⇥ 101 100% 5.3⇥ 10�13 6.424⇥ 10�2 6.76
PICE (FAST) 7.089⇥ 10�1 100% 4.8⇥ 10�1 5.068⇥ 10�1 6.84
PICE (PLAUSIBLE) 5.047⇥ 10�1 100% 5.3⇥ 10�13 6.424⇥ 10�2 6.76
LINFPGD 1.541⇥ 10�4 88.80% 4.5⇥ 10�1 2.630⇥ 100 7.40
FAB 6.842⇥ 10�4 11.20% 7.8⇥ 10�5 1.275⇥ 10�1 7.02
CW 1.858⇥ 10�1 87.80% 9.7⇥ 10�8 3.347⇥ 10�1 7.19
LENDING
WACHTER 8.629⇥ 10�3 100% 1.2⇥ 10�2 8.733⇥ 10�2 4.58
CCHVAE 9.264⇥ 10�2 99.10% 4.0⇥ 10�3 4.947⇥ 100 6.29
PICE 4.183⇥ 101 100% 3.1⇥ 10�15 1.452⇥ 10�2 4.48
PICE (FAST) 6.661⇥ 10�1 100% 3.1⇥ 10�4 4.528⇥ 100 5.23
PICE (PLAUSIBLE) 4.848⇥ 10�1 100% 3.1⇥ 10�15 1.452⇥ 10�2 4.48
LINFPGD 1.955⇥ 10�4 86.90% 3.0⇥ 10�2 1.931⇥ 100 5.02
FAB 1.027⇥ 10�3 17.80% 7.6⇥ 10�6 3.608⇥ 10�2 5.01
CW 9.515⇥ 10�2 81.90% 5.2⇥ 10�10 2.124⇥ 10�2 5.02

Table 1: Comparison of Methods for Computing Counterfactuals (full experiments are provided in B, standard deviations are
provided in Appendix B). All measures, except speed, are only computed on valid counterfactuals.

METHOD SPEED (S) VALIDITY BOUNDARY DISTANCE L2 L0

LENDING
COGS 7.182⇥ 10�1 100% 2.9⇥ 10�2 3.860⇥ 10�1 3.394
FACE 1.343⇥ 101 100% 5.4⇥ 10�3 8.242⇥ 100 11.66
NICE 1.531⇥ 10�1 100% 3.4⇥ 10�3 3.093⇥ 100 7.786
PICE 1.399⇥ 101 100% 3.1⇥ 10�15 1.452⇥ 10�2 64.04
PICE (SPARSE) 8.937⇥ 100 86.80% 2.9⇥ 10�15 2.132⇥ 100 3.029

Table 2: Demonstrating the ability of the sparse variant of PICE to find sparser counterfactuals. All measures, except speed, are
only computed on valid counterfactuals.

tractability. We use FACE (Poyiadzi et al. 2020) as a base-
line, which will provide a strong comparison on IS and LOF
since it selects points in the dataset as counterfactuals.
Table ?? reports IF and LOF scores averaged across coun-

terfactuals first, and across datasets afterwards. Disaggre-
gated measures can be found in Appendix B. Interestingly,
we find that PICE (without any additional desiderata en-
forcement) scores well in plausibility. Indeed, we find that
the PICE and its plausible variant often converge to the
same counterfactual point, suggesting that the closest de-
cision boundary is often at a face or in an inhabited poly-
hedron. Whenever they disagree, PICE (Plausible) slightly
improves the plausibility.
Robustness: we follow the experimental evaluation from

Pawelczyk et al. (2022) to asses the robustness of our newly
generated counterfactuals. This is usually verified by sam-
pling points near the counterfactual according to some dis-
tribution. The choice of distribution varies (Sharma et al.
2022; Pawelczyk et al. 2022; Dominguez-Olmedo, Karimi,
and Schölkopf 2022; Guidotti 2022; Virgolin and Fracaros
2023); we follow (Pawelczyk, Broelemann, and Kasneci
2020) in defining a hyperbox around the query from which
we sample uniformly, but only in the direction of the coun-
terfactual. We sample 1000 points in hyperboxes of varying

size (✏ = [0.01, 0.05, 0.1, 0.5, 1]).
Table 4 reports the robustness for ✏ = 0.01, and in the Ap-

pendix B we report full experimental evaluations. The PICE
(Robust) presents a significant improvement in robustness,
compared to PICE. It also performs well compared to other
popular counterfactual methods, including COGS which tar-
gets specifically robustness. PICE (Fast) also performs well
on robustness: this is because it generally may find points in
polyhedra that are not adjacent to nor intersecting with the
decision boundary.

6 Conclusion and Future Work
We found minimal counterfactuals for CPWL neural net-
works and developed methods to target popular desiderata.
In particular, we provide theoretical guarantees that PICE
converges to the closest points to the query with a different
label. By leveraging the polyhedral geometry of the neural
network, we provide variants that target popular desiderata
in the counterfactual literature. Our experimental evaluation
highlights clear advantages against existing methods in the
pursuit of minimality, and improvements across all desider-
ata. In this way, we have shown how leveraging the func-
tional form of the network can provide faithful explanations
(Guidotti 2022) with guaranteed optimality.
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METHOD IF LOF
CCHVAE 1.0000 0.9722
FACE 0.9594 0.9947
FAB 0.9276 0.9668
NICE 0.9271 0.9617
WACHTER 0.9074 0.9690
CW 0.9048 0.9870
PICE (PLAUSIBLE) 0.8915 0.9550
PICE 0.8905 0.9550
COGS 0.8437 0.8908
PICE (SPARSE) 0.8314 0.6726
PICE (FAST) 0.6313 0.6985
LINFPGD 0.2158 0.7294

Table 3: Comparison of Plausibility for counterfactuals,
showing average percentage of inliers according to Isolation
Forest (IS) and Local Outlier Factor (LOF) across datasets.
Breakdown across datasets can be found in Table 8

Method ✏ = 0.01 Robustness
Adult Heloc

CCHVAE 95.8± 11.0% 79.6± 17.3%
COGS 100± 0.00% 100± 0.705%
CW 49.8± 1.49% 51.7± 1.05%
FAB 60.7± 11.4% 54.8± 3.03%
FACE 99.4± 4.70% 99.8± 2.52%
LINFPGD 100± 0.553% 100± 0.00%
NICE 100± 0.00% 94.4± 12.3%
PICE 50.1± 0.554% 51.7± 0.00%
PICE (Fast) 99.9± 1.64% 88.1± 21.1%
PICE (Robust) 98.8± 5.85% 98.5± 6.24%
Wachter 85.8± 15.9% 94.5± 11.0%

Table 4: Robustness: measured by average validty rate for
different hyperbox sizes, with standard deviations. Further
experiments can be found in Table 10

The explainability of machine learning models, especially
neural networks which are generally deemed as black-boxes,
is imperative for developing responsible AI. Our work can
not only be used extensively to help developers of continu-
ous piecewise neural networks understand their models, but
also help end-users subject to such models’ decisions by
providing them recourse recommendations. This work is a
step towards the class of more interpretable models which
can also provide substantial predictive power, and encour-
ages future work in this space. The impact of our work is to
provide greater insight into model behaviour for piecewise
linear networks, which is expected to enhance safety and
trustworthiness of these popular AI models, while providing
benchmarks against which future counterfactual explanation
methods can be compared.
Future directions of research would address some limi-

tations of our work. Firstly, as discussed in Appendix E,
improving the computational complexity of the main algo-
rithm or tightening the guarantees of the fast variant would
empower the computation of minimal counterfactuals in in-
creasingly large networks. Secondly, our work is focused on

ReLU-based architectures: while a generalisation to general
piece-wise linear networks is directly achievable, a goal of
future research is to adapt the algorithm to other activation
functions (such as sigmoids and tanh).

Decision boundaries contain information about the
model’s vulnerability, its reasoning and complexity (Karimi,
Derr, and Tang 2019; Karimi and Tang 2020) and can be
used to adversarial attacks (Madry et al. 2017), measuring
the expressivity of the network (Corlay et al. 2019), its gen-
eralisation at inference (Li, Ding, and Gao 2018), and the
distance between a point and its closest point on the bound-
ary can be used to model uncertainty, assess the robustness
of the model (Lan, Brückner, and Lomuscio 2023) and ex-
planations (Mohammadi et al. 2021). A corollary of our
method is the ability to find points that are (a) exactly on the
decision boundary and (b) have minimal distance. This has
consequences in all of the above explorations, enabling bet-
ter quantification of uncertainty, robustness of models and
retraining. Moreover, exactly minimal counterfactuals en-
able a deeper exploration of robustness of counterfactual ex-
planations: how quickly and dramatically does a counterfac-
tual change if we change the query slightly? This line of in-
quiry is important to recourse, where it may be desirable to
require of candidates with similar features to be treated sim-
ilarly and, in particular, be given similar recourse options.

PICE enables new insight into piecewise linear neural net-
works through efficient and tailored explanations. In future
work, we will look into using these models as surrogate
models for less interpretable models or black-box models to
explain their predictions. Moreover, we envision the utility
of PICE to go beyond the computation of counterfactuals: it
can be used as a benchmark for minimality, to explore prop-
erties of the decision boundary, and in adversarial training.
These are promising directions, which can provide insight in
the behaviour of networks and may lead to improvements in
current methodologies.
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